# This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine



## Don't forget to visit our companion site http://www.vulcanhammer.org

Use subject to the terms and conditions of the respective websites.

## I. KAMENICHNY

SHORT HANDBOOK
OF
HEAT
TREATMENT

#### I. KAMENICHNY

## A SHORT HANDBOOK OF HEAT TREATMENT

PEACE PUBLISHERS
Moscow

### TRANSLATED FROM THE RUSSIAN BY I. S A V I N DESIDNED BY V. N O V O S E L O V A

#### CONTENTS

| rage                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preface                                                                                                                                                                                                                                                                                                                                                                     |
| Chapter 1. Physical Characteristics                                                                                                                                                                                                                                                                                                                                         |
| in Heat-treatment of Metals 10                                                                                                                                                                                                                                                                                                                                              |
| Chapter 11. Quality Control of Metals                                                                                                                                                                                                                                                                                                                                       |
| Chapter III. Steel                                                                                                                                                                                                                                                                                                                                                          |
| Iron-carbon Alloys                                                                                                                                                                                                                                                                                                                                                          |
| Steel                                                                                                                                                                                                                                                                                                                                                                       |
| Chapter IV. Heat-treatment of Steel       74         1. Heating of Steel       74         2. Oxidation and Decarburisation on Heating       76         3. Annealing       78         4. Normalising       81         5. Hardening       81         6. Tempering       93                                                                                                    |
| Chapter V. Case-hardening       104         1. Carburising       104         2. Nitriding       113         3. Cyaniding       116         4. Calorising       122         5. Sulphiding (sulphating)       122         6. Cleaning and Pickling of Articles after Heat-treatment       128         7. Anticorrosion Protection for Articles after Heat-treatment       129 |

| Chapter VI. Heat-treatment Technology                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Approximate Heat-treatment Schedules and Mechanical<br/>Properties of Various Grades of Steels</li></ol>                                                                                                                    |
| Chapter VII. Heat-treatment of Cast Iron 197                                                                                                                                                                                         |
| Chapter VIII. Heat-treatment of Non-ferrous Metals 201                                                                                                                                                                               |
| Chapter IX. Forging of Ferrous and Non-ferrous Metals 223  1. Forging of Steel                                                                                                                                                       |
|                                                                                                                                                                                                                                      |
| Chapter X. Manufacture of Built-up Cutting Tools 234                                                                                                                                                                                 |
| Chapter XI. Equipment, Fuel and Accessory Materials for Heattreatment Shops       243         1. Furnaces       243         2. Refractories       252         3. Fuel       252         4. Temperature Control Instruments       254 |
| Chapter XI. Equipment, Fuel and Accessory Materials for Heattreatment Shops 1. Furnaces                                                                                                                                              |

#### PREFACE

The present handbook aims at giving the operating personnel of heat-treatment shops a reference book which would serve to overcome difficulties arising in everyday practice.

The handbook describes heat-treatment charts, heat-treatment procedures for tools, parts of lathes, automobiles, and agricultural machinery.

In addition the handbook deals briefly with the following subjects: quality control of metals before and after heat-treatment; heat-treatment and case-hardening of steel; heat-treatment of casi iron, non-ferrous metals, and alloys. The book also contains some practical hints on safety engineering.

#### Chapter I

#### PHYSICAL CHARACTERISTICS

#### 1. MECHANICAL CHARACTERISTICS

| Term                     | Definition                                                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Deformation              | Change of shape or dimensions of a body without alteration of its mass                                               |
| Elastic<br>deformation   | Deformation of a body which occurs when a force is applied, and which disappears upon removal of the force           |
| Permanent<br>deformation | The part of the deformation which remains after the stress is removed                                                |
| Strength                 | Ability of a material to withstand stresses without rupturing                                                        |
| Elasticity               | Property of a material to recover its origi-<br>nal configuration when the forces are<br>removed                     |
| Ductility                | Property of a material to withstand considerable permanent deformations without fracturing                           |
| Brittleness              | Property of a material to fracture without noticeable plastic deformation                                            |
| Resilience               | Work required for rupturing a sample                                                                                 |
| Hardness                 | Property of a material to resist indentation by some other body                                                      |
| Fatigue                  | Development and propagation of cracks in a material as a result of a great number of repeated alternating stresses   |
| Endurance                | Property of a material to withstand rup-<br>turing by fatigue stresses                                               |
| Стеер                    | Property of a material to flow gradually and continuously under constant stress, especially at elevated temperatures |
| Wear                     | Gradual reduction of the size of a part at a result of friction                                                      |

| Term                                                                                                                                                                                                                                                                                                                                                                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Wear resistance Strain hardening  Limit of proportionality σ <sub>p</sub> , kg/mm²  Elastic limit σ <sub>e</sub> , kg/mm²  Yield point σ <sub>s</sub> , kg/mm²  Tensile strength, σ <sub>b</sub> kg/mm²  Elongation δ, in %  Relative reduction in area ψ, in %  Specific resilience α <sub>k</sub> , km/cm²  Endurance limit σ <sub>w</sub> , kg/mm²  Creep limit σ <sub>c</sub> , kg/mm² | Property of a material to resist wear Change in properties and structure of a metal due to deformation Highest stress prior to which deformation increases proportionally to the load applied Stresses at which permanent elongation is negligible (up to 0.02%) Least strain at which the sample flows without noticeable increase in stress Highest stress preceding fracture of a sample The ratio of the increase in length of a sample, produced by tensile stresses, to its original length The ratio of the reduction of area at the point of fracture of a sample to its original cross-section area The ratio of the work required to rupture a sample to the cross-sectional area at the point of fracture Highest stress which a metal can withstand without evidence of fatigue failure Highest stress at which the rate of creep or total creep, in a given time interval, does not exceed a specified value |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | <sup>t</sup> er − − − − − − − − − − − − − − − − − − −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

#### 2 THERMAL CHARACTERISTICS

| Term                                | Definition                                                                       |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| <u> </u>                            |                                                                                  |  |  |  |
| Calorie (cal)                       | The amount of heat required to raise the temperature of 1 gram of water 1°C      |  |  |  |
| Kilocalorie (kcal)                  | The amount of heat required to raise the temperature of I kilogram of water 1°C  |  |  |  |
| Heat capacity C,<br>cal/°C          | The amount of heat required to raise the temperature of a material I°C           |  |  |  |
| Specific heat c,<br>cal/g degrees C | The amount of heat required to raise the temperature of 1 gram of a material 1°C |  |  |  |

| Term                                                               | Definition                                                                                                                                |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Heat conductivity                                                  | The ability of a body to conduct heat from one part to the other, as well as to an adjacent body when in physical contact with the latter |
| Convection                                                         | Transfer of heat by the flow of a heated agent (air, water, etc.)                                                                         |
| Heat radiation                                                     | Transfer of heat by heat rays emitted by an incandescent (hot) body                                                                       |
| Calorific power Q,<br>kcal/kg                                      | The amount of heat generated by burning I kg of a fuel                                                                                    |
| Temperature t<br>Absolute zero                                     | The thermal condition of a body Temperature equal to —273.2°C                                                                             |
| Thermodynamic temperature scale, °K                                | Temperature equal to —270.2 C  Temperature expressed in terms of degrees  Centigrade and referred to absolute zero as a standard          |
| Coefficient of linear expansion, mm/m degrees C or cm/cm degrees C | Increment of length per unit of length for a temperature rise of 1°C                                                                      |

#### 3. ELECTRICAL CHARACTERISTICS

| Term                     | Definition                                                                               |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Electric current         | The flow of electrons along a conductor                                                  |  |  |  |
| Current I,               | The quantity of electricity passing through                                              |  |  |  |
| _ amperes _              | a conductor in 1 second                                                                  |  |  |  |
| Resistance R, ohms       | The ability of a material to impede the flow of electric current                         |  |  |  |
| Resistivity e, ohm·mm²/m | The resistance of a conductor 1 m in length, 1 mm <sup>2</sup> in cross-section, at 20°C |  |  |  |
| Voltage E, volts         | The difference of electrical potential across the terminals of a conductor               |  |  |  |
| Power P, watts           | The work performed when I ampere flows through a potential difference of 1 volt          |  |  |  |
|                          | monga a potential difference of 1 4415                                                   |  |  |  |
|                          | ·                                                                                        |  |  |  |

#### 4. SOME PROPERTIES OF ELEMENTS AND MATERIALS DEALT WITH IN HEAT-TREATMENT OF METALS

| Materia!                                                                                                                                                                                                                                                                                                                                                                 | Formula                                                                                                           | Specific<br>gravity                                                                                                                                                                                                                                                           | Melting<br>or fusing<br>point, °C                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Aluminium Ammonium chloride Antimony Asbestos Barium Barium chloride Beryllium Birch Bismuth Bone Borax (anhydrous) Boron                                                                                                                                                                                                                                                | Solids  Al NH <sub>4</sub> Cl Sb — Ba BaCl <sub>2</sub> Be — Bi — Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> B | 2.7<br>  1.53<br>  6.68<br>  2.4-2.55<br>  3.86<br>  1.82<br>  0.51-0.77<br>  9.8<br>  1.7<br>  2.37<br>  2.32                                                                                                                                                                | 658 — 630 1480-1510 850 962 1350 — 271 — 711 2300                                 |  |
| Brass Bronze, aluminium Bronze, phosphorus Bronze, tin Brick Cadmium Calcium Calcium carbide Caliche (sodium nitrate) Carboloys, BK type Carboloys, TK type Charcoal, lumps Charcoal, crushed Chromium Clay, dry Coal Cobalt Coke, lumps Coke, crushed Copper Corundum Diamond Duralumin Fireclay (chamotte) German silver Glass Gold Graphite Grey cast iron Ice at 0°C | Cd Ca CaC2 NaNOs — — — — — — — — — — — — — — — — — — —                                                            | 8.1-8.6<br>7.7<br>8.8<br>8.7<br>1.4-2.0<br>8.64<br>1.55<br>2.22<br>2.26<br>14.3-14.9<br>9.5-11.0<br>0.4<br>1.4-1.5<br>6.92<br>1.8<br>1.2-1.5<br>8.9<br>0.6<br>1.25-1.4<br>8.92<br>3.9-4.0<br>3.51<br>2.6-2.8<br>1.8-2.2<br>8.5<br>2.4-2.6<br>19.3<br>2.25<br>7.0-7.2<br>0.917 | 880-910  950-970  321 850 2300 308  1615 1490 1083 About 2050 3500 1100 1063 1063 |  |

| Material                                                                                                                                                                       | Formula                                                               | Specific<br>gravity                                                                                                                            | Melting<br>or fusing<br>point, °C                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Iridium Iron Iron Iron carbide Lead Magnesium Malleable cast iron Manganese Molybdenum Nickel Niobium Oak Potassium nitrate (niter) Phosphorus, yellow Pine Platinum Potassium | Ir Fe Fe,C Pb Mg Mn Mo Ni Nb KNO, P                                   | 22.42<br>7.86<br>7.4<br>11.34<br>1.74<br>7.2-7.6<br>7.2<br>10.2<br>8.9<br>8.4<br>0.7-1.0<br>2.11<br>1.82<br>0.31-0.76<br>21.45<br>0.86<br>1.52 | 2450<br>1535<br>—<br>327<br>651<br>—<br>1260<br>2625<br>1452<br>2500<br>—<br>333<br>44<br>—<br>1774<br>62<br>634 |  |
| Potassium cyanide Potassium ferricyanide Potassium ferrocyanide Potassium hydrate Rhodium Salt, common (sodium chloride) Sand, dry Silicon Silicon carbide                     | KCN<br>K <sub>4</sub> Fe (CN) <sub>6</sub><br>KOH<br>Rh<br>NaCl<br>Si | 1.32<br>1.93<br>1.85<br>2.04<br>12.5<br>2.16<br>1.4-1.6                                                                                        | 360<br>1966<br>800<br>—<br>1420                                                                                  |  |
| (carborundum) Silver Soda ash Soda, caustic Sodium Sodium cyanide Steel, carbon Steel, grade P9 Steel, grade P18 Sulphur Tellurium Tin Titanium Tungsten Tungsten carbide      | SiC Ag Na <sub>2</sub> CO <sub>3</sub> NaOH Na NaCH — S Te Sn Ti W WC | 3.17<br>10.5<br>2.53<br>2.13<br>0.97<br>                                                                                                       | 2700 min<br>961<br>851<br>318<br>97<br>564<br>—<br>115-119<br>452<br>232<br>1800<br>3370<br>2777<br>1720         |  |
| Vanadium<br>Wood, air-dry<br>Zine                                                                                                                                              | Zn                                                                    | 7.14                                                                                                                                           | 419                                                                                                              |  |

| Material          | Formula                                            | Specific gravity | Melting<br>of fusing<br>point, °C |
|-------------------|----------------------------------------------------|------------------|-----------------------------------|
|                   | Liquids                                            |                  |                                   |
| Benzene           | 1 -                                                | 0.88             |                                   |
| Gasoline          | -                                                  | 0.7-0.75         | _                                 |
| Glycerine         | i –                                                | 1.26             |                                   |
| Hydrochloric acid | HCI                                                | 1.19             | -                                 |
| Kerosene          | _                                                  | 0.8-0.82         | _                                 |
| Machine oil       | <del>-</del>                                       | About 0.9        | <del>-</del>                      |
| Mercury           | Hg<br>HNO,                                         | 13.55            | <del>39</del>                     |
| Nitric acid       | HNO <sub>3</sub>                                   | 1.5              | _                                 |
| Petroleum         | _                                                  | 0.89 max         | _                                 |
| Sulphuric acid    | H <sub>2</sub> SO <sub>4</sub><br>H <sub>2</sub> O | 1.84             | _                                 |
| Water at 4°C      | H <sub>2</sub> O                                   | 1.0              | _                                 |

 $\it Note.$  Specific gravities and melting points of alloys are approximate and may vary depending on the composition.

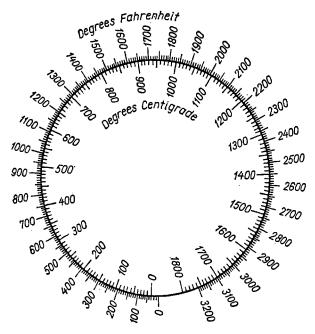



Fig. 1. Conversion of degrees Centigrade to degrees Fahrenheit

#### Chapter II

#### QUALITY CONTROL OF METALS

#### 1. HARDNESS TESTS

Hardness may be measured by various methods, depending on the condition of the metal (hardened, annealed, etc.), and on the size of the specimen.

Brinell hardness test. This method is chiefly used to test rolled and forged pieces, castings, as well as dies and tools whose hardness does not exceed 450 units.

The Brinell hardness number (abbreviated to  $H_B$  and expressed in kg/mm²) is determined by forcing a hardened ball 10.5 or 2.5 mm in diameter into the metal being tested under a load of 15.6 to 3,000 kg in a special press (see Table 1).

- $\cdot$  When testing specimens for hardness the following conditions are to be ensured:
- 1. The point of indentation should be free from scale and/or decarburised layers.
- 2. Rounded surfaces should be so machined as to present a plane to the indentor (a flat should be filed).
- 3. If the bottom or lateral walls are strained following indentation, the test should be repeated by the use of a ball of a smaller diameter and an appropriate load.
- 4. This method cannot be used to determine the hardness of carburised or nitrided surfaces.
- 5. The centre of the impression should be situated at least one ball diameter from the edge of the specimen, and at least two diameters from an adjacent impression.
- The diameter of the impression is measured by means of a special magnifying glass, and the hardness number is then read in the table.

When testing for hardness with a 5-mm ball the actual diameter of the impression is to be multiplied by 2; when a 2.5-mm ball is used, the result is to be multiplied by 4.

