Hydraulic Vibratory Hammer: the Foster 4200


The Foster hammers are an interesting part of Vulcan’s last years.  The concept was to produce a vibratory hammer under a “private label” arrangement, a novelty for the pile driving equipment industry at the time (although the “Chimag” diesel hammers were a similar concept.)  In the early 1990’s Vulcan produced several vibratory hammers for the sheet pile supplier L.B. Foster, merging Foster’s own exciter technology (which was Japanese in origin) with Vulcan’s power pack improvements after parting ways with HPSI.

The purpose of this article, however, is primarily to discuss hydraulic vibratory hammers with an emphasis on the “hydraulic.”  Pile driving equipment in general and vibratory pile driving equipment in particular poses challenges for the equipment designer and manufacturer.  The emphasis here will be on the hydraulics, which are in some ways typical of mobile hydraulics and in some ways unusual.  We will use the Foster 4200–the largest of the hammers Vulcan produced–as an example.

Basics of Fluid Power

Fluid power is an important component of power transmission for many mechanical applications.  Broadly fluid power can be broken down into two parts: industrial and mobile applications.  The emphasis here will be on the latter.  Most construction machinery manufactured today has some hydraulic control or power included in the equipment.  The original vibratory hammers, designed and produced in the then Soviet Union, were electric, but with the introduction of hydraulic vibratory drivers in the 1960’s today most are hydraulic.

The concept behind fluid power is simple:

  1. A flow of fluid is pressurised.
  2. The fluid is delivered to where it is needed.
  3. The fluid does its work, and is depressurised in the process.
  4. The fluid, at or near atmospheric pressure, returns to where it is pressurised.
  5. The process is repeated.

Since the hydraulic fluid being used (petroleum-based, plant-based, or even water) is virtually incompressible, considerations such as occupy students of thermodynamics are not an issue here, although they appear in other parts of the hydraulic system.  The power being delivered at any point by a fluid power system is the product of pressure and flow, thus

HP=\frac{ PSI \times GPM}{ 1714}

where HP is the horsepower being delivered by the fluid, PSI is the gauge pressure of the fluid in pounds per square inch, and GPM is the flow rate in U.S. gallons per minute.

Both the flow and pressure of the fluid are generally delivered by pumps.  Fluid power is a little different from many pumping applications in that the pumps are almost always positive displacement, to insure the accuracy of the flow and pressure.  The pump performs the first step of the process outlined above; if the power is transmitted at the other end in a rotary way, a motor performs the third step.  Unsurprisingly hydraulic pumps and motors are basically mirror images of each other; their construction is similar (not necessarily identical) and their operation is similar.  There are several types of hydraulic pumps and motors in use; we’ll concentrate on piston motors and pumps for two reasons:

  1. These are what were used in the Foster 4200 and all of Vulcan’s high pressure machinery (more about pressure levels later.)
  2. They’re a little easier to visualise if you’re not familiar with the application.

Let’s look at a cutaway pump/motor.


The large bronze barrel in the centre of the motor has a series of holes in a radial pattern, into which the pistons (those small cylinders with the rounded left ends) are inserted.  The plate an an angle to the bronze barrel is the swash plate, which (through the other plates) either drives (motor) or is driven by (pump) the spline at the left end of the motor, which connects to whatever the motor is driving or the pump is being driven by.  The angle between the barrel and the swash plate alows the pistons to move in the barrel, much like the pistons in an automobile do.  The displacement per piston is given by

DIS = A \times L

where DIS is the displacement of each piston in cu.in., A is the cross-sectional area of the piston in sq.in., and L is the stroke of the piston in the barrel in inches.  The total displacement per revolution of the barrel is obviously

DIS_{tot} = DIS \times N

where DIS_{tot} is the total displacement in one revolution in cu.in./revolution and N is the number of pistons.

The flow of the pump or motor is given by

GPM = \frac {DIS_{tot} \times RPM}{231}

where RPM is the rotational speed of the motor is revolutions/minute.  The horsepower output of the motor (or input of the pump) was given earlier.  The torque of the motor/pump is

T = \frac{5252 \times HP}{RPM}

where T is the torque of the motor or pump in foot-pounds.

