Vulcan High-Frequency Vibratory Hammers

The mid-1980’s were lean years at Vulcan. The offshore market was still down, the aftermath of the collapse of oil prices earlier in the decade. Vulcan’s own diesel program had to be stopped, plagued by design and manufacturing problems and an overvalued US Dollar. The vibratory hammer program was going reasonably well but the market was competitive. Vulcan had reached the point where it had effectively closed its own manufacturing facility and farmed out what was left.

It was in this gloomy situation that Vulcan designed and produced one of the most innovative products it had ever produced, the 400 vibratory hammer, the first of Vulcan’s high-frequency machines.

High frequency (~2400 RPM, not to be confused with the ~7200 RPM resonant machines) vibratory drivers had been produced in Europe. Depending upon the soil conditions and configuration of the pile, the vibrations used to drive or extract the pile can also be transmitted to neighbouring structures. Since European contractors drove piles more frequently in close quarters with sensitive structures than their American counterparts, European vibratory manufacturers produced high frequency machines first. Their higher frequency, combined with lower amplitude for the dynamic force, reduce the transmitted vibrations through most soils.

Vulcan’s rationale for a high frequency machine, however, was somewhat different. The first impetus for the 400 was the development of aluminium sheet piling, which made development of a driver smaller than the 1150 attractive. MKT had already developed a medium-frequency small machine (the V-2) to drive aluminium sheet piling, but the machine a) weighed over a US ton and b) had a clamp suited to steel piling, which mangled the heads of aluminium sheets.

What was needed was a lighter machine whose clamp was easier on the pile. Vulcan’s interpretation of the theoretical data led it to believe that a high frequency machine would drive the piles (which was certainly the case with the lighter sheeting sections.) The result was the first 400 vibratory hammer, designed and built in the summer of 1987.

The 400 had several innovative features:

  • A one piece gear-eccentric, machined out of plate with the eccentric weight burned out. The gear teeth were a much smaller pitch than their medium frequency counterparts, a feature replicated on the “A” series machines four years later. The small pitch ran more quietly an dispensed with the need for surface hardening.
  • A clamp that was burned out of plate. The cylinder bolted to it used the flat end of the rod as the movable jaw. This only left a shallow round dent in the sheeting when clamped.
  • The “U” configuration which wrapped around the exciter case and transmitted the force from the crane to the pile during extraction. This and other features were subject to U.S. Patent 4,819,740. (This patent has been a nuisance to Vulcan’s competitors for long time, cited in several patents from inventors at HPSI, APE, J&M, ICE and MGF.)
  • It was the first Vulcan pile driving machine to completely dispense with castings.

The result was a machine that weighed only 1100 lbs.–half of the MKT V-2–and still drove the piles successfully.

 

 

Advertisements

4 thoughts on “Vulcan High-Frequency Vibratory Hammers

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s