#### Example:

| Ball diameter                     | 5 mm         | 2.5 mm        |
|-----------------------------------|--------------|---------------|
| Load                              | 750 kg       | 187.5 kg      |
| Impression diameter               |              |               |
| Multiplication                    | $.8\times2=$ | $1.1\times4=$ |
| =                                 | 3.6 mm =     | =4.4 mm       |
| These diameters correspond to the |              |               |
| following hardness numbers (see   | 000          | 107           |
| Table 2)                          | 286          | 18/           |

Table 1

Specimen Thickness and Load Application Time in Brinell
Hardness Test

| Material                                                                 | Hardness<br>number<br>H | Specimen<br>thickness,<br>mm | Ball<br>diameter,<br>mm | Load P,<br>kg         | Load<br>application<br>time, sec |
|--------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------|-----------------------|----------------------------------|
| Ferrous metals                                                           | 150-450                 | Over 6<br>3-6<br>Below 3     | 10<br>5<br>2.5          | 3,000<br>750<br>187.5 | 10<br>10<br>10                   |
| retrous metals                                                           | Below<br>150            | Over 6<br>3-6<br>Below 3     | 10<br>5<br>2.5          | 1,000<br>250<br>62.5  | 10<br>10<br>10                   |
| Copper, brass,<br>bronze, magne-<br>sium- and alumin-<br>ium-base alloys | 35-130                  | Over 6<br>3-6<br>Below 3     | 10<br>5<br>2.5          | 1,000<br>250<br>62.5  | 30<br>30<br>30                   |
| Aluminium, anti-<br>friction alloys                                      | 8-35                    | Over 6<br>3-6<br>Below 3     | 10<br>5<br>2.5          | 250<br>62.5<br>15.6   | 60<br>60<br>60                   |

 ${\it Table~2} \\ {\it Conversion~of~Hardness~Numbers~and~Their~Correlation~with} \\ {\it Tensile~Strength} \\$ 

| Brinell<br>ness n                                                                                                                                                   |                                                                                                                                                                                                                                    | Rockwo                                                                                                                                 | ell har<br>umber                                                                                                                                                                 | dness | yramid<br>umber,                                                                                                                                                                                | umber,                                                                                                                                       | Tens                                                                                                                      | ile stren<br>kg/mm²                                                                                                                     | gth.                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impres-<br>sion dia.,<br>mm                                                                                                                                         | Hard-<br>ness<br>number                                                                                                                                                                                                            |                                                                                                                                        | Scale                                                                                                                                                                            |       | Diamond pyramid hardness number, $H_V$                                                                                                                                                          | Shore scleroscope<br>hardness number,<br>H <sub>S</sub>                                                                                      | Carbon<br>steel                                                                                                           | Chromium<br>steel                                                                                                                       | Nickel and<br>chrome<br>nickel<br>steel                                                                                                                     |
| lmp<br>slon                                                                                                                                                         | # <b>2</b> 2                                                                                                                                                                                                                       | _ c                                                                                                                                    | A                                                                                                                                                                                | В     | - ZEE                                                                                                                                                                                           | 325                                                                                                                                          | ا ين <del>ا</del>                                                                                                         | 0.4%                                                                                                                                    | Z 5 E \$                                                                                                                                                    |
| 2.2<br>2.25<br>2.35<br>2.45<br>2.55<br>2.65<br>2.75<br>2.80<br>2.95<br>3.00<br>3.02<br>3.15<br>3.25<br>3.35<br>3.40<br>3.45<br>3.55<br>3.55<br>3.65<br>3.75<br>3.75 | 780<br>745<br>712<br>682<br>653<br>627<br>601<br>578<br>555<br>534<br>495<br>477<br>461<br>444<br>429<br>415<br>409<br>415<br>338<br>375<br>363<br>352<br>341<br>331<br>321<br>311<br>321<br>321<br>321<br>321<br>321<br>321<br>32 | 72<br>70<br>68<br>66<br>62<br>60<br>55<br>50<br>48<br>46<br>54<br>43<br>42<br>41<br>40<br>39<br>33<br>33<br>31<br>30<br>29<br>82<br>27 | 89<br>87<br>86<br>85<br>84<br>83<br>82<br>81<br>79<br>77<br>76<br>77<br>77<br>71<br>70<br>69<br>68<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67 |       | 1,224<br>1,116<br>1,022<br>941<br>868<br>804<br>746<br>694<br>606<br>587<br>551<br>534<br>450<br>435<br>423<br>410<br>390<br>380<br>361<br>344<br>335<br>320<br>312<br>305<br>278<br>272<br>261 | 90<br>86<br>84<br>81<br>78<br>75<br>71<br>69<br>66<br>65<br>64<br>61<br>59<br>58<br>57<br>55<br>52<br>51<br>50<br>49<br>48<br>47<br>40<br>39 | 178<br>172<br>165<br>160<br>155<br>149<br>147<br>144<br>139.5<br>120.5<br>122.5<br>111.5<br>103.0<br>99.5<br>97.0<br>94.5 | 173<br>167<br>156<br>150<br>145<br>143<br>139.5<br>131.5<br>127<br>123.0<br>119.0<br>116.5<br>102.5<br>102.5<br>102.5<br>102.5<br>102.5 | 168<br>161<br>146<br>141<br>139<br>136.5<br>1127.5<br>1123.5<br>119.5<br>116.0<br>109.0<br>105.5<br>109.0<br>105.5<br>100.0<br>97.5<br>94.0<br>91.5<br>89.5 |

|                                                                                              | l hard-<br>number                                                                                                                                                                                                                                                                   | Rock                                                                     | well i                                                         | nardness | yramid<br>umber,                                                                                | oscope<br>umber,                                                   | Ter                                                                                                                                                | nsile strei<br>kg mm²                                                                                               | ngth,                                                                                       |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Impres-<br>sion dia,                                                                         | Hard-<br>ness<br>number                                                                                                                                                                                                                                                             | C .                                                                      | Sca!                                                           | В        | Diamond pyramid hardness number,                                                                | Siore scleroscope<br>hardness number,<br>H <sub>S</sub>            | Carbon<br>steel                                                                                                                                    | Chromium<br>steel                                                                                                   | Nickel and<br>chrome<br>cnickel<br>steel                                                    |
| 4.30<br>4.35<br>4.40<br>4.45<br>4.50<br>4.55<br>4.60<br>4.65<br>4.75<br>4.80<br>4.85<br>4.90 | 255<br>248<br>241<br>235<br>228<br>223<br>217<br>212<br>207<br>202<br>196<br>192<br>187<br>174<br>170<br>166<br>163<br>159<br>156<br>153<br>149<br>146<br>143<br>140<br>137<br>134<br>131<br>128<br>124<br>121<br>118<br>118<br>119<br>119<br>119<br>119<br>119<br>119<br>119<br>11 | 26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>16<br>15<br>15<br> | 643 633 622 661 660 558 557 566 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |          | 255 250 240 235 226 221 217 213 209 201 197 190 186 183 177 174 171 165 162 159 154 157 117 111 | 38<br>37<br>36<br>35<br>34<br>33<br>32<br>32<br>31<br>31<br>30<br> | 92.5<br>89.5<br>87.0<br>84.5<br>80.0<br>74.5<br>66.0<br>66.5<br>66.0<br>66.5<br>57.5<br>66.0<br>60.5<br>55.5<br>55.5<br>55.5<br>55.5<br>55.5<br>55 | 89.0<br>87.0<br>84.5<br>82.5<br>80.5<br>776.0<br>72.5<br>63.5<br>65.5<br>65.5<br>65.5<br>65.5<br>55.5<br>55.5<br>55 | 86.5<br>84.5<br>82.0<br>80.5<br>776.5<br>66.5<br>65.5<br>66.5<br>65.5<br>66.5<br>57.5<br>57 |

î,

| Brinell<br>ness n                                                                            | hard-<br>umber                                                           | Rockw       | ell ha      | rdness<br>er                                                                 | pyramid<br>number, | scleroscope<br>ss number,         | Tens                                                                                 | Tensile strengt |                              |                   |                                           |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|-------------|------------------------------------------------------------------------------|--------------------|-----------------------------------|--------------------------------------------------------------------------------------|-----------------|------------------------------|-------------------|-------------------------------------------|
| Impression dia.,                                                                             | Hard-<br>ness<br>number                                                  |             |             |                                                                              |                    |                                   |                                                                                      |                 | uou                          | Chromium<br>steel | Nickel<br>and chro-<br>me-nickel<br>steel |
| Imp<br>sion                                                                                  | Hard<br>ness<br>numb                                                     | С           | A           | В                                                                            | Diar<br>hard<br>H  | Shore<br>hardne<br>H <sub>S</sub> | Carbon<br>steel                                                                      | Chro            | Nick<br>and<br>me-n<br>steel |                   |                                           |
| 5.70<br>5.75<br>5.80<br>5.85<br>5.90<br>5.95<br>6.00<br>6.10<br>6.20<br>6.36<br>6.48<br>6.56 | 107<br>105<br>103<br>101<br>99<br>97<br>96<br>92<br>88<br>84<br>80<br>78 | 11111111111 | 11111111111 | 59<br>58<br>57<br>56<br>54<br>53<br>52<br>49.5<br>47<br>43.5<br>40.5<br>38.5 |                    |                                   | 38.5<br>38.0<br>37.0<br>36.5<br>35.5<br>35.0<br>34.5<br>33.0<br>30.0<br>29.0<br>28.0 |                 |                              |                   |                                           |

Note. Brinell hardness numbers were obtained with a 3,000 kg load and a 10-mm ball.

Rockwell hardness test. This method is used to determine the hardness numbers of metals (abbreviated to  $R_C$ ,  $R_A$  and  $R_B$ ) by forcing into them a conical diamond with rounded point, called the penetrator, under a load of 150 or 60 kg or a 1.59-mm steel ball to which a 100 kg load is applied. Test conditions are described in Table 3.

Rockwell Hardness Testing Conditions

| KOCK WEIT 112                                                              | ii uiiess                                    | restring C                     | onu      | 110112                                        |                              |       |
|----------------------------------------------------------------------------|----------------------------------------------|--------------------------------|----------|-----------------------------------------------|------------------------------|-------|
| Metal                                                                      | Approximate<br>Brinell<br>hardness<br>number | Type of penetrator             | Load, kg | Rockwell<br>hardness<br>number<br>designation | Working<br>range of<br>scale | Scale |
| Annealed steel, brass,<br>bronze, aluminium and<br>magnesium hard alloys   | 60-230                                       | Steel<br>ball, dia.<br>1.59 mm | 100      | $R_B$                                         | <b>2</b> 5- 100              | Red   |
|                                                                            | 230-<br>700                                  | Diamond<br>cone                | 150      | $R_{C}$                                       | 20-67                        | Black |
| 3. Thin plates, case-carbu-<br>rised and nitrated arti-<br>cles, carboloys |                                              | Ditto                          | 60       | $R_A$                                         | Over<br>67                   | Black |

- On testing for hardness the following requirements should be met:
  1. The piece being tested should be free from scale, decarburised layers, dents, grease or traces of machining.
- 2. Hollow thin-walled specimens should not be tested since the results would be wrong (because the piece will spring back or cave in).
- 3. For the same reason no pads should be inserted between the piece being tested and the anvil of the testing machine.
- 4. The piece to be tested should be thick enough to prevent bulging on the reverse side.
- 5. The centre of the impression should be spaced from the edge of the specimen not less than 2.5 mm for scales A and C, and not less than 4 mm for scale B.
- 6. Round-shaped specimens being tested for hardness by means of a diamond cone should be no less than 15 mm in diameter. When testing pieces of smaller diameters Correction Tables 4 and 5 should be consulted.

Table 4

Correction Values for Hardness Numbers Measured on Cylindrical Surfaces of Specimens by a TK Testing Machine (Rockwell Test)

| Diameter of                                           | Hardness of cylindrical surface $(R_C)$            |                                               |                                               |                                               |                                                      |                                 |  |  |  |  |
|-------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------|--|--|--|--|
| specimen, mm                                          | 58                                                 | 59                                            | 62                                            | 63                                            |                                                      |                                 |  |  |  |  |
|                                                       | Values to be added to the hardness number obtained |                                               |                                               |                                               |                                                      |                                 |  |  |  |  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 and 15 | 2.5<br>2.0<br>2.0<br>—<br>—<br>—<br>—              | 2.0<br>2.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0 | 2.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0 | 2.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0<br>0.5 | 2.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0<br>0.5<br>0.5 | 1.0<br>1.0<br>1.0<br>0.5<br>0.5 |  |  |  |  |

Table 5
Correction Values for Hardness Numbers as Measured on Spherical Surfaces by a TK Testing Machine (Rockwell Test)

|                        | 1   | Ha         | rdness                | of st      | heric             | al sur | face,  | R . |     |
|------------------------|-----|------------|-----------------------|------------|-------------------|--------|--------|-----|-----|
| Ball diameter, mm      | 56  | 57         | 58                    | 59         | 60                | 18     | 62     | 63  | 64  |
|                        | Va  | lues       | to be                 |            | i to ti<br>btaine |        | rdness | num | er  |
| Up to 4<br>From 4 to 6 |     | 5.5<br>4.5 |                       | 5.0        | 4.5<br>3.5        |        | 3.5    | _   | _   |
| , 6 to 8.5             | 4.5 | 3.5        | 3.5<br>2.5            | 3.0<br>2.5 | $\frac{3.3}{3.0}$ | 3.0    | 2.5    | 1.5 | _   |
| " 11.5 to 15.0         |     | _          | $\tilde{2}.\tilde{0}$ | 1.5        | 1.5               | 1.0    | 1.0    | 1.0 | 0.5 |

Table 6

## Conversion of Rockwell Hardness Numbers Measured by the Use of Diamond Cone under Loads of 150 kg (Scale C) and 15, 30 and 45 kg (Microhardness Scale)

| 30 and 45 kg (Microllandiess Scale)                                                                                                    |                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Rockwell<br>hardness<br>number,<br>R <sub>C</sub>                                                                                      | Microhar<br>under                                                                                                                                                            | dness nu<br>loads of,                                                                                                                                                        |                                                                                                                                                                            | Rockwell<br>hardness<br>number,<br>R <sub>C</sub>                                                                                            | Microhardness number<br>under loads of, kg                                                                                                           |                                                                                                                              |                                                                                                                                                                                      |  |  |  |
| Roc<br>har<br>nun<br>R <sub>C</sub>                                                                                                    | 15N                                                                                                                                                                          | 30N                                                                                                                                                                          | 45N                                                                                                                                                                        | Roc<br>har<br>num<br>R <sub>C</sub>                                                                                                          | 15 <b>N</b>                                                                                                                                          | 30N                                                                                                                          | 45N                                                                                                                                                                                  |  |  |  |
| 68<br>67<br>66<br>65<br>64<br>63<br>62<br>61<br>60<br>59<br>57<br>56<br>55<br>54<br>55<br>51<br>50<br>49<br>48<br>47<br>46<br>45<br>44 | 93.2<br>92.9<br>92.5<br>92.5<br>91.8<br>91.1<br>90.7<br>90.2<br>89.8<br>89.3<br>88.9<br>87.9<br>87.4<br>86.4<br>85.9<br>85.5<br>85.5<br>85.5<br>83.5<br>83.5<br>83.5<br>83.5 | 84.4<br>83.6<br>82.8<br>81.9<br>81.1<br>79.3<br>78.4<br>77.5<br>76.6<br>75.7<br>74.8<br>73.9<br>73.0<br>72.0<br>70.2<br>69.4<br>68.5<br>67.6<br>65.8<br>64.8<br>64.0<br>63.1 | 75.4<br>74.2<br>73.3<br>72.0<br>69.9<br>68.8<br>67.7<br>66.6<br>564.3<br>63.2<br>62.0<br>60.9<br>59.8<br>65.5<br>57.4<br>55.0<br>53.8<br>52.5<br>4<br>50.3<br>49.0<br>47.8 | 43<br>42<br>41<br>40<br>39<br>38<br>37<br>36<br>35<br>34<br>33<br>32<br>31<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>23<br>22<br>21<br>20 | 82.0<br>81.5<br>80.9<br>80.4<br>79.9<br>79.4<br>78.8<br>78.3<br>77.7<br>77.2<br>76.6<br>75.0<br>74.5<br>73.3<br>72.8<br>72.2<br>71.6<br>69.9<br>69.4 | 62.2<br>61.3<br>60.4<br>59.5<br>58.6<br>57.7<br>56.8<br>55.9<br>55.0<br>54.2<br>53.3<br>50.4<br>49.5<br>44.0<br>43.2<br>41.5 | 46.7<br>45.5<br>44.3<br>43.1<br>41.9<br>40.8<br>39.6<br>38.4<br>37.2<br>36.1<br>34.9<br>33.7<br>32.5<br>31.3<br>22.5<br>27.8<br>26.7<br>25.5<br>24.3<br>23.1<br>22.0<br>20.7<br>19.6 |  |  |  |

To determine the hardness of thin layer of metals, a special testing machine "Super-Rockwell" is used.

The test is carried out by means of a diamond cone or a 1.59-mm ball

under loads of 15, 30 and 45 kg (Tables 6 and 7).

Hardness test by a diamond pyramid penetrator, H<sub>V</sub> in kg/mm<sup>2</sup>. The hardness of metals is determined by indenting a tetrahedral diamond pyramid penetrator under loads of 5, 10, 20, 30, 50, 100 and 120 kg. Loads should be selected by referring to Tables 8 and 9.

The diamond pyramid can be used to test soft, as well as heat-treated metals. The diamond pyramid test is widely used to determine the hardness of thin specimens and articles with hard superficial layers.