The simplest configuration of a pump or motor is a fixed-displacement.  In this the angle between the barrel and the drive spline (or keyway) is fixed and thus the stroke L is fixed.  This precise flow is an important aspect of fluid power systems, as it regulates the speed of the load, which can be rotational or translational.

However, there are good reasons for varying the displacement–and thus the flow output–of a hydraulic pump.  The pump shown above has a mechanism on the right which varies the position of the right end of the barrel, and thus the displacement of the pistons.  Although it’s possible to vary this control manually, the mechanism shown does so by measuring the pressure of the hydraulic fluid, and thus is referred to as pressure-compensated.  We’ll come back to why that’s important later.

One further thing that complicates the equations above is leakage around the pistons.  Because of the speed of their movement, most piston pumps and motors–and for that matter most hydraulic motors, pumps and valves–do not use seals in them, but tightly fit the pistons or valve spools to the barrel or valve body and allow some leakage.  Although this may seem inefficient, the small oil flow allows for lubrication of the components and cooling of the pumps and motors without the drag that seals would induce.  This reduces the flow available for power transmission, and the ratio of the ideal flow to the flow actually available after leakage is referred to as volumetric efficiency.  This can vary for a number of reasons, but for piston motors and pumps such as we are dealing with here a volumetric efficiency of 90% is a good estimate.

Overview of the Foster 4200

A general overview of vibratory hammers, their theory and application, is given in the monograph Vibratory and Impact-Vibration Pile Driving Equipment.  Without going into the detail of that monograph, the following illustrates the basic components of the system.


The exciter does the work of the system by inducing a vertical, sinusoidal force in the pile, which sinks by its own weight.  The eccentrics producing this force are turned by a motor, which is driven by a pump on the power pack through the hoses.  The pump in turn is driven by a diesel engine, which is the prime mover of the system.  There’s also a clamp to hold the driver to the pile; in reality there are two hydraulic systems, one for the motor and one for the clamp.  This allows us to illustrate hydraulic systems with both rotational output (the motor) and translational output through a cylinder (the clamp.)

The exciter for the 4200 is shown below.  If you’re interested in details on this unit, including the specifications, you can download the Foster 4200 Field Service Manual, First and Second Units.


The 4200 has two motors to drive its eight (8) eccentrics, but in this case only one clamp for sheeting.  A hose layout for the exciter is shown below.

The hose layout for the 4200 exciter. There were five hoses going back to the power pack: the supply hose (94), return hose (93), case drain (2), and the two clamp hoses (15).

The supply hose is the hose which carries the pressurised oil to the motors.  The return hose carries the depressurised oil back to the power pack.  The case drain hose returns the leakage from the motor (see earlier comments on volumetric efficiency) back to the power pack.  In some cases the return hose can be used as a case drain hose, but in this application there is too much back pressure.  The two clamp hoses are bi-directional, as we will discuss shortly.

foster pp outside
An outside shot of the power pack. The control panel is for an electric-over-hydraulic system which Vulcan began using when it built its own power packs. The remote control pendant allows the unit to be operated from the crane or wherever is most convenient. The hoses come from the exciter and can be 50′-150′ long for this size of unit. The quick disconnects allow easy connection and disconnection of the hoses from the power pack, but should be avoided when possible because they contribute to frictional losses in the hydraulic fluid.

Until 1991 Vulcan purchased its power packs from HPSI, which used an air-over-hydraulic control system.  In going to electric-over-hydraulic, Vulcan was more in line with its competition such as ICE and APE.

foster pp inside
Looking through the doors of the power pack. The diesel engine is the prime mover of the system. The pump drive transmits torque to the “pump stack,” which includes the pressure-compensated pump for the motor and the clamp pump. The reservoir stores and cools the oil between cycles in the hydraulic system.

Older hydraulic systems used several types of transmissions between engine and pumps, including power-take-off (PTO) drives.  Vulcan used a direct drive which was basically a thin circular plate which transmitted torque from the engine to the pump shaft.  This seriously reduced mechanical inefficiencies in the system.

