Comparative Analyses of Quay Wall Case Study Using Plaxis 3D

This paper presents the displacement behavior of quay wall system, using Plaxis 3D version 2013. The horizontal displacement calculated by Plaxis 3D for existing quay walls case study located in Rotterdam Port in South Holland is evaluated by the field measurements. At first, the three-dimensional numerical performance of Rotterdam existing quay wall is compared with the site horizontal displacement measurements over five (5) years which provide an interpretation of the increment causes of the measured horizontal displacement on top of the quay wall. Extensive comparisons are made to include the interaction between the soil and existing quay wall. Both Hardening Soil Model (HSM) and the Mohr- Coulomb Model (MCM) are utilized. The results highlighted the paramount importance of considering the time-dependent effects on the deformation behavior of the quay wall in addition to the undrained and drained soil properties. The long-term horizontal quay wall movement increments due to consolidation plays an essential role in most quay wall deformation problems. Finally, a comparative study is performed between displacement results obtained from Plaxis 3D and 2D to validate the behavior of the quay wall case study model. This result proves that Plaxis 3D 2013 prediction is satisfactory for reaching reliable displacement values when compared to the field measured and is a powerful tool for simulating and performing such quay wall analysis if compared to Plaxis 2D results.

Click here to access the paper

I am passing this along because it cites my 2007 paper Anchored Sheet Pile Wall Analysis Using Fixed End Method Without Estimation of Point of Contraflexure.


One thought on “Comparative Analyses of Quay Wall Case Study Using Plaxis 3D

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.