Table 7 Conversion of Rockwell Hardness Numbers Determined by the Use of a Steel Ball under Loads of 100 kg (Scale B) and 15, 30 and 45 kg (Microhardness Scale)

|                                                                                                                                         |                                                                                                                                              |                                                                                                                                                              | •                                                                                                                                    |                                                                                                                             |                                                                                                                                                      | _                                                                                                                                                  |                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rockwell<br>hardness<br>number,<br>R                                                                                                    | Microhar<br>under i                                                                                                                          | dness nu<br>oads of,                                                                                                                                         |                                                                                                                                      | Rockwell<br>hardness<br>number,<br>R                                                                                        |                                                                                                                                                      | nardness num<br>r loads of,                                                                                                                        |                                                                                                                                                                              |
| Ro<br>han<br>R                                                                                                                          | 15T                                                                                                                                          | 30T                                                                                                                                                          | 45T                                                                                                                                  | Ro<br>han<br>R                                                                                                              | 15 <b>T</b>                                                                                                                                          | 30T                                                                                                                                                | 45T                                                                                                                                                                          |
| 100<br>99<br>98<br>97<br>96<br>95<br>94<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>86<br>85<br>84<br>83<br>82<br>81<br>80<br>77<br>76 | 93.0<br>92.5<br>92.5<br>92.0<br>91.5<br>91.0<br>90.5<br>90.0<br>89.5<br>89.5<br>89.0<br>88.5<br>88.0<br>87.5<br>87.0<br>86.5<br>86.0<br>86.0 | 83.0<br>82.5<br>81.0<br>80.5<br>80.0<br>79.0<br>78.5<br>78.0<br>77.0<br>75.0<br>74.5<br>74.0<br>73.5<br>73.0<br>72.0<br>71.5<br>70.0<br>69.0<br>68.5<br>68.0 | 73.0<br>72.0<br>71.0<br>69.0<br>66.0<br>66.0<br>65.0<br>62.0<br>60.0<br>59.5<br>58.5<br>57.5<br>54.5<br>53.5<br>52.5<br>52.0<br>50.0 | 75<br>74<br>73<br>72<br>71<br>769<br>68<br>67<br>66<br>63<br>62<br>61<br>59<br>85<br>57<br>55<br>49<br>48<br>47<br>42<br>40 | 85.5<br>85.0<br>84.5<br>84.0<br>83.5<br>83.5<br>82.0<br>82.5<br>82.0<br>81.5<br>81.0<br>80.0<br>79.5<br>79.0<br>79.5<br>77.5<br>77.5<br>77.5<br>75.5 | 67.5<br>66.5<br>66.0<br>65.5<br>63.0<br>63.5<br>63.0<br>61.5<br>60.5<br>59.0<br>58.0<br>57.0<br>55.5<br>55.0<br>55.0<br>50.0<br>50.0<br>50.0<br>50 | 49.0<br>48.5<br>47.5<br>46.5<br>44.5<br>42.5<br>42.0<br>41.0<br>40.0<br>38.0<br>37.0<br>36.0<br>35.0<br>32.5<br>33.0<br>32.5<br>28.5<br>28.0<br>21.0<br>21.0<br>18.0<br>16.0 |

 ${\it Table~8} \\ {\it Recommended~Loads~for~Diamond~Pyramid~Hardness~Testing}$ 

| Thickness of                                       | Hardness number $H_{V}$           |                                       |                                           |                             |  |  |  |  |  |  |
|----------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|-----------------------------|--|--|--|--|--|--|
| specimen,<br>mm                                    | 20.50                             | 50-100                                | 100-300                                   | 300-900                     |  |  |  |  |  |  |
|                                                    |                                   | Recommer                              | ided loads, kg                            |                             |  |  |  |  |  |  |
| 0.3-0.5<br>0.5-1.0<br>1.0-2.0<br>2.0-4.0<br>Over 4 | 5-10<br>10-12<br>20 and<br>higher | <br>5-10<br>20-30<br>30 and<br>higher | — .<br>10-20<br>20-50<br>50 and<br>higher | 5-10<br>10-20<br>—<br>20-50 |  |  |  |  |  |  |

Table 9

Recommended Loads for Diamond Pyramid Hardness Testing
of Tubes and Various Thin-walled Articles

|                                                                     |                       | Wa                | ll thick                       | ness of t                         | ube or                                 | article,                               | mm                                     |                                              |  |  |  |
|---------------------------------------------------------------------|-----------------------|-------------------|--------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--|--|--|
| Outer diameter of tube or                                           | 0.5                   | 0.75              | 1.0                            | 1.25                              | 1.5                                    | 2.0                                    | 2.5                                    | 3.0                                          |  |  |  |
| article, mm                                                         | Recommended loads, kg |                   |                                |                                   |                                        |                                        |                                        |                                              |  |  |  |
| 0-10<br>10-20<br>20-30<br>30-40<br>40-50<br>50-60<br>60-70<br>70-80 | 10<br>5<br><br><br>   | 10<br>5<br>5<br>- | 20<br>20<br>10<br>10<br>5<br>5 | -<br>-<br>-<br>10<br>10<br>5<br>5 | 30<br>30<br>20<br>20<br>20<br>20<br>10 | 30<br>30<br>30<br>30<br>30<br>20<br>20 | 30<br>30<br>30<br>30<br>30<br>30<br>30 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |  |  |  |

The surface to be tested should be dry, clean, free from pores, scale and decarburised layers and bear no rough traces of machining. The diagonal of the impression is measured with a microscope attached to the testing machine; the hardness number is determined by referring to a special table.

The  $T\Pi$  testing machine can be used for Brinell hardness testing with 5- and 2.5-mm balls, which are part of the machine, under loads of 62.5 and 15.6 kg.

Shore scleroscope hardness test. A well-finished part (specimen) is set in the machine and an indentor is dropped onto the surface from a certain height. Upon rebounding the indentor deflects the pointer on a dial, thus indicating the hardness number of the part tested.

Shore hardness number is abbreviated to  $H_{S}$ .

Approximate hardness testing by ball impact indentation. The procedure employs a portable testing machine intended for the approximate hardness testing of bulky articles. This is accomplished by pressing a ball, with an impact of medium force, simultaneously into the article being tested and into the standard specimen; the hardness number is then determined by referring to a special table attached to the testing machine.

The hardness number in the table is found at the intersection of the columns giving the impression diameters of the article tested and the standard specimen. The precision of the method is within  $\pm 7\%$ .

Filing hardness test. Tools and articles (such as taps, reamers, drills, small-size tools) whose hardness cannot be determined with testing machines are tested by filing with smooth files and by comparing the abrasion with that produced on standard specimens. The latter consist of a set of quenched rings of varying hardness ranging from 45 to  $63\ R_C$  with gradations every 3-5 units. The hardness number is determined with adequate precision by alternately filing the article and the standard specimen and by comparing the forces applied.

#### 2. Detection of Cracks in Metals

The most widely used methods of finding surface cracks are:

(a) magnetic-particle crack detection (applicable only to steel and cast iron);

(b) deep etching;

(c) kerosene or hot oil tests or blacking-in;

(d) fluoroscopic crack detection.

The method of magnetic-particle crack detection is performed as follows: the article under test is magnetised in the crack detector, after which it is dipped into a bath or flushed with a suspension of magnetic particles. The magnetic particles will settle on the cracks, if there are any. After the test, the article is demagnetised.

The first step in the preparation of the magnetic-particle powder is to thoroughly mix finely crushed ferric oxide or ochre with kerosene or oil to a paste of medium consistency. The paste is then packed into a crucible or tube, which should be tightly closed, luted and held in a furnace at 600-800°C until the kerosene is completely burned, after which the paste is allowed to cool down to room temperature. The resultant magnetic powder is thoroughly ground with a small amount of kerosene or oil to a thin paste, after which kerosene or oil is added to obtain 1 litre of suspension for every 25-40 grams of powder.

A non-corrosive liquid designated KMO is used as an aqueous suspension of magnetic particles to reveal very fine cracks; it has the following composition:

| denaturated alcohol   |  |  |     |             |
|-----------------------|--|--|-----|-------------|
| water                 |  |  | 150 | millilitres |
| sodium hydroxide NaOH |  |  | 40  | grams       |
| oleic acid            |  |  |     |             |
| naphthenic acid       |  |  | 200 | millilitres |

The KHO liquid is added in the proportion of 40 millilitres per 1 litre of water, containing 2 grams of soda ash, after which magnetic powder is introduced into the mixture.

Fluoroscopic crack detection. This method is used to reveal cracks in non-magnetic metals, as well as in various other materials (e.g., plastics, etc.). The test is performed by the use of the AIOM-1 testing machine manufactured by medical equipment plants. The piece to be tested is immersed in a special liquid after which it is flushed with water, wiped dry, sprinkled with magnesium oxide (the excess particles being blown off) and then examined in the ultra-violet light. If there are any cracks, the solution contained therein wets the magnesium oxide and the cracks are exposed upon examination in a dark room under the rays of a mercury vapour-quartz lamp.

The liquid used is a mixture of 15% (by volume) of transformer oil

and 85% of kerosene.

The detection of cracks and other faults in steel by the deep etching method requires the use of the etchants listed in Table 10.

The following etchants are used for copper-base alloys:

a) 10-20% aqueous solution of ammonium persulphate;

 b) 10% solution of hydrogen peroxide in saturated aqueous solution of ammonium;

 c) solution of ferric chloride (10 grams) and hydrochloric acid (30 cu cm) in water (120 cu cm).

The latter etchant is also used for nickel-base alloys.

To etch duralumin, the following etchant is used: 16.5% hydrochloric acid, 16.5% nitric acid, 4.5% hydrofluoric acid, and 62.5% water. The etchants act quickly; following etching the specimen should immediately be washed and dried.

Table 10
Etchants Used for Deep Etching of Steel

|                    | Etchar                           | nt comp<br>(by vo                  |                                                     | п %   | Etching schedule     |              |  |  |
|--------------------|----------------------------------|------------------------------------|-----------------------------------------------------|-------|----------------------|--------------|--|--|
| Material<br>etched | Hydro-<br>chloric<br>acid<br>HCl | Nitric<br>acld<br>HNO <sub>3</sub> | Sulphuric<br>acid<br>H <sub>2</sub> SO <sub>4</sub> | Water | Tempera-<br>ture, °C | Holding time |  |  |
| Cook or steel      |                                  |                                    | 15                                                  |       | 00                   | TT 1 0 1     |  |  |
| Carbon steel .     |                                  | _                                  | 17                                                  | 83    | 60                   | Up to 2 hrs  |  |  |
| Ditto              | 50                               | -                                  | -                                                   | 50    | 60-70                | 10-45 min    |  |  |
| Ditto              | _                                | <b>5</b> 0                         | _                                                   | 50    | 70-80                | 1-2 hrs      |  |  |
| Alloy steel        | 17                               | <b>—</b>                           | 33                                                  | 50    | Up to 100            | 20-60 min    |  |  |
| Ditto              | 66                               | _                                  | 10                                                  | 24    | 95-98                | 20 min-2 hrs |  |  |
|                    |                                  |                                    |                                                     |       |                      |              |  |  |

Table 11
Characteristics of Grinding Wheels for Spark Testing of Steel

| Wheel characteristics                             | For testing rods, castings and forgings       | For testing finished articles                 |  |  |
|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Wheel diameter, mm Wheel thickness, mm Grain size | 300-350<br>40-60<br>36-40<br>Grade Ст.1 steel | 150-200<br>25-40<br>60-80<br>Grade Cr.1 steel |  |  |

Deep etching is usually applied when testing parts for possible cracks. Since acids tend to dissolve metals, the parts may decrease in size as a result of etching.

Crack detection by blacking-in. The piece is immersed in a solution, then thoroughly washed with cold water, coated with a thin film of aqueous suspension of white clay, and finally dried in an air jet. The solution forced out of the cracks colours them brightly.

#### Composition of the solution:

| kerosene .  |    |   |  |  |  |  |  |     |   | volume |
|-------------|----|---|--|--|--|--|--|-----|---|--------|
| transformer | oi | 1 |  |  |  |  |  | 30% | _ | 1)     |
| turpentine  |    |   |  |  |  |  |  | 5%  |   | 1)     |

Sudan III, sudan II, sudan I or fatty orange are added as colouring

Kerosene or hot oil testing. The parts are immersed in kerosene or hot oil for 10-20 min, after which they are sand-blasted or wiped dry and rubbed with chalk. The kerosene and oil retained by the cracks make them appear as thin streaks.

Sonic inspection. Cracks can be detected by experienced operators by striking suspended parts. A cracked part gives off a dull sound when hit with a hammer.

#### 3. APPROXIMATE DETERMINATION OF STEEL COMPOSITION

Steeloscope inspection. Spectroscopic analysis is being more and more widely used in heat-treatment shops, as a means of determining the approximate composition of steel. In the spectroscopic method an electric arc is struck between the piece being tested and an electrode. The light of the arc is directed by a lens, into the slit of a special apparatus—the steeloscope—where the spectrum is examined. Most of the components of steel emit characteristic spectral lines on burning. The pattern and intensity of these lines when referred to the special tables accompanying the apparatus, give information as to the approximate content of the various elements in the steel. The procedure takes

only a few minutes and no damage is done to the piece tested. Carbon, sulphur and phosphorus cannot be determined by this method.

Spark test. The determination of the composition of steel by the spark test requires blacking out of the site of the test, adequate grinding

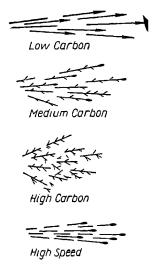



Fig. 2. Pattern of sparks produced by various grades of steels

wheels (Table II), as well as branded specimens of the steels used in the plant. By examining the colour and pattern of the sparks emitted from the part being tested and a standard specimen, one may determine approximately the steel grade.

Low-carbon steel throws off a long beam of light-yellow sparks with no explosions. As the carbon content increases the beam becomes shorter and wider and the number of explosions increases (Fig. 2).

As compared to carbon steel the colour of the sparks produced by chromium steel is darker, with a lesser number of explosions. Steel containing tungsten throws off dark-red sparks.

#### STEEL

#### 1. CONSTITUENTS OF STEEL

The internal arrangement of steel and other alloys is called their structure. The structure visible only under a microscope is called microstructure. To determine the microstructure of a steel specimen, the latter should be ground, polished, etched and examined with the aid of a microscope. Table 12 indicates the constituents of steel and presents some data on their formation, physical properties, etc.

#### 2. STRUCTURE OF IRON AND STEEL. EQUILIBRIUM DIAGRAM OF IRON-GARBON ALLOYS

The crystal lattice of pure iron changes its structure, i. e., the arrangement of its atoms, with temperature. Various lattice structures are presented in Fig. 3. Data on lattice structure modifications on heating and cooling are given in Table 13.

Fig. 4 presents an equilibrium diagram of iron-carbon alloys. The temperatures at which solid-phase changes occur in iron and its alloys are called critical points (Table 14).

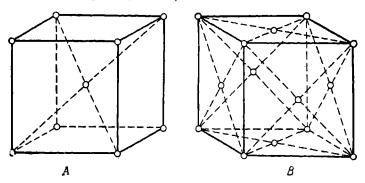



Fig. 3. Structure of crystalline lattice: a-alpha- and delta-iron; b-gamma-iron

Structural Constituents of Iron-carbon Alloys

| ounditions C                                                                                                                               | ;                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Definition formations of                                                                                                                   | tion                        |
| Solid solution of car- On heating above Ac, Soft, bon and other elements in gammanicon. Carbon con-                                        | a<br>Jint                   |
| Solid solution of car- bon and other ele- ments in alpha-iron.  Carbon content up  to 0.000                                                | au<br>w c<br>hy<br>teel     |
| Chemical combination Rejected by liquid of iron and carbon. and solid solutron carbide Fe <sub>3</sub> C tions on slow contains 6.67% car- | liq<br>s s                  |
| Eutectoid mixture of Formed on decay cementite and fer- of austenite rite                                                                  | de<br>te                    |
| Solid solution of carbon and other elerapid cooling of ments in alpha-iron with distorted latters tice                                     | lling<br>fr<br>criti<br>res |

Table 12 continued

| Brinell hardness number, $H_B$  | 330-400                                                                                                                         | Harder than<br>troostite                                                                                         | 270-320                                                                                       |                                                                |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Physical properties             | Highly dispersed mix- Formed on heating Approx. up ture of ferrite and carbides the 250-400° C range or on slow cooling of aus- | Formed on isother- Up to 500 Hard, fairly ductile, Harder than mal transformation of austerite in the 250-400° C | Up to Ac <sub>1</sub> Ductile and resilient. Less stronger and harder than troostite Magnetic | Brittle                                                        |
| Stable at tem-<br>peratures, °C | Approx. up                                                                                                                      | Up to 500                                                                                                        |                                                                                               | Below<br>1130                                                  |
| Conditions of formation         | Formed on heating of martensite in the 250-400° C range or on slow cooling of aus-                                              | tenite Formed on isothermal transformation of austenite in the 250-400° C                                        | Formed on heating of martensite in the 400° C-Ac, range or on very                            | <u>щ</u>                                                       |
| Definition                      | Highly dispersed mix-<br>ture of ferrite and<br>carbides                                                                        | Difto                                                                                                            | Fine mixture of ferrite and cementite                                                         | An austenite-cementite eutectic mixture containing 4.3% carbon |
| Structure                       | Troostite                                                                                                                       | Acicular<br>troostite<br>(bainite)                                                                               | Sorbite                                                                                       | Ledeburite                                                     |

Notes, 1. Steel structures composed of martensite and troostite, as well as of troostite and sorbite are called troostomartensite and troosto-sorbite structures respectively and have properties intermediate between the two named structures.

2. The word "dispersed" denotes fine-crushed.

#### Stability Temperature Ranges of Various Crystalline Forms of Pure Iron

| On heating                                                                                                  |                                             | On cooling                                                                                                        |                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Stable lattice                                                                                              | Temperature<br>range, °C                    | Stable lattice                                                                                                    | Temperature range, °C              |  |  |  |
| Body-centered cu-<br>bic alpha-iron<br>Face-centered gam-<br>ma-iron<br>Body-centered cu-<br>bic delta-iron | Up to 910<br>910-1390<br>1390-1 <b>5</b> 39 | Body-centered cu-<br>bic delta-iron<br>Face-centered cu-<br>bic gamma-iron<br>Body-centered cu-<br>bic alpha-iron | 1539-1390<br>1390-898<br>Below 898 |  |  |  |

Notes. 1. Disagreement between transformation temperatures on heating and cooling is called the thermal hysteresis.