The hydraulic schematic of the system. Most of the fluid is stored in the reservoir (1) until drawn into the main pump (6) or the clamp pump (6e). The fluid driving the motors runs through the supply quick disconnects (12) to the hammer, and returns through the return quick disconnects (13). The oil then goes through the oil cooler (15) before returning to the reservoir (1). The clamp pressure, alternating between the two hoses (10) and (10a), is controlled by a directional control valve (7). The case drain line (19) goes directly to the reservoir (1) to minimise back pressure.

We can thus see the essential components of the hydraulic system:

  1. Prime mover (4).
  2. Pump to pressurise the oil (6,7)
  3. Equipment to do the work and depressurise the soil (motors, clamp)
  4. Cooling and oil storage (1,15) after oil is returned to the power system.

Pressure in Hydraulic Systems

Fluid power systems are designed to deliver an oil flow at a given flow rate.  So what pressure does this come at?  This is a key point in fluid power systems: pressure is determined, without any other restrictions, by the load itself.  This is true whether the load is rotational or translational, and in this system we have both.

Rotational (Motor) Loads

The main pump (6) is configured to, at maximum displacement, deliver a given flow of oil.  This in turn determines the rotational speed of the motor.  The power put into the system–a product of the pressure and the flow–varies with the load of the system, and that in turn varies with the pressure.  So are there limits to that pressure?

The answer is obviously yes.  Hydraulic systems, broadly, divide themselves into two pressure ranges: high and low.  Low pressure systems generally have their pressure limited to about 2500-3000 psi, and a wide range of hydraulic systems operate in this range.  High pressure systems run around 5000 psi and beyond.  Each system has its own standard of components.  The Foster 4200, in common with Vulcan’s 2300 and 4600 vibratory drivers, was a high pressure unit.

So how do we limit the pressure?  In “classic” systems such as the HPSI power packs Vulcan started with, there was a fixed displacement pump and a relief valve (11).  When the pressure reached the system maximum, the hammer would slow down and the excess oil would “dump over relief.”  This worked, but it generates a lot of heat, which means that the system’s thermal protection shuts it down in short order.

On this hammer, Vulcan used a pressure-compensated, “load-sense” system, which required a special relief valve which, in turn, informed the pump that maximum pressure had been achieved.  The pump would reduce its displacement as described earlier until the flow and pressure were balanced.  There was still a relief “just in case” for safety purposes, but much of the dumping over relief was eliminated.  This also enabled the operator to slow the hammer down without slowing the engine down, allowing the engine to operate in its best torque range.

Translational (Cylinder/Clamp) Loads

Before we describe the hydraulics, let’s look at what the clamp does.  Some types of hydraulic clamps are shown below (from this article.)

Figure 54. Types of clamps that grip the pile using friction. a) clamp for steel pipe and reinforced concrete shells, b) direct-action clamp using a hydraulic cylinder and accumulator for sheeting and similar piles; c) lever-type clamp for piles and pipes.

Fun fact: Foster started this project using the clamp type (c), which they inherited from the Japanese.  This clamp was common when cylinders were not large and the lever action was needed to obtain the force, but these clamps were heavy.  Vulcan convinced them to convert to type (b), albeit without the accumulator, which had been a U.S. industry standard for a long time.  Vulcan also convinced Foster to adapt an integral clamp cylinder as opposed to the bolt-on types which are still common on American vibratory equipment.

The clamp is simple: the clamp in pressure is applied to the large (head) end of the clamp and the jaws close on the pile, clamping the pile and stopping the cylinder.  When driving is finished, pressure is applied to the small (rod) end of the clamp and the jaws open.  The speed of the movement either way is computed as follows:

V = \frac{231 \times GPM}{A}

where V is the velocity of the clamp in in/min and A is the area (head or rod) under pressure, sq.in.  Moving cylinders is a common hydraulic operation, one (with the right control system) can be done with great precision.  In this case positional precision wasn’t a big deal; the clamp cylinder just needs to go until the pile stops it.