2. The difference in the structures of alpha- and detla-iron is attributed only to the distance between the atoms, the mutual arrangement of atoms of both structures being identical.

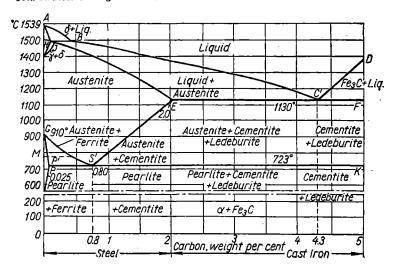



Fig. 4. Iron-carbon equilibrium diagram

Table 14
Principal Phase Transformations in Iron-carbon Alloys on Slow
Heating and Cooling

| Line of trans- | Temperature<br>of transfor-<br>mation, °C | Nature of transformation                                                                                                                                          | of cr                 | nation<br>itical<br>ints |
|----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|
| forma-<br>tion | Tempe<br>of trai<br>mation                | Nature of transformation                                                                                                                                          | on<br>heatin <b>g</b> | on<br>cooling            |
| PSK            | 723                                       | Transformation of pearlite to austenite Transformation of austenite to pearlite                                                                                   | Ac <sub>1</sub>       | Ar,                      |
| МО             | 768                                       | Loss of magnetism for steels containing approximately up to 0.5% carbon Regaining of magnetism for the same steels                                                | Ac <sub>2</sub>       | Ar <sub>2</sub>          |
| GOS            | 910-<br>723                               | The end of the dissolution of ferrite in austenite in hypoeutectoid steels The beginning of the separation of ferrite from austenite in hypoeutectoid steels      | Ac,                   | Ar <sub>3</sub>          |
| SE             | 723-<br>1130                              | The end of the dissolution of cementite in austenite in hypereutectoid steels The beginning of the rejection of cementite from austenite in hypereutectoid steels | Ac <sub>m</sub>       | Ar <sub>m</sub>          |
| IE             |                                           | The beginning of melting of steel on heating The end of solidification of steel on cooling                                                                        | _                     |                          |
| ECF            | 1130                                      | The beginning of melting of cast iron on heating The end of solidification of cast iron on cooling                                                                | _                     | _                        |
| ABCD           | _                                         | The end of melting of steel and cast iron on heating The beginning of solidification of steel and cast iron on cooling                                            |                       | _                        |

#### 3. Alloying Elements and Their Effect on the Properties of Steel

Alloying elements are added to steels with the aim of imparting specific mechanical and physicochemical properties to the latter (see Tables 15 and 16).

Table 15
Conventional Symbols for Elements Contained in Steels

| Element                                                                                                                                 | Designation of ele-<br>ments in tables of<br>chemical composition                 | Designation of ele-<br>ments in Soviet Stand-<br>ards for marking steel<br>grades |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Aluminium Boron Carbon Chromium Cobalt Copper Manganese Molybdenum Nickel Niobium Phosphorus Silicon Sulphur Titanium Tungsten Vanadium | AI<br>B<br>C<br>Cr<br>Co<br>Cu<br>Mn<br>Mo<br>Ni<br>Nb<br>P<br>Si<br>S<br>Ti<br>W | ЮРУХКДГМНБПС   ТВФ                                                                |

Alloying elements comprise aluminium, boron, vanadium, tungsfen, cobalt, molybdenum, nickel, titanium, chromium, etc. Silicon and manganese are considered alloying elements, only if they are contained in the steel in amounts higher than usually.

#### 4. Chemical Composition and Hardness of Market Steels

Steels are divided into three classes according to their use:

1. Structural steel is used mainly for the manufacture of machine parts and various structures.

2. Tool steel is used for the manufacture of tools.

3. Steels with specific physical and chemical properties are used for the manufacture of special machinery and machine parts.

Structural and tool steels are divided into carbon and alloy grades

according to their chemical composition.

Tables 17 to 36 present chemical composition, hardness numbers of various grades of steels (manufactured according to Soviet Standards and, partly, according to ministerial specifications), as well as critical temperatures of steels on heating.

Effect of Alloying Elements on Properties of Steels

Table 16 continued

| Element            | Tendency<br>to overheating | Harden-<br>ability | Annealing, normalising, and hardening temperatures | Hardness and strength | Ductility                                    | High-tempera-<br>ture strength    |
|--------------------|----------------------------|--------------------|----------------------------------------------------|-----------------------|----------------------------------------------|-----------------------------------|
| Molybdenum         | Influences<br>slightly     | Increases          | Increases                                          | Increases             | Increases<br>when added<br>in amounts        | Increases                         |
| Nickel             | Influences                 | Increases          | Lowers                                             | Increases             | up to 0.6%<br>Increases<br>slightly          | Influences<br>slightly            |
| Niobium<br>Silicon | Influences                 | <br>Increases      | Increases<br>Increases                             | Lowers<br>Increases   | Increases<br>Lowers                          | Increases                         |
| Titanium           | slightly<br>Lowers         |                    | Increases<br>consider-                             | Increases<br>slightly | Increases<br>slightly                        | sugnery<br>Influences<br>slightly |
| Tungsten           | Lowers                     | Increases          | ably<br>Increases                                  | Increases             | Increases<br>slightly                        | Increases consider-               |
| Vanadium           | Lowers                     | l                  | Increases                                          | Increases             | when accelulation amounts up to 1% Increases | Influ-<br>ences<br>slightly       |
|                    |                            |                    |                                                    |                       |                                              |                                   |

Note. Boron content in steel averages 0.002-0.005%.

 ${\it Table~17}$  Chemical Composition of Plain Carbon Steel

|                                                                                                | Chemical composition, %                                                                                                     |                                                                                                                                                                                                                             |                                                                                         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| Grade                                                                                          | Carbon                                                                                                                      | Manganese                                                                                                                                                                                                                   | Silicon                                                                                 |  |  |  |  |  |
|                                                                                                | Open-heart                                                                                                                  | h steel                                                                                                                                                                                                                     |                                                                                         |  |  |  |  |  |
| МСт.0<br>МСт.1КП<br>МСт.2КП<br>МСт.3КП<br>МСт.3<br>МСт.4КП<br>МСт.4<br>МСт.5<br>МСт.6<br>МСт.7 | ○ 0.23<br>0.06-0.12<br>0.09-0.15<br>0.14-0.22<br>0.14-0.27<br>0.18-0.27<br>0.18-0.27<br>0.28-0.37<br>0.38-0.49<br>0.50-0.62 | $\begin{array}{c} \\ \leqslant 0.05 \\ \leqslant 0.07 \\ \leqslant 0.07 \\ 0.12 \cdot 0.30 \\ \leqslant 0.07 \\ 0.12 \cdot 0.35 \\ 0.15 \cdot 0.35 \\ 0.15 \cdot 0.35 \\ 0.15 \cdot 0.35 \\ 0.15 \cdot 0.35 \\ \end{array}$ | 0.25-0.50<br>0.25-0.50<br>0.30-0.60<br>0.40-0.70<br>0.40-0.70<br>0.50-0.80<br>0.50-0.80 |  |  |  |  |  |

Notes. 1. Phosphorus content should not exceed 0.07% for steel MCr.0, and 0.045% for other grades; corresponding amounts of sulphur are 0.06% and 0.055% respectively.

2. Table 32 lists chemical composition of open-hearth steels.

Table 18

Chemical Composition and Hardness Numbers of Free-cutting Steels

| 0.1        |                        | Chemical composition, % |                    |                        |                            |                    |  |  |  |
|------------|------------------------|-------------------------|--------------------|------------------------|----------------------------|--------------------|--|--|--|
| Grade      | Carbon                 | Silicon                 | Manganese          | Sulphur                | Phosphorus                 | hardness<br>number |  |  |  |
| A12<br>A20 | 0.08-0.16<br>0.15-0.25 | 0.15-0.35<br>0.15-0.35  | 0.6-0.9<br>0.6-0.9 | 0.08-0.20<br>0.08-0.15 | 0.08-0.15<br>Below<br>0.06 | 167-217<br>167-217 |  |  |  |
| A30        | 0.25-0.35              | 0.15-0.35               | 0.7-1.0            | 0.08-0.15              |                            | 174-223            |  |  |  |
| Α40Γ       | 0.35-0.45              | 0.15-0.35               | 1.2-1.55           | 0.18-0.3               | Below<br>0.05              | 179-229            |  |  |  |

Table 19
Chemical Composition and Mechanical Properties of Quality Carbon Steel

|       |        |               | Steel     | ,                              |                    |                                                               |
|-------|--------|---------------|-----------|--------------------------------|--------------------|---------------------------------------------------------------|
|       | Chem   | ical composit | ion, %    | Me                             | chanica            | l properties                                                  |
| Grade | Carbon | Silicon       | Manganese | Tensile<br>strength,<br>kg/mm² | Elonga-<br>tion, % | Impression diameter, mm, minimum Hardness number, HB, maximum |
|       |        |               | Group I   |                                |                    |                                                               |

| 05КП<br>08КП*         | € 0.06<br>0.05-0.11                              | €0.03<br>€0.03                          | € 0.40<br>0.25-0.50                              | 30                   | $\frac{-}{35}$       | -<br>5.2          | —<br>131          |
|-----------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------|----------------------|-------------------|-------------------|
| 08<br>10КП*<br>10КП   | 0.05-0.12<br>0.07-0.14<br>0.07-0.14<br>0.12-0.19 | 0.17-0.37<br>0.07<br>0.17-0.37<br>≤0.07 | 0.35-0.65<br>0.25-0.50<br>0.35-0.65<br>0.25-0.50 | 33<br>32<br>34<br>36 | 33 \<br>31 \<br>29 \ | 5.1               | 137               |
| 15КП*<br>15*<br>20КП* | 0.12-0.19<br>0.12-0.19<br>0.17-0.24              | 0.07<br>0.17-0.37<br>≤0.07              | 0.35-0.65<br>0.25-0.50                           | 38<br>39             | 27 }<br>27 }<br>27 } | 5.0               | 143               |
| 20*<br>25*            | 0.17-0.24<br>0.22-0.30                           | 0.17-0.37<br>0.17-0.37                  | 0.35-0.65<br>0.50-0.80                           | 42<br>46             | 25 }<br>23           | 4.8               | 156<br>170        |
| 30*<br>35*<br>40      | 0.27-0.35<br>0.32-0.40<br>0.37-0.45              | 0.17-0.37<br>0.17-0.37<br>0.17-0.37     | 0.50-0.80<br>0.50-0.80<br>0.50-0.80              | 50<br>54<br>58       | 21<br>20<br>19       | 4.5<br>4.4<br>4.4 | 179<br>187<br>187 |
| 45<br>50              | 0.42-0.50<br>0.47-0.55                           | 0.17-0.37<br>0.17-0.37                  | 0.50-0.80<br>0.50-0.80                           | 61<br>64             | 16<br>14             | $\frac{4.3}{4.2}$ | 197<br>207        |
| 55<br>60              | 0.52-0.60<br>0.57-0.65<br>0.62-0.70              | 0.17-0.37<br>0.17-0.37<br>0.17-0.37     | 0.50-0.80<br>0.50-0.80<br>0.50-0.80              | 66<br>69<br>71       | 13<br>12<br>10       | 4.1<br>4.0<br>4.0 | 217<br>229<br>229 |
| 65<br>70<br>75        | 0.67-0.75<br>0.72-0.80                           | 0.17-0.37                               | 0.50-0.80<br>0.50-0.80                           | 73<br>110            | 9 7                  | 4.0<br>3.9        | 229<br>241        |
| 80<br>85              | 0.77-0.85<br>0.82-0.90                           | 0.17-0.37<br>0.17-0.37                  | 0.50-0.80<br>0.50-0.80                           | 110<br>11 <b>5</b>   | 6<br>6               | 3.9<br>3.8        | 241<br>255        |
|                       | Į.                                               | l                                       |                                                  |                      | l i                  | ļ                 | i                 |

#### ...Group II.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6 24<br>0 22<br>5 20 | 4.7<br>4.3<br>4.2<br>4.4<br>4.3 | 197<br>207<br>187 |
|-------------------------------------------------------|----------------------|---------------------------------|-------------------|
|-------------------------------------------------------|----------------------|---------------------------------|-------------------|

|                                        | Chemi                                                                      | ical compositi                                                | on, %                                                                      | Me                               | chanica                   | l propert                                 | ies                                           |
|----------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------|
| Grade                                  | Carbon                                                                     | Silicon                                                       | Manganese                                                                  | Tensile<br>strength,<br>kg/mm²   | Elonga-<br>tion, %        | Impression<br>diameter,<br>mm,<br>minimum | Hardness<br>number, H <sub>B</sub> ,          |
| 40Γ<br>45Γ<br>50Γ<br>60Γ<br>65Γ<br>70Γ | 0.37-0.45<br>0.42-0.50<br>0.48-0.56<br>0.57-0.65<br>0.62-0.70<br>0.67-0.75 | 0.17-0.37<br>0.17-0.37<br>0.17-0.37<br>0.17-0.37<br>0.17-0.37 | 0.70-1.00<br>0.70-1.00<br>0.70-1.00<br>0.70-1.00<br>0.90-1.20<br>0.90-1.20 | 60<br>63<br>66<br>71<br>75<br>80 | 17<br>15<br>13<br>11<br>9 | 4.2<br>4.1<br>4.1<br>4.0<br>4.0<br>4.0    | 207<br>217<br>217<br>219<br>229<br>229<br>229 |

Notes. 1. Sulphur and phosphorus content for all grades of steel averages <0.04%, except for grades  $05 \, \mathrm{KH}$ , 08 and 10 where phosphorus content amounts to <0.035%. 2. Hardness numbers of steel grades marked with an asterisk refer to non-annealed steel, the balance representing hardness numbers of annealed steel.

Table 20

# Chemical Composition and Hardness Numbers for Plough Share Rolled Steel

|       | Chen             | nical compositi | on, %                                        | Brinell hardness number as supplied      |                               |  |  |  |
|-------|------------------|-----------------|----------------------------------------------|------------------------------------------|-------------------------------|--|--|--|
| Grade | Carbon Manganese |                 | Other<br>elements                            | Minimum<br>impression<br>diameter,<br>mm | Maximum<br>hardness<br>number |  |  |  |
| Л53   | 0.47-0.57        | 0.5-0.8         | Silicon<br>0.15-0.4<br>Sulphur<br>below 0.05 | 3.8                                      | 255                           |  |  |  |

Table 21
Chemical Composition and Hardness Numbers of Alloy Structural Steel

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemical o                                                                                                                                                                                                                                                | composition. | %                 | Brinell<br>hardness<br>number<br>after an-<br>nealing                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbon                                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                                                                                                 | Chromium     | Other<br>elements | Minimum<br>impression<br>diameter, mm<br>Maximum hard-<br>ness number                                                                                                                                                                          |
| 35Γ2<br>40Γ2<br>45Γ2<br>50Γ2<br>15X<br>15XP<br>20X<br>30XPA<br>35XPA<br>35XPA<br>35XYA<br>40XP<br>45XI<br>50X<br>15XΓ<br>18XΓ<br>18XΓ<br>18XΓ<br>18XΓ<br>18XΓ<br>20XΓ<br>20XΓ<br>20XΓ<br>20XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XΓ<br>40XC<br>27CΓ | 0.31-0.39<br>0.36-0.44<br>0.41-0.49<br>0.46-0.55<br>0.12-0.18<br>0.17-0.23<br>0.25-0.33<br>0.27-0.33<br>0.31-0.39<br>0.33-0.40<br>0.34-0.42<br>0.36-0.44<br>0.41-0.49<br>0.41-0.49<br>0.41-0.20<br>0.15-0.21<br>0.17-0.23<br>0.15-0.25<br>0.18-0.24<br>0.24-0.32<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.37-0.45<br>0.29-0.37<br>0.34-0.42<br>0.37-0.45 | 1.4-1.8<br>1.4-1.8<br>1.4-1.8<br>1.4-1.8<br>0.4-0.7<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>1.1-1.4<br>0.9-1.2<br>0.8-1.1<br>0.9-1.2<br>0.7-1.1<br>1.6-1.9<br>0.3-0.6<br>0.3-0.6<br>1.1-1.4 |              |                   | 4.2 207 4.1 217 4.0 229 4.0 229 4.5 179 4.4 187 4.5 179 4.4 187 4.1 217 4.0 229 4.1 217 4.0 229 4.1 217 4.0 229 4.1 217 4.0 229 4.1 217 4.0 229 4.1 217 4.0 229 4.1 217 4.1 87 4.3 197 4.0 229 4.0 229 3.9 241 3.8 255 3.8 255 3.8 255 4.1 217 |

|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               | Chemical co                                                                                                                                                                                                               | omposition,                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Brin<br>hardn<br>numl<br>after<br>neali                                                                             | ess<br>oer<br>an-                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade                                                                                                                                                                                                                                                           | Carbon                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                                                                 | Chromium                                                                                                                                                                                                                                                                                                                                                                                                        | Other<br>elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum<br>Impression<br>diameter, mm                                                                               | Maximum hard-<br>ness number                                                                                                                     |
| 35CF<br>36F2C<br>15XM<br>20XM<br>30XM<br>35XM<br>35X2MA<br>35X2MA<br>35X2MA<br>35XBA<br>15XФ<br>20XФ<br>40XФ<br>15HM<br>20HM<br>40HM<br>20XH<br>40XH<br>45XH<br>50XH<br>12XH2<br>12XH3A<br>12X2H4A<br>20X2H4A<br>30XH3A<br>37XH3A<br>37XH3A<br>34XH1M<br>34XH3M | 0.31-0.39<br>0.32-0.40<br>0.11-0.18<br>0.15-0.25<br>0.26-0.34<br>0.32-0.40<br>0.35-0.42<br>0.12-0.18<br>0.17-0.23<br>0.37-0.44<br>0.1-0.18<br>0.17-0.25<br>0.37-0.45<br>0.17-0.25<br>0.41-0.49<br>0.46-0.54<br>0.09-0.16<br>0.09-0.16<br>0.09-0.16<br>0.09-0.16<br>0.17-0.24<br>0.16-0.22<br>0.27-0.34<br>0.33-0.4<br>0.3-0.4 | 1.1-1.4<br>0.4-0.7<br>0.4-0.7<br>0.4-0.7<br>0.4-0.7<br>0.4-0.7<br>0.25-0.5<br>0.4-0.7<br>0.5-0.8<br>0.4-0.7<br>0.5-0.8<br>0.4-0.7<br>0.5-0.8<br>0.3-0.6<br>0.3-0.6<br>0.3-0.6<br>0.3-0.6<br>0.3-0.6<br>0.3-0.6<br>0.5-0.8 | © 0.25<br>© 0.25<br>0.8-1.1<br>© 0.3<br>0.8-1.1<br>1.6-1.9<br>0.9-1.3<br>0.8-1.1<br>0.8-1.1<br>0.8-1.1<br>0.8-1.1<br>0.8-5.0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.45-0.75<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65<br>0.6-0.9<br>1.25-1.65 | 1.1-1.4 Si 0.4-0.7 Si 0.4-0.55 Mo 0.4-0.55 Mo 0.4-0.55 Mo 0.15-0.25 Mo 0.15-0.25 Mo 0.15-0.25 Mo 0.1-0.2 V 0.1-0.2 V 0.1-0.2 V 1.5-2.0 Ni 0.2-0.3 Mo 1.0-1.4 Ni 1.0-1.5-2 Ni 2.8-3.2 Ni 3.3-3.7 Ni 2.8-3.2 Ni 3.0-3.5 Ni 0.25-0.4 Mo 2.75-3.25 Ni 0.25-0.4 Mo | 4.0<br>4.0<br>4.5<br>4.3<br>4.0<br>3.9<br>4.4<br>4.3<br>4.3<br>4.2<br>4.2<br>4.2<br>4.1<br>3.7<br>3.9<br>3.9<br>3.7 | 229<br>179<br>179<br>129<br>241<br>241<br>229<br>187<br>241<br>197<br>241<br>197<br>207<br>207<br>207<br>207<br>207<br>2217<br>269<br>241<br>269 |

|                  |           | Chemical c | omposition, | %                                                   | Brine<br>hardn<br>numb<br>after<br>neali | ess<br>er<br>an-             |
|------------------|-----------|------------|-------------|-----------------------------------------------------|------------------------------------------|------------------------------|
| Grade            | Carbon    | Manganese  | Chromium    | Other<br>elements                                   | Minimum<br>impression<br>diameter, mm    | Maximum hard-<br>ness number |
| 36XН1МФ <b>А</b> | 0.32-0.4  | 0.3-0.5    | 1.3-1.7     | 1.3-1.7 Ni<br>0.3-0.4 Mo                            |                                          |                              |
| 45ХНМФА          | 0.42-0.5  | 0.5-0.8    | 0.8-1.1     | 0.08-0.15 V<br>1.3-1.8 Ni<br>0.2-0.3 Mo             |                                          |                              |
| 30XHBA           | 0.27-0.34 | 0.3-0.6    | 0.6-0.8     | 0.1-0.2 V<br>1.27-1.65 Ni                           | 3.9                                      | 241                          |
| 38XHBA           | 0.34-0.42 | 0.3-0.6    | 1.3-1.7     | 0.5-0.8 W<br>1.25-1.65 Ni<br>0.5-0.8 W              | 3.7                                      | 269                          |
| 40XHBA           | 0.37-0.44 | 0.5-0.8    | 0.6-0.9     | 1.25-1.65 Ni<br>0.8-1.2 W                           | 3.7                                      | 269                          |
| 40XHMA           | 0.37-0.44 | 0.5-0.8    | 0.6-0.9     | 1.25-1.65 Ni<br>0.15-0.25 W                         | 3.7                                      | 269                          |
| 30X2HBA          | 0.27-0.34 | 0.3-0.6    | 1.6-2.0     | 1.4-1.8 Ni<br>1.2-1.5 W                             | 3.7                                      | 269                          |
| 38XH3BA          | 0.34-0.42 | 0.25-0.55  | 0.8-1.2     | 2.75-3.25 Ni<br>0.5-0.8 W                           | 3.7                                      | 269                          |
| 18X2H4BA         | 0.14-0.2  | 0.25-0.55  | 1.35-1.65   | 4.0-4.5 Ni<br>0.8-1.2 W                             | 3.7                                      | 269                          |
| 25 X 2H 4B A     | 0.21-0.28 | 0.25-0.55  | 1.35-1.65   | 4.0-4.5 Ni<br>0.8-1.2 W                             | 3.7                                      | 269                          |
| 30ХНВФА          | 0.27-0.34 | 0.3-0.6    | 0.6-0.9     | 2.0-2.5 Ni<br>0.5-0.8 W<br>0.15-0.3 V               |                                          |                              |
| 30Х2НВФА         | 0.27-0.34 | 0.3-0.6    | 1.6-2.0     | 1.4-1.8 Ni<br>1.2-1.5 W                             | 3.7                                      | 269                          |
| 38ХН3ВФА         | 0.34-0.42 | 0.25-0.55  | 1.0-1.4     | 0.18-0.28 V<br>3.0-3.5 Ni<br>0.5-0.8 W<br>0.1-0.2 V |                                          |                              |
|                  |           |            |             |                                                     |                                          |                              |
|                  | 1         | 1,         | ľ           |                                                     |                                          |                              |

|                                         |                                                  | Chemical c                               | om position,                               | %                                                                                 | Brine<br>hardn<br>numl<br>after<br>neali | ess<br>er<br>an-                |
|-----------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|---------------------------------|
| Grade                                   | Carbon                                           | Мапganese                                | Chromium                                   | Other<br>elements                                                                 | Minimum<br>impression<br>diameter, mm    | Maximum hard-<br>ness number    |
| 20ХН4ФА                                 | 0.17-0.2                                         | 0.25-0.55                                | 0.7-1.1                                    | 3.75-4.25 Ni                                                                      | 3.7                                      | 269                             |
| 38ХНЗМФА                                | 0.34-0.42                                        | 0. <b>25</b> -0.55                       | 1.2-1.5                                    | 0.15-0.3 V<br>3.0-3.5 Ni<br>0.35-0.4 <b>M</b> o                                   | 3,7                                      | 269                             |
| 15X ГНТ<br>15X 2 ГН2 Т<br>15X 2 ГН2 ТРА | 0.12-0.18<br>0.12-0.18<br>0.12-0.18              | 0.7-1.0<br>0.7-1.0<br>0.7-1.0            | 0.7-1.0<br>1.4-1.8<br>1.4-1.8              | 0.1-0.2 V<br>0.06-0.12 Ti<br>0.06-0.12 Ti<br>0.002-0.005B                         | 4.0<br>3.7<br>3.7                        | 229<br>269<br>269               |
| 18ΧΓΗ<br>25Χ2ΓΗΤΑ                       | 0.16-0.22<br>0.22-0.29                           | 0.8-1.1<br>0.8-1.1                       | 0.4-0.7<br>1.3-1.7                         | 0.06-0.12 Ti<br>0.4-0.7 Ni<br>0.9-1.3 Ni                                          | 3.8<br>3.7                               | 255<br>2 <b>6</b> 9             |
| 30XFHA<br>38XFH<br>30X2FH2<br>16XCH     | 0.28-0.35<br>0.35-0.43<br>0.26-0.34<br>0.13-0.20 | 0.6-0.9<br>0.8-1.1<br>0.8-1.1<br>0.3-0.6 | 0.9-1.2<br>0.5-0.8<br>1.4-1.7<br>0.8-1.1   | 0.06-0.12 Ti<br>0.3-0.6 Ni<br>0.7-1.1 Ni<br>1.4-1.8 Ni<br>0.6-0.9 Ni              | 4.0<br>4.0<br>3.8                        | 229<br>229<br>255               |
| 18XCHPA                                 | 0.16-0.21                                        | 0.6-0.9                                  | 0.8-1.1                                    | 0.6-0.9 Si<br>0.8-1.1 Ni<br>0.6-0.9 Si                                            | 4.3                                      | 197                             |
| 20XFCA<br>25XFCA<br>30XFCA<br>30XFCHA   | 0.17-0.23<br>0.22-0.28<br>0.28-0.34<br>0.27-0.34 | 0.8-1.1<br>0.8-1.1<br>0.8-1.1<br>1.0-1.3 | 0.8-1.1<br>0.8-1.1<br>0.8-1.1<br>0.9-1.2   | 0.002-0.005B<br>0.9-1.2 Si<br>0.9-1.2 Si<br>0.9-1.2 Si<br>0.9-1.2 Si              | 4.2<br>4.1<br>4.0<br>3.8                 | 207<br>217<br>229<br>255        |
| 35ХГСА<br>38ХЮ<br>38ХМЮА<br>38ХВФЮ      | 0.32-0.39<br>0.35-0.43<br>0.35-0.42<br>0.35-0.43 | 0.8-1.1<br>0.2-0.5<br>0.3-0.6<br>0.2-0.4 | 1.1-1.4<br>1.5-1.8<br>1.35-1.65<br>1.5-1.8 | 1.4-1.8 Ni<br>1.1-1.4 Si<br>0.5-0.8 Al<br>0.15-0.25 Mo<br>0.2-0.4 W<br>0.4-0.7 Al | 3.6<br>4.0<br>4.0<br>4.0                 | 241<br>229<br>229<br>229<br>229 |
| 13H2XA                                  | 0.09-0.16                                        | 0.3-0.6                                  | 0.2-0.5                                    | 0.1-0.2 V<br>1.7-2.1 Ni                                                           | 4.2                                      | 20 <b>7</b>                     |
|                                         |                                                  |                                          |                                            |                                                                                   |                                          |                                 |

Table 22
Chemical Composition and Hardness Numbers of Non-annealed Spring Steels

|                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  | Chemical c | om positio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n, %           |                                                                                      | ihard-<br>umber                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Grade                                                                                                                                                                                                                              | Carbon                                                                                                                                                                                                                                                                                                           | Silicon    | Manga-<br>nese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other elements | Minimum<br>impression<br>diameter, mm                                                | Maximum<br>hardness<br>num ber, HB                                                                                         |
| 65<br>70<br>75<br>85<br>55ΓC<br>65Γ<br>50C2<br>55C2<br>60C2A<br>63C2A<br>70C3A<br>70C2X A<br>(ЭИ142)<br>50 XΓ<br>50 XΓA<br>50 X Φ A<br>60C2X Φ A<br>60C2X Φ A<br>60C2X Φ A<br>60C2X Φ A<br>60C2H2A<br>55CΓ<br>60CΓ<br>60CΓ<br>60CΓ | 0.6-0.7<br>0.65-0.75<br>0.72-0.80<br>0.82-0.90<br>0.52-0.60<br>0.6-0.7<br>0.47-0.55<br>0.52-0.60<br>0.57-0.65<br>0.56-0.64<br>0.60-0.65<br>0.46-0.54<br>0.46-0.54<br>0.46-0.54<br>0.46-0.54<br>0.56-0.64<br>0.56-0.64<br>0.56-0.64<br>0.56-0.64<br>0.56-0.64<br>0.56-0.64<br>0.55-0.60<br>0.55-0.65<br>0.56-0.64 |            | 0.5-0.8<br>0.5-0.8<br>0.5-0.8<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.6-0.9<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0<br>0.8-1.0 |                | 3.87<br>3.66<br>3.67<br>3.66<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55 | 255<br>269<br>285<br>302<br>285<br>269<br>285<br>285<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302<br>302 |

Notes. 1. The 70C2XA (9H142) grade steel is marketed in the form of strips. 2. In addition, high-quality steel differs from quality steel as to lower sulphur and phosphorus content.

### Chemical Composition and Hardness Numbers of Ball-bearing Steels

|                                      | С                                                         | hemical con                   | mposition,                      | %                                                            | Brinell hardness<br>number                |                                            |  |  |
|--------------------------------------|-----------------------------------------------------------|-------------------------------|---------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--|--|
| Grade                                | Carbon                                                    | Manganese                     | Chromium                        | Sílícon                                                      | Minimum<br>impres-<br>sion di-<br>ameter, | Maximum<br>mum<br>hardness<br>number,<br>H |  |  |
| ШХ6<br>ШХ9<br>ШХ15<br>ШХ15СГ<br>ШХ10 | 1.05-1.15<br>1.0-1.1<br>0.95-1.1<br>0.95-1.1<br>0.32-0.42 | 0.2-0.4<br>0.2-0.4<br>0.9-1.2 | 0.9-1.2<br>1.3-1.65<br>1.3-1.65 | 0.15-0.35<br>0.15-0.35<br>0.15-0.35<br>0.4-0.65<br>0.17-0.37 |                                           | 170-207<br>170-207<br>170-207<br>170-207   |  |  |

Notes. 1. The grade IIIX10 steel contains maximum 0.03% both of sulphur and phosphorus. The remaining grades of steel contain less than 0.027% of sulphur and less than 0.02% of phosphorus.
2. Nickel content may rise up to 0.3%, that of copper up to 0.25%, while their sum should not exceed 0.5%.

Low-coercivity magnetic steels and alloys are used for the manufacture of parts of electrical machines. These steels comprise electric sheet steel, low-carbon electric steel, high permeability alloys and alloys with specific magnetic properties.

Table 24 lists data on electric sheet steels, while Table 25 presents

data on low-carbon electric steels.

High permeability alloys, i. e., permalloys, include iron-nickel alloys of grades 45H, 50H, 50HH, 05HH, 38HC, 50HXC, 79HM, 80H XC, 79HMA.

Table 26 presents data on alloys with specific magnetic properties.

Table 24 Electric Sheet Steel

| Grade                                                                                 | Silicon<br>content, % | Degree of alloying |
|---------------------------------------------------------------------------------------|-----------------------|--------------------|
| 911, 912, 913, 91100, 91200, 91300<br>921, 922<br>931, 932, 93100, 93200, 9310, 9320, | 0.8-1.8<br>1.8-2.8    | Low<br>Medium      |

| Grade                                        | Silicon<br>content, % | Degree of alloying |
|----------------------------------------------|-----------------------|--------------------|
| 9330, 9330A                                  | 2.8-3.8               | Fairly high        |
| 941, 942, 943, 943A, 944, 943, 946, 947, 948 | 3.8-4.8               | High               |

Note. The steel grade designation is read as follows:  $\Theta$  - electric; the first figure designates the degree of alloying with silicon; the second figure - guaranteed electric and magnetic properties; the letter "A" after the last figure denotes extra low specific losses; the third figure "0" means that the steel has been cold-rolled and possesses adequate texture; the paired figures "00" denote that the steel is cold-rolled and has no definite texture.

Table 25

#### Low-carbon Electric Steel

|            |        | Chemica        | compo   | sition,         | %. max       |        | Former                                  | na ma |  |
|------------|--------|----------------|---------|-----------------|--------------|--------|-----------------------------------------|-------|--|
| Grade      | Carbon | Manga-<br>nese | Silicon | Phos-<br>phorus | Sul-<br>phur | Copper | 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |       |  |
| Э, ЭА, ЭАА | 0.04   | 0.2            | 0.2     | 0.025           | 0.03         | 0.15   | Armco                                   | iron  |  |

Note. The difference between the grades is set by checking their magnetic properties after annealing. Coercivity of steels of grades 9, 9A and 9AA should not exceed 1.2, 1.0 and 0.8 oersteds, respectively.