So what happens then?  The system “deadheads,” and, with a fixed displacement pump, most everything goes over relief, with the usual heating problems.  There are ways of getting around that but here again pressure-compensated pumps are the best answer, going to nearly zero flow when the clamp deadheads.

Another fun fact: In adopting Vulcan’s clamp design, Foster also incorporated Vulcan’s safety check valve in the clamp, which continued pressurisation in the event the clamp hose was cut.  Foster also incorporated Vulcan’s interlock that made it impossible to start the hammer until the exciter was clamped to the pile.  That’s one reason why a separate hydraulic system is needed for the clamp; another is that full clamp force and pressure is guaranteed, whereas with the pump for the motor the pressure varies.


We’ve covered a lot of ground here.  Hopefully you’ve gotten a better idea of what hydraulic systems in general–using a real-life application–are all about.  Vulcan’s effort with Foster’s vibratory hammers was a unique one, and probably resulted in the best vibratory driver (if not the most economical to produce) Vulcan ever made.


Russian Hydraulic Demolition Hammers

Yu. V. Dmitrevich, VNIIstroidormash
L.V. Erofeev, Stroifundamentservice
V.A. Nifontov, Stroifundamentservice
D.C. Warrington, Vulcan Iron Works Inc.

This article was originally published in 1993 or 1994.  The graphic above shows a 9 kJ unit mounted on an excavator.


Hydraulic demolition hammers mounted on hydraulically powered excavators are becoming increasingly widespread in world practice. They allow the excavators to be used for breaking rock and permafrost, break up large rocks, old foundations and reinforced concrete structures, and other jobs.

Outline of the Machine

Hydraulic demolition hammers are often equipped with hydraulic accumulators in the pressure line and sometimes in the drain line as well (as is the case with the Raymond hydraulic pile driving hammers) to achieve higher efficiency and to smooth pulses of fluid pressure in the hydraulics. Compressed nitrogen is mostly use as the elastic element in these accumulators.

The proposed hydraulic hammers differ from similar machines of leading companies outside of Russia such as Krupp of Germany, Montaber of France, and NTK in Japan. The main difference is in the accumulators the Russian machines have no compressed nitrogen accumulators, but are equipped with hydraulic accumulators having a so-called “liquid spring,” which is a closed volume of hydraulic oil compressed under pressure four or five times the pressure in the hydraulic system. Possible leaks from the inside of the hydraulic spring are compensated automatically when the hammer is switched off. Such a hydraulic accumulator does not need any adjustments and control during operation and its parts can serve as long as the hammer itself.

The main reason this design was chosen relates to the conditions in Russia itself. The temperature gets very cold, down to -60° C under these conditions the rubber in the bladder type gas accumulators will become embrittled in the temperatures common in many parts of Russia. Once this has happened, the bladders will burst and the machine will have to be completely disassembled and the bladder replaced. This operation is tedious enough on a normal construction site it is a greater problem when the job is somewhere above the Arctic Circle in Siberia.

Another specific feature of these hydraulic hammers is that their rams are not integral with the piston but are connected with the latter through a special elastic hinge. All the hydraulics of the hammer are centralized into a separate unit comprising the working cylinder, distribution valve and hydraulic accumulator. The ram can be of any size as required. The weight of the ram is selected so as to provide the impact energy at an impact velocity of no more than 6 m/sec. The weight of the ram is generally double that the the impact tool with other machines, it can be only half. This provides a high impact efficiency and increases the efficiency of the hydraulic hammer as a whole.

The power output of an impact hammer is the product of the impact energy of the hammer and the number of blows per minute. Thus, for the same power output an impact hammer can have either a high number of blows per minute and a low rated striking energy or a low number of blows per minute and a high impact energy. The advantage of the latter condition, however, is that the higher impact energy can be decisive in producing the high impact force levels necessary to demolish the work at hand. This is why these units have demonstrated outputs two or three times as high as those produce by Kone (Finland,), Krupp (Germany,) and have also outperformed those from Ingersoll-Rand.