Table 26

## Alloys with Special Magnetic Properties

|                                                               |   |  |       | Ja. | me |      |   |      |      |      |      | Avera<br>main              | age cont<br>elemen             | ent of<br>ts, %                              |
|---------------------------------------------------------------|---|--|-------|-----|----|------|---|------|------|------|------|----------------------------|--------------------------------|----------------------------------------------|
|                                                               |   |  | <br>_ |     |    |      | _ |      |      | _    |      | Nickel                     | Cobalt                         | Iron                                         |
| Permendur Ditto . Perminvar Ditto . Ditto . Isoperm . Ditto . | • |  | <br>  |     |    | <br> |   | <br> | <br> | <br> | <br> | 45<br>70<br>45<br>50<br>36 | 50<br>49<br>25<br>7<br>25<br>— | 50<br>49<br>29.4<br>22.4<br>21.9<br>50<br>55 |

Table 27

Chemical Composition and Hardness Number of Magnetic Steel as Supplied

|         |           |          | Chemical o | Chemical composition, % |         |                     | Brinell hard. |
|---------|-----------|----------|------------|-------------------------|---------|---------------------|---------------|
| Grade   | Carbon    | Chromium | Tungsten   | Cobalt                  | Molyb-  | Other elements      | ness number   |
| EX      | 0.95-1.10 | 1.3-1.6  |            | <br>                    | <br>    | Manganese 0.2-0.4   | 217-241       |
| EX3     | 0.9-1.1   | 2.8-3.6  | 1          | 1                       | 1       | Silicon 0.17-0.4    | 229-285       |
| E7B6    | 0.68-0.78 | 0 3-0.5  | 5.2-6.2    | 1                       | 1       | Sulphur 0.02 max    | 255-321       |
| EX5K5   | 0.90-1.05 | 5.5-6.5  | 1          | 5.5-6.5                 | 1       | Phosphorus 0.03 max | 269-341       |
| EX9K15M | 0.90-1.05 | 8.0-10.0 | 1          | 13.5-16.5               | 1.2-1.7 |                     | 285-341       |

Note. Steel which is off standard in chemical composition may be accepted provided all its properties are up to specifications.

Table 28

Chemical Composition of Cast Permanent Magnets

|   |                         | Iron                           |         | The balance                                                                                    |
|---|-------------------------|--------------------------------|---------|------------------------------------------------------------------------------------------------|
|   |                         | Carbon Manganese               | below   | 0.35                                                                                           |
|   |                         | Carbon                         | p (     | 0.03                                                                                           |
| • | Chemical composition, % | Cilicon                        | 3111011 | 0.15                                                                                           |
|   | са] сошр                | Conner                         | ) addoo | 1 4 8<br>1 6 4 8                                                                               |
|   | Chemic                  | Cobalt                         | Cobail  | 74 25 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28                                          |
|   |                         | Nickel Aluminium Coholt Conner |         | 12.00<br>20.00<br>20.00<br>20.00<br>20.00                                                      |
|   |                         | Nickel                         | MICHEL  | 22<br>24.5<br>23.5<br>19<br>13.5                                                               |
|   | Grade of alloy          | PIO PIO                        | Old     | АЛНИ!<br>АЛНИЗ<br>АЛНИЗ<br>АЛНИКО!<br>АЛНИКО!5<br>АЛНИКО!5<br>АЛНИКО!6<br>АЛНИКО!8<br>АЛНИКО!8 |
|   | Grade                   | mo N                           | Man     | AH1<br>AH2<br>AH3<br>AHK<br>AHK01<br>AHK02<br>AHK03                                            |

Chemical Composition of Γ13 Steel

|                         |                |                                                                                                  | Chemica                   | Chemical composition, %        | %               |                          |
|-------------------------|----------------|--------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|-----------------|--------------------------|
| Grade                   | Carbon         | Manganese                                                                                        | -                         | Silicon, max                   | Sulphur, max    | ax Phosphorus, max       |
| F13                     | 1.0-1.3        | 10-14                                                                                            |                           | 0.5                            | 0.03            | 0.03                     |
| -                       | _              |                                                                                                  | -                         |                                | -               | Table 30                 |
|                         | Cher<br>Non-so | Chemical Composition of Corrosion-resisting,<br>Non-scaling and Heat-resisting Steels and Alloys | tion of Co<br>at-resistin | rrosion-resist<br>g Steels and | ting,<br>Alloys |                          |
|                         |                |                                                                                                  | Cher                      | Chemical composition, %        | ilon, %         |                          |
| Grade of steel or alloy | oy Carbon      | Silicon                                                                                          | Manganese                 | Manganese   Chromium           | Nickel          | Other elements           |
|                         |                | Mar                                                                                              | Martensitic Steels        | sels                           |                 |                          |
| Ϋ́                      | 1 < 0.15       | _                                                                                                | ₹0.2                      | 4.5-6.0                        | -               | 1                        |
| W X                     | V 0.15         | 0.5                                                                                              | ₹0.5                      | 4.5-6.0                        | 1               | Mo 0.45-0.6              |
| XFR                     | ₹ 0.15         |                                                                                                  | ₹0.5                      | 4.5-6.0                        | 1               | W 0.4-0.7                |
| XECM                    | V 0.15         |                                                                                                  | <0.7                      | 2.0-6.0                        | 1               | Mo 0.45-0.6              |
| 1Х8ВФ                   | 0.08-0.15      |                                                                                                  | <b>₹</b> 0.5              | 7.0-8.5                        | 1               | W 0.6-1.0<br>V 0.3-0.5   |
| (0) VOC 40)             | 0 98 0 45      |                                                                                                  | V 0 7                     | 8.0-10.0                       | !               | : 1                      |
| 4X3C2 (3CA 18)          | 0.35-0.45      | 1.9-2.6                                                                                          | V 0.7                     | 9.0-10.5                       | 1               | Mo 0.7-0.9               |
| 1X12H2BMФ (ЭИ961)       |                |                                                                                                  | 9.0.₹                     | 10.5-12.0                      | 1.5-1.8         | W 1.6-2.0<br>Mo 0.35-0.5 |
|                         |                |                                                                                                  |                           |                                |                 | V 0.18-0.3               |
| 2X 13<br>3X 13          | 0.16-0.24      | 24 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                         | <b>№</b> 0.6              | 12.0-14.0<br>12.0-14.0         | 11              | 1.1                      |
|                         | _              | _                                                                                                |                           | _                              | _               |                          |

Table 30 continued

|                           |             |         | i                          |                         |         |                          |
|---------------------------|-------------|---------|----------------------------|-------------------------|---------|--------------------------|
| or the second second      |             |         | Che                        | Chemical composition, % | tion, % |                          |
| Orage of steel of alloy   | Carbon      | Silicon | Manganese   Chromtum       | Chromtum                | Nickel  | Other elements           |
| AV 13                     | 0.35.0.44   |         | 7<br>0.6                   | 19.0-14.0               | 1       | . 1                      |
| 47.13<br>37.13H7C9 (3M79) | 0.55-0.34   |         | × 0.7                      | 12.0-14.0               |         | į                        |
| 1X13H3                    | 0.08-0.15   | €0.6    | 9.0                        | 12.5-14.5               | 2.2-3.0 | 1                        |
| 1X17H2                    | 0.11-0.17   |         | 8.0√                       | 16.0-18.0               |         | {                        |
| 9X 18 (ЭИ229)             | 0.1-6.0     |         | <0.7                       | 17.0-19.0               | 1       | 1                        |
|                           |             | Marten  | Martensito-ferritic Steels | : Steels                |         |                          |
| X6CIO (3M428)             | ≤ 0.15      |         | < 0.5                      | 5.5-7.0                 | -       | Al 0.7-1.1               |
| 1X11M¢                    | 0.12-0.19   | ≤0.5    | €0.7                       | 10.0-11.5               |         | Mo 0.6-0.8               |
| WHASIX!                   | 0 19-0 18   | 40      | 0.5-0.9                    | 0.5-0.9 11.0-13.0       | 0 4-0 8 | V 0.25-0.4<br>W 0.7-1.1  |
| (2007) ±1.11071V1         |             |         | )                          |                         |         | Mo 0.5-0.7               |
|                           |             |         | ,                          | (                       |         | $V_{0.15-0.3}$           |
| 2Х12ВМБФР (ЭИ993)         | 0.15 - 0.22 | ₹0.5    | 11.0-13.0                  | 11.0-13.0 11.0-13.0     | Ī       | W 0.4-0.7                |
|                           |             |         |                            |                         |         | M6 0.4-0.6<br>N5 0.2-0.4 |
|                           |             | _       | _                          |                         | _       | V 0.15-0.3               |
| (952MG) WMGBGIAI          | 0 1-0 17    | \<br>\  | α<br>                      | 0 5 0 9 11 0 13 0       |         | B 0.003                  |
| (October (October)        |             | <br>//  | 0.0.0.0                    | 0.01                    |         | Mo 0.6-0.9               |
|                           |             |         |                            |                         | -       | V 0.15-0.3               |
| 1X13                      | 0.09-0.15   | 9.0≽    | ≤0.6   ≤0.6  12.0-14.0     | 12.0-14.0               |         | 1                        |
|                           |             | F       | Ferritic Steels            | Š                       |         |                          |
| 1X 12CIO (3M404)          | [0.07-0.12] | _       |                            | <0.7   12.0-14.0        | 1       | Ai 1.0-1.8               |
| 0X13 (3M496)              | 80.0≽       | 9.0≯    | 9.0≽                       | 11.0-13.0               | 1       | 1                        |

|                                    |                                                                                             |                                 |                                                                                                                                      |                                                            |                    | Table 30 continued       |
|------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|--------------------------|
| Grade of steel or allow            |                                                                                             |                                 | Che                                                                                                                                  | Chemical composition,                                      | tion, %            |                          |
|                                    | Carbon                                                                                      | Silicon                         | Manganese   Chromium                                                                                                                 | Chromium                                                   | Nickel             | Other elements           |
| X14 (3M241)                        | <0.15                                                                                       | €0.7                            | ≥0.7                                                                                                                                 | 13.0-15.0                                                  | !                  |                          |
| X17                                | ≤0.12                                                                                       | 8.0∜                            | €0.7                                                                                                                                 | 16.0-18.0                                                  | -                  | 1                        |
| 0X17T (ЭИ645)                      | 80.0 <b>8</b>                                                                               | ₩.                              | €0.7                                                                                                                                 | 16.0-18.0                                                  | 1                  | Ti 5.C-0.80              |
| X 18CFO (3M484)                    | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 1.0-1.5                         | V 0.5                                                                                                                                | 17.0-20.0                                                  | j                  | AI 0.7-1.2               |
| X28 (ЭИ349)<br>X28 (ЭИ349)         |                                                                                             | 0.0<br>V/ V/                    | % \                                                                                                                                  | $\begin{vmatrix} 24.0 - 27.0 \\ 27.0 - 30.0 \end{vmatrix}$ | 1!                 | Ti 5.C-0.80<br>—         |
|                                    |                                                                                             | Austen                          | Austeno-martensitic Steels                                                                                                           | c Steels                                                   |                    |                          |
| 2:X13H4F9 (ЭИ100)                  | 10.15-0.3                                                                                   | 8.0.≽                           | 1 8.0-10.0                                                                                                                           | 8.0-10.0112.0-14.01                                        | 3.7-4.7            | I                        |
| X15H9IO (ЭИ904)                    | 0.03                                                                                        | 8.0.8                           | ₹0.8                                                                                                                                 | 14.0-16.0                                                  |                    | Al 0.7-1.3               |
| X17H7IO (ЭИ973)<br>2X17H2          | ≤ 0.09   0.22-0.28                                                                          | 8.0<br>V V<br>8.0<br>8.0<br>8.0 | 8 8<br>V V                                                                                                                           | 16.0-18.0<br>16.0-18.0                                     | 6.5-7.5            | Al 0.8-1.3               |
|                                    | -                                                                                           | Auste                           | Austeno-ferritic                                                                                                                     | Steels                                                     | •                  |                          |
| 0X20H14C2 (3M732)                  | ≥0.08                                                                                       | 2.0-3.0                         |                                                                                                                                      | 119.0-22.0                                                 | 12.0-15.0          | l                        |
| X20H14C2 (ЭИ211)                   | V 0.2                                                                                       | 2.0-3.0                         |                                                                                                                                      | 19.0-22.0                                                  | 12.0-15.0          | ;<br>;<br>i              |
| 0X21H51 (ЭИ53)<br>0X21H6M2T (ЭИ54) | ¥ V<br>0.088                                                                                | × 8.<br>V V                     | 8.0<br>√√<br>√√<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>1.0<br>8.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1 | 20.0-22.0                                                  | 4.8-5.8<br>5.5-6.5 | Ti 0.3-0.6<br>Ti 0.2-0.4 |
| Wolley Table                       | 000                                                                                         | ه<br>د<br>ا                     | 0                                                                                                                                    |                                                            | , n                | T: /C 0 001.8            |
| X23H13 (9H811)                     | 0.03-0.14<br>  ≪ 0.2                                                                        | 0.0<br> <br> <br> <br> <br>     | × 2.0<br> <br>  × 2.0                                                                                                                | 22.0-25.0                                                  | 12.0-15.0          | 11 (C-0.0Z)3-0.80<br>—   |
| . Х28АН (ЭИ657)                    | ≤ 0.15                                                                                      | V ≥ 1.0                         | V 1.5                                                                                                                                | 25.0-28.0                                                  | 1.0-1.7            | ļ                        |
|                                    |                                                                                             | Aı                              | Austenitic Steels                                                                                                                    | sels                                                       |                    |                          |
| 4Х12Н8Г8МФБ (ЭИ481)                | 0.34-0.4                                                                                    | 0.3-0.8                         | 7.5-9.5                                                                                                                              | 0.3-0.8   7.5-9.5   11.5-13.5                              | 7.0-9.0            | Mo 1.1-1.4               |
|                                    |                                                                                             |                                 |                                                                                                                                      |                                                            |                    | V 1.25-1.55              |
|                                    |                                                                                             |                                 |                                                                                                                                      |                                                            |                    |                          |

Table 30 continued

| Grade of steel or alloy  0X10H20T2  X12H20T3P (ЭИ696)  X12H22T3MP (ЭП33) | Carbon   Carbon   \$< 0.08   \$< 0.1   \$< 0.1   \$< 0.1 | 1 1 1                                 | Chemical composition   Chemical composition   Chromium   ≤ 2.0   10.0-12.5   ≤ 1.0   10.0-12.5   ≤ 0.6   10.0-12.5   1.0-2.0   13.0-15.0 | Chemical composition. %  See   Chromitam   Nickel  O   10.0-12.0   18.0-20.0  O   10.0-12.5   18.0-21.0  O   10.0-12.5   21.0-25.0  O   13.0-15.0   14.0-17.0 | Chromium Nickel   10.0-12.0   18.0-20.0   10.0-12.5   18.0-21.0   10.0-12.5   21.0-25.0   13.0-15.0   14.0-17.0 | Other elements  Ti 1.5-2.5 Al < 1.0 Ti 2.6-3.2 Al < 0.8 B 0.003-0.02 Ti 2.6-3.2 Al < 0.8 Al < 0.8 No 1.0-1.6 B 0.02 |
|--------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 4P)<br>95)<br>(695P)                                                     | 0.07-0.12                                                | \$0.0<br>\$0.0<br>\$0.6               | 1.0-2.0                                                                                                                                  | 13.0-15.0 14.0-17.0<br>13.0-15.0 18.0-20.0<br>13.0-15.0 18.0-20.0                                                                                             | 14.0-17.0<br>18.0-20.0<br>18.0-20.0                                                                             | Nb 0.9-1.3<br>B 0.005<br>W 2.0-2.75<br>Nb 0.9-1.3<br>W 2.0-2.75<br>Nb 0.9-1.3                                       |
| 1X14H18B25P1 (ЭИ726) 0.07-0.12                                           | 0.07-0.12                                                | 9.0≽                                  | 1.0-2.0                                                                                                                                  | 13.0-15.0 18.0-20.0                                                                                                                                           | 18.0-20.0                                                                                                       | Ce ≤ 0.02<br>W 2.0-2.75<br>Nb 0.9-1.3<br>B ≤ 0.025<br>Ce ≤ 0.02                                                     |
| X14F14H<br>X14F14H3T (ЭИ711)<br>4X14H14B2M (ЭИ69)                        | ≤ 0.12<br>≤ 0.1<br>0.4.0.5                               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 13.0-15.0<br>13.0-15.0<br>0.7                                                                                                            | 13.0-15.0 13.0-15.0 13.0-15.0 13.0-15.0 13.0-15.0 0.7 13.0-15.0                                                                                               | 1.0-1.5<br>2.5-3.5<br>13.0-15.0                                                                                 | Ti (C-0.02).5-0.60<br>W 2.0-2.75<br>Mo 0.25-0.4                                                                     |

Table 30 continued

|                                       |                       | -                  | Cher                           | Chemical composition, %                 | ition, %                                 |                                        |
|---------------------------------------|-----------------------|--------------------|--------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|
| Grade of steel of alloy               | Сагроп                | Silicon            | Silicon   Manganese   Chromium | Chromium                                | Nickel                                   | Other elements                         |
| 4X15H7Γ7Φ2MC (ЭИ388)                  | 0.38-0.47             | 0.9-1.4            | 6.0-8.0                        | 14.0-16.0                               | 6.0-8.0                                  | Mo 0.65-0.95                           |
| 0X14H28B3T3IOP (ЭИ786)                | 80.0≥                 | 9.0≥               | 9.0≥                           | 13.0-15.0                               | 13.0-15.0 26.0-29.0                      | Ti 2.4-3.2                             |
|                                       |                       |                    |                                | -                                       |                                          | Al 0.5-1.2<br>W 2.8-3.5<br>B < 0.09    |
| 1X16H13M2B (ЭИ680)                    | 0.06-0.12             | 8.0≯               | ≤1.0                           | 15.0-17.0                               | 15.0-17.0 12.5-14.5                      | Mo 2.0-2.5                             |
| X16H15M35 (ЭИ847)                     | 60.0                  | 8.0.₹              | 9.0≥                           | 15.0-17.0                               | 15.0-17.0 14.0-16.0                      | Mo 2.5-3.0                             |
| X17F9AH4 (ЭИ878)<br>X17H13M2T (ЭИ448) | ≤0.12<br>≤0.1         | ∧ № 0.8<br>№ 0.8   | 8.0-10.5                       | 8.0-10.5 16.0-18.0<br>1.0-2.0 16.0-18.0 | 16.0-18.0 3.5-4.5<br>16.0-18.0 12.0-14.0 | Nitrogen 0.15-0.25                     |
| X 17H13M3T (ЭИ432)                    | ≤0.1                  | 8.0.8              | 1.0-2.0                        | 16.0-18.0                               | 16.0-18.0 12.0-14.0                      | Mo 1.8-2.5<br>Ti 0.3-0.6<br>Mo 2.6.4   |
| 0X17H16M3T (ЭИ580)                    | ≥0.08                 | 8.0≯               | 1.0-2.0                        | 16.0-18.0 15.0-17.0                     | 15.0-17.0                                | Mo 9.0-4.0                             |
| X17AF14 (ЭП213)                       | ≤0.15                 | <b>6</b> 0.8       | 13.5- 15.5                     |                                         | 0.6                                      | Nitrogen 0.3-0.4                       |
| 00X18H10 (ЭИ842)<br>0X18H10 (0X18H9)  | V V V                 | 8.0<br>V/V         | 1.0-2.0 $1.0-2.0$              | 17.0-19.0                               | 9.0-11.0                                 | 1 1                                    |
| X18H9 (1X18H9)                        | €0.12                 | 8.0<br>√           | 1.0-2.0                        | 17.0-19.0                               |                                          | 1                                      |
| 2X 18H9<br>X 18H10F (ЭИ453)           | 0.13-0.21             | 8.0<br>V V         | 1.0-2.0                        | 17.0-19.0<br>17.0-19.0                  | 9.0-10.0                                 | Se or Te 0.18-0.35                     |
| 0X 18H10T (3M914)                     | <b>8</b> 0.0 <b>8</b> | 8.0<br>√           | 1.0-2.0                        | 17.0-19.0                               |                                          | Ti ≤ 0.6                               |
| X18H10T (1X18H9T)<br>X18H9T (1X18H9T) | V 0.12<br>V 0.12      | & 8.<br>0 0<br>V V | 1.0-2.0                        | 17.0-19.0<br>17.0-19.0                  | 8.0-9.5                                  | Ti (C-0.02)·5-0.7<br>Ti (C-0.02)·5-0.7 |
| 0X18H11 (3M684)                       | ≥0.06                 | ₹0.8               | 1.0-2.0                        | 17.0-19.0                               |                                          |                                        |

Table 30 continued

Tadle 30 continued

Table 30 continued

|                         | Other elements          | Ti 1.8-2.3<br>Al 1.7-2.3<br>W 5.0-7.0<br>Mo 2.0-4.0<br>V 0.1-0.5<br>B € 0.02 | Fe \$\left\{ \tilde{\cappa}\} \cdot 0.02 \\ \tilde{\cappa}\} \tilde{\cappa}\] 1.8-2.3 \\ \tilde{\cappa}\} All 0.5-1.0 \\ \tilde{\cappa}\} 1.0-1 5. | Fe 63.0<br>Ti 1.9-2.8<br>Al 1.0-1.7<br>W 9 0.3 5 | Mo 4.0-6.0<br>Nb 0.5-1.3<br>B ≤ 0.01<br>Ce ≤ 0.02<br>Fe ≤ 5.0<br>Ti 2.2-2.8<br>W 4.0-5.0<br>Mo 4.0-5.0<br>B ≤ 0.01<br>Ce ≤ 0.01<br>Al 1.0-1.5<br>Fe ≤ 4.0 |
|-------------------------|-------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ition, %                | Nickel                  | The balance                                                                  | Ditto                                                                                                                                              | Ditto                                            | Ditto                                                                                                                                                     |
| Chemical composition, % | Chromium                | 13.0-16.0 The bal-<br>ance                                                   | 15.0-18.0                                                                                                                                          | 16.0-19.0                                        | 17.0-20.0                                                                                                                                                 |
| Cher                    | Мапдапезе               | ≪0.5                                                                         | ≥ 1.0                                                                                                                                              | €0.5                                             | €0.5                                                                                                                                                      |
|                         | Silicon                 | 9.0≽                                                                         | ≥0.8                                                                                                                                               | €0.6                                             | ≥0.6                                                                                                                                                      |
|                         | Carbon                  | ≤0.12                                                                        | ≈0.08                                                                                                                                              | ≤0.12                                            | <b>№</b> 0.08                                                                                                                                             |
|                         | Grade of steel or alloy | хнтовмтю (эмыт)                                                              | XH80TBЮ (ЭИ607)                                                                                                                                    | хн70мвтюв (эи598)                                | XH67BMTiO (ЭИ445P)                                                                                                                                        |

Table 30 continued

|                         |        |              | Cher      | Chemical composition. % | tion, %          |                                                                                                   |
|-------------------------|--------|--------------|-----------|-------------------------|------------------|---------------------------------------------------------------------------------------------------|
| Grade of steel or alloy | Carbon | Silicon      | Manganese | Chromium                | Nickel           | Other elements                                                                                    |
| хн75мБТЮ (ЭИ602)        | <0.1   | €0.8         | ≥ 0.4     | 19.0-22.0               | The baf-<br>ance | Ti 0.35-0.75<br>Al 0.35-0.75<br>Mo 1.8-2.3<br>Nb 0.9-1.3                                          |
| XH78T (ЭИ435)           | ≤0.12  | ₹0.8         | <0.7      | 19.0-22.0               | Difto            | Fe $\leq 8.0$<br>Ti 0.15-0.35<br>Al $\leq 0.15$                                                   |
| ХН77ТЮ (ЭИ437А)         | ≥0.06  | €0.6         | ≤0.4      | 19.0-22.0               | Ditto            | Fe = 0.0 Ti 2.3-2.7 Al 0.55-0.95                                                                  |
| ХН77ТЮР (ЭИІЗ7Б)        | 90.0≶  | ≥0.6         | <0.4      | 19.0-22.0               | Ditto            | Fe $\leqslant 4.0$<br>Ce $\leqslant 0.01$<br>Ti $2.3.2.7$<br>Al $0.55-0.95$<br>Fe $\leqslant 4.0$ |
| хн6ов (ЭИ868)           | V 0.1  | 8.0≥         | <0.5      | 23.5-26.5               | Ditto            | D ≤ 0.01<br>Cc ≤ 0.01<br>Ti 0.3-0.7<br>Al ≤ 0.5<br>W 13.0-16.0                                    |
| ХН70Ю (ЭИ652)           | €0.1   | <b>6.0</b> ≥ | <0.3      | 26.0-29.0               | Difto            | Fe < 4.0<br>Al 2.6-3.5<br>Fe < 1.0<br>Ba < 0.1                                                    |
| XH70 (ЭИ442)            | <0.07  | ₹0.8         | ≥0.5      | 28.0-31.0               | Ditto            | Ce $\leq 0.03$<br>A1 $\leq 0.15$<br>Fe $\leq 5.0$                                                 |

Table 31

Hardness Numbers of Stainless Steels Supplied in Annealed State

| 0X13<br>1X13<br>2X13<br>3X13<br>4X13<br>417 | Brinell hard Impression diameter, mm 4.5-5.5 4 4.5-5.3 4.2-5.2 4.2-5.0 4.3-5.0 | In Hardness number  Hardness number  116-179 121-187 126-197 131-207 143-229 143-229 |
|---------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 12                                          | 3.6 min                                                                        | 225 max<br>286 max                                                                   |

Table 32

Chemical Composition of Alloys Used for the Manufacture of Electric Heating Resistors

|           |        |              |         | Ö         | Chemical composition, % | ition, %  |          |             |
|-----------|--------|--------------|---------|-----------|-------------------------|-----------|----------|-------------|
| Grade     | Carbon | arbon Manga- | Silicon | Chromium  | Nickel                  | Aluminium | Titanlum | Iron        |
|           |        | тахітип      | tt ED   |           |                         |           |          |             |
| X 13 104  | 0.15   | 0.4          | 1.0     | 16.0-19.0 | 9.0≫                    |           | ı        | The balance |
| 0X 23IO5  | 90.0   | 0.5          | 0.7     | 21.5-24.5 | Ditto                   |           | 1        | Ditto       |
| 0X23lO5A  | 0.02   | 0.3          | 9.0     | 21.5-23.5 | Ditto                   |           | 1        | Ditto       |
| 0X27FO5A  | 0.05   | 0.3          | 9.0     | 26.0-28.0 | Ditto                   |           | 1        | Ditto       |
| X 15H60   | 0.15   | 0.7          | 0.4-1.3 | 15.0-18.0 | 55.0-61.0               | <0.2      |          | Ditto       |
| X 20 H80  | 0.15   | 0.7          | 0.4-1.3 | 20.0-23.0 | 75.0-78.0               |           | ı        | 0:1         |
| X 20H80T3 | 0.08   | 0.5          | 1.0 тах | 19.0-23.0 | The balance             |           | 2.0-2.9  | <2.5        |

## Chemical Composition and Hardness Numbers of Carbon Tool Steels

|                                                   | Chem                                                                                                 | ical composi                                                                            | tion, %                               | Brinell hard                            | ness number                                          |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------|
| Grade                                             | Carbon                                                                                               | Manganese                                                                               | Other elements                        | Impression diameter, mm, minimum        | Hardness<br>number,<br>maximum                       |
| У7<br>У8<br>У8Г<br>У9<br>У10<br>У11<br>У12<br>У13 | 0.65-0.74<br>0.75-0.84<br>0.80-0.90<br>0.85-0.94<br>0.95-1.04<br>1.05-1.14<br>1.15-1.24<br>1.25-1.35 | 0.20-0.40<br>0.20-0.40<br>0.35-0.60<br>0.15-0.35<br>0.15-0.35<br>0.15-0.35<br>0.15-0.35 | 0.15-0.35 Sulphur 0.03 max Phosphorus | 4.4<br>4.4<br>4.35<br>4.3<br>4.2<br>4.2 | 187<br>187<br>187<br>192<br>197<br>207<br>207<br>217 |

Note. High-quality steel differs from quality steel, the amount of carbon being equal for both, by lower sulphur and phosphorus contents, 0.02% and 0.03 as a maximum, respectively, and by a slightly different content of manganese and silicon. High-quality steel is designated V7A, V8A, VBFA, etc.

Table 34

Chemical Composition and Hardness Numbers of Alloy Tool Steels

|            |                        | Chemical c         | omposition | %                 |                            | hardness<br>n ber  |
|------------|------------------------|--------------------|------------|-------------------|----------------------------|--------------------|
| Grade      | Carbon                 | Chromium           | Tungsten   | Other<br>elements | Impres-<br>sion dia,<br>mm | Hardness<br>number |
| 7X3<br>8X3 | 0.60-0.75<br>0.76-0.85 | 3.2-3.8<br>3.2-3.8 |            | <u>-</u>          |                            | 229-187<br>255-207 |

| <del></del>                                   |                                                  | Chemical o                                   | composition      | 1. %                  |                                                                | hardness<br>iber   |
|-----------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------|-----------------------|----------------------------------------------------------------|--------------------|
| Grade                                         | Carbon                                           | Chromium                                     | Tungsten         | Other elements        | Impression dia,                                                | Hardness<br>number |
| 65 X<br>9 X<br>X<br>X 09<br>X 05<br>X 12<br>Φ | 0.80-0.95<br>0.95-1.10<br>0.95-1.10<br>1.25-1.40 | 1.3-1.6<br>0.75-1.05<br>0.4-0.6<br>11.5-13.0 | _<br>_<br>_<br>_ |                       | 4.1-4.5<br>4.0-4.4<br>4.0-4.5<br>3.9-4.3<br>3.7-4.1<br>4.1-4.5 | 229-187<br>229-179 |
| χr                                            | 1.3-1.5                                          | 1.3-1.6                                      | _                | Manganese             |                                                                |                    |
| 4XC                                           | 0.35-0.45                                        | 1.3-1.6                                      | _                | 0.45-0.70<br>Silicon  | 3.9-4.3                                                        | 241-197            |
| 6XC                                           | 0.6-0.7                                          | 0.95-1.25                                    |                  | 1.2-1.6<br>Silicon    | 4.2-4.6                                                        | 207-170            |
|                                               | 1                                                |                                              | _                | 0.6-1.0               | 4.0-4.4                                                        | 229-187            |
| XLC                                           | 0.95-1.1                                         | 1.4-1.8                                      | _                | Silicon<br>0.5-1.0    | 3.8-4.2                                                        | 255-207            |
|                                               | !                                                | ,                                            |                  | Manganese<br>0.8-1.2  |                                                                |                    |
| 9XC                                           | 0.85-0.95                                        | 0.95-1.25                                    | -                | Silicon               |                                                                |                    |
| 8ХФ                                           | 0.75-0.85                                        | 0.5-0.8                                      | _                | 1.2-1.6<br>Vanadium   | 3.9-4.3                                                        | 241-197            |
| 85ХФ                                          | 0.80-0.90                                        | 0 45-0 70                                    |                  | 0.15-0.30<br>Vanadium | 4.2-4.6                                                        | 207-170            |
|                                               |                                                  | Í                                            | _                | 0.15-0.30             | 4.2-4.6                                                        | 207-170            |
| 4XB2C                                         | 0.35-0.44                                        | 1.0-1.3                                      | 2.0-2.5          | Silicon<br>0.6-0.9    | 4.1-4.5                                                        | 217-179            |
| 5XB2C                                         | 0.45-0.54                                        | 1.0-1.3                                      | 2.0-2.5          | Silicon               |                                                                |                    |
| 6XB2C                                         | 0.55-0.65                                        | 1.0-1.3                                      | 2.2-2.7          | 0.5-0.8<br>Silicon    | 3.8-4.2                                                        |                    |
| 5ХВГ                                          | 0.55-0.70                                        | 0.5-0.8                                      | 0.5-0.8          | 0.5-0.8<br>Manganese  | 3.6-4.0                                                        | 285-229            |
| 9ХВГ                                          | 0.85-0.95                                        | 0.5-0.8                                      | 0.5-0.8          | 0.9-1.2               | 4.1-4.5                                                        | 217-179            |
|                                               | ]                                                |                                              |                  | Manganese<br>0,9-1.2  | 3.9-4.3                                                        | 241-197            |
| ХВГ                                           | 0.90-1.05                                        | 0.9-1.2                                      | 1.2-1.6          | Manganese 0.8-1.1     | 3.8-4.2                                                        | 255-207            |
|                                               |                                                  |                                              |                  |                       |                                                                |                    |

Table 34 continued

| Grade                 |                                     | Chemical c           | omposition                    | , %                                                                   |                            | hardness<br>ber    |
|-----------------------|-------------------------------------|----------------------|-------------------------------|-----------------------------------------------------------------------|----------------------------|--------------------|
| Grade                 | Carbon                              | Chromium             | Tungsten                      | Other<br>elements                                                     | Impres-<br>sion dia,<br>mm | Hardness<br>number |
| 3X2B8<br>4X8B2<br>XB5 | 0.30-0.40<br>0.35-0.45<br>1.25-1.50 | 7.0-9.0              | 7.5-9.0<br>2.0-3.0<br>4.5-5.5 | —<br>Vanadium                                                         | 3.8-4.2                    | 255-207<br>255-207 |
| X12M                  | 1.45-1.70                           | 11.0-12.5            | _                             | 0.15-0.30<br>Molybdenum<br>0.4-0.6                                    |                            | 285-229<br>255-207 |
| 5XHM                  | 0.5-0.6                             | 0.5-0.8              | -                             | Vanadium<br>0.15-0.30<br>Molybdenum<br>0.15-0.30<br>Nickel<br>1.4-1.8 | 3.9-4.3                    | 241-197            |
| 5ХГМ                  | 0.5-0.6                             | 0.6-0.9              | _                             | Molybdenum<br>0.15-0.30<br>Manganese                                  | 3.9-4.3                    | 241-197            |
| 5XHT                  | 0.5-0.6                             | 0.6-0.9              | _                             | 1.2-1.6<br>Nickel<br>1.4-1.8<br>Titanium                              | 3.95-4.35                  | 235-192            |
| 5XHC                  | 0.5-0.6                             | 1.3-1.6              | _                             | 0.1-0.2<br>Nickel<br>0.8-1.3<br>Silicon                               | 3.8-4.2                    | 255-207            |
| 5XHCB                 | 0.5-0.6                             | 1.3-1.6              | 0.4-0.6                       | 0.6-0.9<br>Nickel<br>0.8-1.3<br>Silicon                               | 3.8-4.2                    | 255-207            |
| 5XHB                  | 0.5-0.6                             | 0.5-0.8              | 0.6-1.0                       | 0.6-0.9<br>Nickel                                                     | 2040                       | 044 40=            |
| 45 X H T              | 0.43-0.5                            | 1.2-1.4              | _                             | 1.4-1.8<br>Nickel                                                     |                            | 241-197            |
| 45ХНВ<br>Х12Ф1        | 0.43-0.5<br>1.45-1.70               | 0.5-0.8<br>11.0-12.5 | 0.6-1.0<br>—                  | 1.5-2.0<br>Titanium<br>0.03-0.12<br>Nickel<br>1.5-2.0<br>Vanadium     | 3.9 min                    |                    |
|                       |                                     |                      |                               | 0.7-0.9                                                               | 3.8-4.2                    | 255-207            |