The efficiency of these hammers is further promoted in breaking permafrost and rocks by the streamlined shape of the tool itself, which permits the operator to sink the whole hammer into the medium to a greater depth than just the length of the impact tool, i.e. a deeper layer than can be broken at one pass. Thus, there is no need to make the tool very long and the hammer can be operated as a lever, tearing large pieces away from the permafrost or rock. Other companies prohibit such handling of their demolition hammers. The strength of the tool and of the hammer body permit such operation in the case of the Russian machines.

Table 1 shows the standard sizes of the hydraulic demolition hammers based on these principles.

Table 1 Specifications for Hydraulic Demolition Hammers


Size I

Size II

Size III

Size IV

Size V

Impact Energy, kJ






Blows per Minute






Hammer Weight, kg.






Ram Weight, kg.






Weight of Impact Tool, kg





Insertion Diameter for Impact Tool, mm





Hydraulic Oil Consumption, l/min






Working Pressure, MPa






Connecting Hose Size, mm





Weight of base excavator, metric tons






Maximum depth of loosening of permafrost or rock per pass, mm





The Size I has been produced in Belarus since 1982 and the Size IV in Russia since 1978. Sizes II and III have been tested as prototypes and are proving to be the most popular sizes. The design of the hammer is patented in Germany, Hungary and Finland.

Hydraulic hammers of Sizes IV and V may be used for driving small piles after some modification.

Description of Design

The hydraulic demolition hammer is mounted onto excavators as an interchangeable tool by means of an intermediate bracket which is secured both to the excavator and to the hydraulic hammer

Figure 1 shows the main parts which constitute the structure of the demolition hammer. The working cylinder (Figure 2) is essentially a body having a heat treated steel sleeve inserted therein, the latter accommodating a piston moving therein. The body of the work cylinder accommodates a check valve and a hydraulic accumulator comprising a piston with a head and rod, a bushing and a fluid spring enclosed in the cavities bored into the body and communicated with each other and with the rod end of the accumulator by means of ports.

As shown in Figure 3, a plug is provided to let air out from the cavity of the fluid spring when the latter is being filled with the working fluid.

Figure 3 Plug for Air Outlet from Fluid Spring 1) Working Cylinder Casing 2) Plug 3) Sealing Ring 4) Air Outlet Plug 5) Fluid Spring Cavity

The rod of the hydraulic accumulator is spring loaded. The head end of the accumulator is communicated with the fluid spring through a check valve intended to compensate for leaks from the cavities of the fluid spring when the hydraulic hammer is switched one and off. The work cylinder is closed from the top with a lid.

The impact portion of the hydraulic hammer is suspended from the rod of a piston by means of rubber shock absorbers. These decrease the dynamic loads acting on the rod. The impact portion moves in the guide pipe. Ports are provided in the upper and lower portions of the guide pipe and these intercommunicated by air ducts. With the impact portion moving, air flows freely from one cavity into the other one through the air ducts.

The impact portion delivers by its lower end blows upon the tool, which can move freely downwards for 60 mm along the guide of the axle box mounted on the guide pipe.

Principle of Operation

Looking at Figure 4, the ram, rod and piston are in their initial position, which is resting on the impact tool. The control valve occupies the upper position under the action of a spring mounted under its lower end position. This communicates the rod end of the work cylinder with the pressure line. It also communicates the head end with the drain line of the hydraulic system, the piston of the hydraulic accumulator occupying the upper position.

After the pump is started, the working fluid gets through the valve into the rod end of the working cylinder and the space above the piston of the hydraulic accumulator. As a result of this the impact portion starts accelerating upwards. This forces the fluid from the head end of the working cylinder through the port along the drain line into the tank, whereas the piston of the hydraulic accumulator moves downwards.

Moving on to Figure 5, at the end of the upward acceleration, the piston passes the drain port, as a result of which pressure in the head end of the working cylinder, the duct and above the upper end of the valve rises. Since the area of the upper end of the valve is greater than that of the lower one, the valve moves into the lower position, thereby communicating the head end with the pressure line and the rod end with the drain line.

This is followed by the phase of slowing the ram to a stop in the upstroke, whereby the piston forces the fluid from the head end into the hydraulic accumulator.

After the ram has stopped at the top of the stroke, it starts accelerating downward under both the force of gravity and the fluid pressure on the head end of the piston. After the impact portion has acquired a speed where it outruns the hydraulic pump, the hydraulic accumulator starts to discharge, and its piston moves upwards. At the end of the downward stroke the ram strikes the impact tool, which moves relative to the body of the hammer so the tool can penetrate the soil. Before the blow is delivered, the upper edge of the piston lowers below the check valve, whereby the head end is communicated with the drain line. As a result of this, the pressure in the head end and above the upper edge of the control valve drops down to a value at which point the spring mounted under the control valve can move the control valve upwards.

After this, the cycle can be repeated. Figure 6 shows the hydraulic schematic for the system.

Figure 6 Hydraulic Schematic of Demolition Hammer 1) Check Valve 2) Working Cylinder 3) Control Valve 4) Check Valve 5) Fluid Spring

Additional Features

The fluid spring is used in the structure of the accumulator. In this spring the pressure exceeds that in the hydraulic system by as many times as the area of the piston exceeds the area of the rod entering the cavity of the fluid spring.

Possible leaks from the cavity are compensated by the hydraulic system after the pump through the check valve, with the piston being displaced by the spring mounted thereunder.

The hydraulic hammer cannot be started unless it is applied against the work. Without the work being applied against the impact tool, the block head occupies the lowest position and the upper surface of the piston is lowered below the ports through which the fluid gets into the rod end. An attempt to start up the hammer without the hammer applied against the work results in the fluid passing freely over into the tank, and the hammer does not operate.


The hydraulic demolition hammer with fluid accumulator has proven itself both in theory and in practice. It has as rugged and simple design and is capable of performing many kinds of work. It overcomes many of the difficulties of other designs without unacceptable compromises in performance.

Vulcan #3 Hammer: Specifications and Information

The #3 was one of the early (pre-1900) Warrington-Vulcan hammers, along with the #2 and #1.  A general arrangement is shown above; specifications are below.

Specifications Bulletin 68
Specifications, Vulcan Bulletin 68

The #3 found itself involved in some important projects, including the construction of the original Panama Canal, as evidenced by the memo below.

A memo/drawing of modifications to two (2) #3 hammers for the Panama Canal project. Vulcan was frequently loathe to make modifications to their hammers, but they did so in this case.

The #3 fell out of favour to the larger #2 and #1 hammers (the #2 eventually suffered the same fate) but in 2008 Pile Hammer Equipment brought back the #3 hammer.  They made many changes to the hammer, including increasing the ram weight to 2,100 lbs. (a little more than the Panama Canal hammers,) increasing the stroke to 3′, adding cables and other features.  The PHE/Vulcan #3 is the newest Warrington-Vulcan hammer, and also one where a Warrington was involved in the design.  You can see a general arrangement of the hammer (with specifications) below; more information and availability can be found by contacting Pile Hammer Equipment.


An Old Idea Comes Back: China-US Arbitration in a Neutral Country

In his assessment of the prospects of US-China relations, former Australian Prime Minister Kevin Rudd makes the following suggestion to resolve intellectual property (IP) issues:

Intellectual-property protection, however, is deeply problematic. Previous agreements reached under US president Barack Obama’s administration could be reconstituted. But the jurisdictional enforcement of breaches is still hopeless.

One possible mechanism is to subject relevant contracts between Chinese and foreign firms to international commercial arbitration bodies in Singapore or Switzerland, designed to deal specifically with the enforcement of IP protection.

In both contracts Vulcan signed with the Chinese for the sale of the 560 hammers and boiler (1981 and 1983,) our agent Amtech wisely included the following provision:

18. SPECIAL PROVISIONS: Arbitration in Sweden or Canada

Not all of these special provisions were wise (or at least to the Chinese’ taste) but this one was, although thankfully for both parties we never had recourse to this process.

One thing that has always struck this observer as unwise is the typical American attitude that everything should be everywhere just like it is in the US.  Old exporters (and Vulcan certainly had a good track record in that regard) knew better, but our voices have been ignored, especially in the years of US unilateralism following the end of the Cold War.  The rise of China, whose view of life is very different from ours, should occasion the revival of a more “multilateral” approach, but such an approach will require a different style of mind than has been exhibited up until now.

Vulcan 305 and 306 Hammers: Specifications and Information

No history of the Warrington-Vulcan hammers would be complete without mentioning the 305 and 306 hammers.  The primary purposes of these designations was to harmonise them with the way Vulcan had numbered its larger hammers for many years, although these hammers incorporated changes such as cables and the possibility of Vari-Cycle II.


The most important example of these hammers was the 306 built by the new Vulcan Foundation Equipment (which was owned by the Dutch company IHC) in the early 2000’s, shown below.  The 306 incorporated the long ram which was used by the later 06 hammers and the 506.

vulcan 306 7
The Vulcan 306 ready for shipment in Vulcan Foundation Equipment’s Chattanooga facility (which was down the street from the Vulcan Iron Works’ old plant.) From left to right, Doug Scaggs, Ernie Artrip and Linda Grant.

The 305 was supposed to supersede the #1, but in reality it was never built.  Nothing can supersede the #1.  The general arrangement for that hammer is below.  Specifications for both of these hammers are on the general arrangements.


Vulcan 012 Hammer: Specifications and Information

012The 012 was the largest Warrington-Vulcan hammer with a 3′ (actually, 3.25′ for the #0 series) hammers.  It used a long ram, the same length as the later 010 hammers.  It is a very useful hammer with its relatively large ram weight, although in practical terms it was soon overshadowed by the 5′ stroke 512.

At the right is an 012 in the maroon colour Vulcan used in the late 1970’s and early 1980’s.  You can also see the safety warning plates Vulcan affixed to all its hammers from the late 1970’s onward.  These are useful reminders of safe operation of Vulcan hammers.

Specifications are shown below.

Specifications, Vulcan Bulletin 68T, 1991

Vulcan 010 Hammer: Specifications and Information

The 010 is one of Vulcan’s more popular hammers.  For many years it was the largest Warrington-Vulcan hammer in the line until the 012.  It was an upgrade from the 0R hammer, raising the ram weight from 9,300 lbs. to 10,000 lbs.  Another general arrangement of the 010 with the steam belt are shown below.


One interesting variant of the 010 is the so-called “front loader.”  An attempt to get away from the steam belt (and the manufacturing difficulties that went with it) it placed the air inlet right at the valve chest.  Although this made sense from several standpoints, it placed the inlet too close to the ram for many contractors, and so was not pursued.  Some of those hammers are shown below.

An important front loader is the 010 with cables to the bottom of the cylinder, as opposed to those to the head.  These cables had the “button” type lower fitting.  This cable configuration became the standard for the Warrington-Vulcan hammers in the 1980’s.


Specifications for the onshore 010 are shown below.

Although it may seem strange, the 010 was also used by offshore contractors as well.  Ingram Contractors (a sibling of the book distribution company, and an early offshore contractor in the Gulf) purchased one with special 42 1/2″ x 11 1/4″ jaws in 1965, and another two years later.

It remained for Fluor to purchase in 1970 the first “true” offshore 010 hammer with the male jaws and outside cables.  That 010 also has the distinction of being Vulcan’s smallest offshore hammer.  By that time it was too small for virtually any offshore work.  Below is a general arrangement and the specifications for this hammer.

Like the 06, the 010 has two ram configurations: the short (steel) ram and the long (iron) ram.  The latter was also adapted to the 510. Below are two general arrangements for the 010 with the long ram and cables, which was the final configuration Vulcan produced.

NPO VNIIstroidormash: Soviet Construction Equipment Technology

On this site I have posted several articles on Soviet (and after that Russian) pile driving equipment, such as diesel hammers, concrete pile cutters, and vibratory and impact-vibration hammers. These are very specialised topics, even by construction industry standards; here I want to present some photos of more general interest to you heavy equipment fans. The Soviet Union was known for its commitment to heavy manufacturing and construction equipment like this is certainly a big part of that.

NPO VNIIstroidormash is the Soviet name for the Moscow-based institute which designed and tested the equipment shown below. The name means the All-Union Scientific Research Institute of Construction and Road-Building Machinery. It was put together in 1975, and survived past the end of the Soviet Union in 1991 as a share society, i.e., a privatised corporation. In addition to the pile driving equipment which got me involved with the organisation, it designed many other types of equipment, and the best way to show this follows, from their catalogue produced around 1986.

DZ-110A-1 Bulldozer with laser-beam steering and control system. Surface-working accuracy +-5 cm at 10-400 mm distance from the laser source. Such a set-up is common today; at the time it was not.
Similar, laser-levelled concept with a DZ-122A-13 motor grader.
EO-4125 excavator. The excavator is probably the single most versatile and important earth moving machine on a construction site. This one sported servo-controlled valves, which makes current excavators easier to use than their older counterparts.
Excavators are versatile in that things other than the usual bucket can be mounted on the boom. In this case, the MTP-71A excavator has an extended backhoe used for large swing radii and canal digging. It’s mounted on rubber tyres (the one above is on tracks) for softer soils; it’s also easier to transport on roads. To increase the effective counterweight it sports outriggers.
EO-3323 excavator, also mounted on tyres with outriggers. The red bucket on the end has a capacity of 0.75 cu.m.
Turning to cranes, this is a 12.5 (metric) ton hydraulic truck crane. Very useful for light lifting, they’re fairly common on construction sites and other places.
40-ton truck crane, another versatile tool.

Our business used these often for the assembly of our larger hammers, but sometimes things didn’t go according to plan.

250-ton crane. For really heavy lifts, Vulcan could have used this for its biggest products. Cranes such as this were used in the early 1980’s for the modification of its biggest hammer.
DM-476 vibration roller for compaction. These machines are not really intended for deep compaction of soils but surface smoothing, which is necessary when building roads and airfields.
DZ-140 motor grader, used for final levelling of roadways before smoothing and paving. The blade is 4.8 m long.
TO-31 skid steer loader, better known on American jobsites as a “Bobcat” after the popular American brand. Maybe they should have named this a “Siberian Tiger.”
A bulldozer-ripper. Most people connect bulldozers with moving soil, but this one is designed to break up rock for removal.
Computer aided design, 1980’s style: VNIIstroidormash’s computer room.
VNIIstroidormash’s library.
VNIIstroidormash’s female ski team.

Vulcan first connected with the Institute in 1988, and our contacts continued for the next six years. Sometimes things got strange but we discovered an organisation that put out some very good designs for construction equipment. Unfortunately the Soviet manufacturing organisation was not up to proper quality control, especially in the civilian sector, and that weakness was one of those which ultimately brought the Soviet Union down.

Vulcan 08 Hammer: Specifications and Information

The Vulcan 08 was an upgrade from the venerable #0, increasing the ram weight from 7,500 lbs. to 8,000 lbs.  The 08 experienced the upgrades of the other Warrington-Vulcan hammers, including cables and the Vari-Cycle, as shown above.  (The cables shown above used the tapered lower fittings and are to the head; later Vulcan 08 hammers have button-type lower fittings and the cables run to just above the steam chest.)

Other configurations of the 08 can be seen below.

Specifications are shown below.

The 08 in action in Norfolk, VA:

Driving Speed That Makes Footage Records

Above, an ad for the Warrington-Vulcan hammer, as featured in Engineering News-Record, 1926.  Note that there are two distributors listed: one in California and the venerable Woodard Wight in New Orleans, which (with its salesman Herman Hasenkampf) went on to represent Vulcan in the Gulf during the offshore years.

Note also that Vulcan even at this date already had a “half century of experience in the design and manufacture of pile-driving equipment.”  It also touted (before the advent of diesel hammers) the advantage of “heavy ram-low velocity” which still has its advantages today.