Chemical Composition and Hardness Numbers of High-speed Steels

| Grade         |           | 5        | Chemical composition, % | sition, % |                 |          | Hardness number In<br>annealed condition | number In<br>condition |
|---------------|-----------|----------|-------------------------|-----------|-----------------|----------|------------------------------------------|------------------------|
|               | Carbon    | Chromium | Tungsten                | Vanadium  | Molybde-<br>num | Cobalt   | Impression<br>diameter,                  | Hardness<br>number, HB |
|               |           |          |                         |           |                 |          |                                          |                        |
| Ь9            | 0.85-0.95 | 3.8-4.4  | 8.5-10.0                | 2.0-2.6   | ₹0.3            | 1        | 3.8-4.2                                  | 255-207                |
| P9 <b>Ф</b> 2 | 1.4-1.5   | 3.8-4.4  | 9.01-0.5                | 4.3-5.1   | ₹0.4            | 1        | 3.55                                     | ≥ 293                  |
| P10K5Φ5       | 1.45-1.55 | 4.0-4.6  | 10.0-11.5               | 4.3-5.1   | €0.3            | 5.0-6.0  | 3.55                                     | ₹ 293                  |
| P9K10         | 0.9-1.0   | 3.8-4.4  | 9.01-0.6                | 2.0-2.6   | ₹0.3            | 9.5-10.5 | 3.55                                     | < 293                  |
| P14Φ4         | 1.2-1.3   | 4.0-4.6  | 13.0-14.5               | 3.8-4.1   | ≤0.4            | 1        | 1                                        |                        |
| P18           | 0.7-0.8   | 3.8-4.4  | 17.5-19.0               | 1.0-1.4   | €0.3            | 1        | 3.8-4.2                                  | 255-207                |
| P18Ф2         | 0.85-0.95 | 3.8-4.4  | 17.5-19.0               | 1.8-2.4   | ₹0.5            | l        | 3.55                                     | ≤ 293                  |
| P18K5Ф2       | 0.85-0.95 | 3.8-4.4  | 17.5-19.0               | 1.8-2.4   | ₹0.5            | 5.0-6.0  | 3.55                                     | ≥ 295                  |
| P18K5         | 0.65-0.77 | 3.6-4.5  | 17.0-18.5               | 1.0-1.4   | 0.3-0.6         | 4.5-5.5  | 3.7-4.1                                  | 269-217                |
| P18K10        | 0.65-0.77 | 3.6-4.5  | 17.0-18.5               | 1.0-1.4   | 0.3-0.6         | 9.5-10.5 | 3.7-4.1                                  | 269-217                |
|               |           |          |                         | _         |                 |          |                                          |                        |
|               |           |          |                         |           |                 |          |                                          |                        |
|               | _         | _        | _                       |           |                 |          |                                          |                        |

Critical Points of Steels upon Heating

|            | point, °C       | Ac <sub>3</sub> | 820           | 810  | 9//           | 820  | 820   | 840       | 838  | 820  | 775  | 800   | 850   | 830   | 830   | 780      | 880  | 830  | 006   | 098          | 820    | 840   | 830     | 820   | 800 | 800   | 780   |   |
|------------|-----------------|-----------------|---------------|------|---------------|------|-------|-----------|------|------|------|-------|-------|-------|-------|----------|------|------|-------|--------------|--------|-------|---------|-------|-----|-------|-------|---|
|            | Critical point. | Acı             | 735           | 735  | 715           | 750  | 763   | . 750     | 165  | 740  | 750  | 720   | 730   | 745   | 740   | <u> </u> | 750  | 750  | 710   | 750          | 750    | 750   | 750     | 720   | 710 | 700   | 700   |   |
| caring     |                 | OI 4 UE         | 30XM          | 35XM | 35X2MA        | 33XC | 37XC  | 40XC      | 20XF | 40XF | 50XF | 35XF2 | 18XLT | 40XLT | 18XFM | 38XFM    | 27CF | 35CF | 27CLT | 20XFC        | 25X LC | 30XIC | 35X FC  | 25H   | 30H | 13H5A | 21H5A | _ |
| n nodn ei  | ooint, °C       | Ac,             | 794           | 780  | 992           | 150  | 1 120 | Stools    |      | 820  | 840  | 815   | 815   | 815   | 800   | 77.1     | 771  | 840  | 820   | 820          | 840    | 800   | 790     | 930   | 815 | 860   | 840   | _ |
| 2316 10 61 | Critical point, | Acı             | 713           | 710  | 713           | 710  |       | tructural |      | 735  | 740  | 740   | 740   | 740   | 740   | 721      | 721  | 775  | 750   | 220          | 200    | 750   | 750     | 730   | 740 | 740   | 735   |   |
|            | Grade           | 200             | 35 <u>Г</u> 2 | 40F2 | 45 <u>F</u> 2 | 5012 | J153  | Allon S.  |      | 15X  | 20X  | 30X   | 35X   | 38XA  | 40X   | 45X      | 20X  | 55C2 | 60C2  | 15XФ         | 20XФ   | 40XΦA | 50X Φ A | 15M   | 30M | 15XMA | 20X M | _ |
|            | oint, °C        | Aca             | Steels        | 2    | 874           | 874  | 863   | 854       | 040  | 813  | 810  | 800   | 780   | 770   | 774   | 992      | 752  | 743  | 863   | 854          | 820    | 790   |         | 765   | 750 | . 830 | 802   | - |
|            | Critical point, | Acı             | Structural    |      | 732           | 732  | 735   | 735       | 00/  | 732  | 730  | 730   | 725   | 725   | 727   | 727      | 727  | 730  | 735   | 720          | 720    | 720   | 720     | 726   | 724 | 720   | 715   | _ |
|            | Grade           |                 | Carbon S      |      | 80            | Q.   | 15    | 88        | 25   | 2    | 32   | 40    | 45    | 20    | 25    | 09       | 65   | 0/   | 151   | .50 <u>r</u> | 301    | 40ľ   | . 20I   | . 109 |     | 10Γ2  | 3012  |   |

Table 36 continued

| 1 0        | Critical           | Critical point, °C |         | Critical point, °C | oint, °C |                | Critical          | Critical point, °C |
|------------|--------------------|--------------------|---------|--------------------|----------|----------------|-------------------|--------------------|
| orane      | Acı                | Aca                | Grade   | Ac,                | Acs      | Grade          | Acı               | Ac,                |
| ļ.         |                    |                    |         |                    |          |                |                   |                    |
| 30H3A      | 200                | 780                | High.   | High-speed Steels  |          |                |                   | •                  |
| 15HM       | 725                | 800                |         |                    |          |                | Alloy Tool Steels | teels              |
| 40HM       | 715                | 276                |         | 810-840            | 1        | -              |                   |                    |
| 20XH       | 715                | 810                | P18     | 820-840            | -        | X05            | 740               | !                  |
| 40XH       | 715                | 780                |         | _                  |          | ×              | 750               | 1                  |
| 50XH       | 715                | 760                | Ball-h  | Rall-hearing Stop  | _        | X6             | 750               | ]                  |
| 12X H2     | 720                | 840                |         | 9                  | . ;      | X.             | 750               | !                  |
| 12X H3     | 715                | 820                | 9 7 11  | 730-740            |          | 7X3            | 770               | i                  |
| 20X H3A    | 710                | 262                | WX9.    | 730-755            | 890 Ac.  | XĽ             | 750               | [                  |
| 30XH3      | 710                | 780                | CIVII   | 730-765            |          | 9XC            | 785               | !                  |
| 37XH3A     | 710                | 760                | 01.8.10 | 740-760            |          | Bl<br>Be       | 750               | 1                  |
| 12X2H4     | 715                | 820                | Č       |                    |          | 82<br>74 74    | 765               | 1                  |
| 35XIOA     | 780                | 006                | Stati   | Stainless Steels   |          | 9XB1           | 750               | 1                  |
| 38X MIOA   | 780                | 006                | 1X13    | 730                | 850      | XBI<br>YBI     | 755               | 1                  |
| 35X M • A  | 740                | 840                | 2X13    | 820                | 920      | ABO            | 00/               | ı                  |
| 13XHBA     | 710                | 820                | 3X13    | 008                |          | 3X 2B8         | 088               | 1                  |
| 18XHBA     | 710                | 800                | 4X13    | 820                | 1200     | 4 X 8 B Z      | 820               | 18                 |
| 33XH3MA    | 720                | 200                | X17     | 088                |          | 4AB2C          | 2 i               | 840                |
| 18X HWA    | 710                | 800                | 9X18    | 830-865            | 1        | 57.57<br>57.53 | 7/2               | 820                |
| 35XHM      | 730                | 810                | 4X9C2   | 006                | 026      | MHYC           | 067               | 2 i                |
| 40XHMA     | 710                | 790                | 4X10C2M | 850                | 920      | 9X1.M<br>4XC   | 770               | 860                |
| WALLI VOL  | 27                 | 070                |         |                    |          | X 12           | 810               | }                  |
| Frag.      | Fros Cutting Ctool | ,                  | Carbon  | Carbon Tool Steels | st:      | X12M           | 810               | 1                  |
| 3-30-7     | on Burne           | 1                  | 77      | 064                | 000      | X 09           | 750               | !                  |
| A12<br>A20 | 735                | 866                | y8-y13  | 730                | ē 1      | Ф              | 735               | 1                  |
| 271        | 2                  | OF O               | _       | -                  | =        |                | _                 | _                  |

|                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steel grades                                                          | Uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | Carbon Structural Steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10, 15, 20, 25, 30, Ст. 1,<br>Ст. 2, Ст. 3, Ст. 4,<br>Ст. 5, 15Г, 20Г | Parts of machines, non-heat-treated, working under light loads, such as pins, screws, nuts, studs, flanges, couplings, rollers, caps, etc. Parts of machines requiring high surface hardness and subjected to carburising: gears, spindles, arbors, pivots, shafts, sliding blocks, etc. Measuring tools: carburised horse-                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       | shoe gauges and templets. Steels Cr. 30 and Cr. 5 are used to manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35, 40, 45, 50, Ct. 6, 30Γ. 40Γ. 50Γ, 30Γ2, 40Γ2, 45Γ2, 50Γ2          | carburised simple-shaped parts  Parts of machines working under medium loads. These steels are used after normalising, as well as after a special heat-treatment process aimed at improving their machinability (quenching and high-temperature tempering): screw fastenings, tie bars, levers, spindles, gears, shafts, supports, disks, connecting rods, couplings, rods, etc., pliers, hand vice, screw-drivers, spanners, jaws for lathe chucks, track tools. Steels with increased manganese content possess higher hardenability and following heat treatment, are harder and tougher than carbon steels with similar carbon content. This must be taken into account when choosing |
| 55, 60, 65, 70, C <sub>T</sub> . 7, 60Γ, 65Γ, 70Γ                     | steels Collets, coil and plate springs, spring washers, expanding rings, vehicle springs, construction and harness-mak- ing hand tools, Manganese steels are best as far as springiness is concerned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | Alloy Structural Steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15X, 20X, 20X3, 15XФ,<br>20XФ, 15XГ, 20XГ,<br>18XГТ, 18XГМ, 13Н2А     | Carburised extra-strength parts of ma-<br>chines working at high speeds and under<br>heavy loads: gears, shafts, arbors, worms,<br>spindles, plungers, pushers, cams, piston<br>pins, pivots, crosspieces of agricultural<br>machinery, etc. Slim and intricate-<br>shaped carburised measuring tools                                                                                                                                                                                                                                                                                                                                                                                     |

Steel grades

Uses

15XH, 20XH, 12XM, 15XM, 20XM, 12XH2, 12XH3, 12X2H4-12X2H3MA, 13H5A, 13XHBA, 13XHMA, 18XHBA, 18XHMA, 20XH3A, 20X2H4A, 18X2H4MA

38XA, 40X, 45X, 50X, 40XF, 40XH, 45XH, 40XMФA, 50XМФA, 35XFC, 35XМФA, 30XM, 35XM, 35X2MA, 25X2MФA, 30M, 35XF2, 37XH3A, 40XHMA

#### **45Χ Η ΜΦΑ**

34X M, 34X H1M, 34X H2M, 34X H3M, 34X2H3M, 34X H3MФ, 35X MA, 33X H3MA

30X, 35X

33XC, 37XC, 40XC

27CF, 35CF

Large heavily loaded parts working at high speeds and subject to impacts. Following carburising and quenching they acquire a wear-resistant case and a tough and resilient core: gears, shafts, worm-shafts, jaw clutches, piston pins, connecting rods, parts of vibroshears, spindles of automatic lathes, etc. The latter five grades can also be used after heat-treatment

Heavy loaded heat-treated parts working under increased bending loads and low speeds, as well as cyanided parts and those subject to quenching and low-temperature tempering, working at high speeds and under heavy non-impact loads: gears, shafts, arbors, spindles, couplings, water-pump rotors, critical fastenings. The more the steel is alloyed, the more it is suitable for the manufacture of large critical machine parts

The heaviest loaded critical parts: gears, spindles, shafts, clutch pawls for engaging presses, etc. Fancy-shaped parts which are to be minimum in size

Large heavily loaded parts: spindles, torsion shafts, etc.

Turbine disks and shafts, and turbine rotors

Axles, arbors, rockers, gears, fastenings, autocrane gears, etc.

Extra-strength and tough parts with high torsional resistance: torsion shafts, cranks, axles, chain links, etc.

Axles, shafts, connecting rods, cranks, buckets of excavating machines and other parts requiring high toughness and wear resistance

| Steel grades                      | Uses                                                                                                                                                                                                  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25XFC, 30XFC                      | Arbors, gears, main rods, rods, critical fastenings, critical welded and stamped                                                                                                                      |
| 35X IOA, 38X MIOA                 | parts, excavator buckets Highly corrosion-resistant nitrated parts working in abrasive media: spindles,                                                                                               |
| 25Н, 30Н                          | shafts, rams, plungers, measuring tools Extra-hard critical parts having high resistance to impacts: crankshafts, axles, connecting rods, gears, rotors, etc.                                         |
|                                   | Ball-bearing Steels                                                                                                                                                                                   |
| ШХ6                               | Balls up to 13.5 mm, rollers up to                                                                                                                                                                    |
| шх9                               | Balls from 13.5 to 22.5 mm, rollers from 10 to 15 mm                                                                                                                                                  |
| ШХ15                              | Balls from 22.5 to 50 mm, rollers from 15 to 35 mm                                                                                                                                                    |
| ШХ 15СГ                           | Rings with wall thickness from 20 to 30 mm  Balls above 50 mm, rollers above 35 mm, rings with wall thickness above 20-30 mm  Flat wire used for flexible rollers                                     |
| ШХ10                              | Wear-resistant Steels                                                                                                                                                                                 |
| Γ13                               | Machine parts working under heavy impact loads: track shoes, and other excavator parts, crusher jaws and jaw plates, bucket lips, buckets, tracks of excavating machines, railroad switches and frogs |
|                                   | Magnet Steels                                                                                                                                                                                         |
| EX<br>EX3, E7B6<br>EX5K5, EX9K15M | Rotors of internal-combustion engines<br>Magnets in telephones, electric meters, etc.<br>Powerful magnets for navigational de-<br>vices, etc.                                                         |
|                                   | Electric Sheet Steels                                                                                                                                                                                 |
| 91, 92                            | Armature and pole shoes of d-c electrical machines                                                                                                                                                    |
|                                   |                                                                                                                                                                                                       |

| Steel grades                                                                                                                                                                                                                                                                   | Uses                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Э3, Э <b>4</b>                                                                                                                                                                                                                                                                 | Stators and rotors of a-c electrical ma-<br>chines, magnetic circuits of transform-<br>ers, electromagnets for a-c apparatus<br>(measuring instruments)                                                                          |
|                                                                                                                                                                                                                                                                                | Low-carbon Electric Steels                                                                                                                                                                                                       |
| Э, ЭА, ЭАА                                                                                                                                                                                                                                                                     | Magnetic circuits of relays, screens of audio-frequency apparatus, etc.                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                | High-permeability Alloys                                                                                                                                                                                                         |
| 45H, 50H                                                                                                                                                                                                                                                                       | Cores of power transformers, choke coils, relays and elements of magnetic circuits operating at high inductances, mainly with no or negligible magnetising                                                                       |
| 50НП, 65НП                                                                                                                                                                                                                                                                     | Cores of magnetic amplifiers, choke coils, commutating devices, elements of computers, etc.                                                                                                                                      |
| 38HXC, 42HC, 50HXC<br>79HM, 80HXC, 79HMA                                                                                                                                                                                                                                       | Cores of impulse transformers and audio-<br>and/or high-frequency communications<br>systems, operating with no or negli-<br>gible magnetising<br>Cores of miniature transformers, choke                                          |
| Torini, Corrido, Torrido                                                                                                                                                                                                                                                       | coils, relays as well as magnetic screens                                                                                                                                                                                        |
| 0710 1710 0710                                                                                                                                                                                                                                                                 | Corrosion-resisting Steels                                                                                                                                                                                                       |
| OX13, 1X13, 2X13,<br>4X13, X14, 2X13H4F9,<br>X14F14H, X14F14H3T,<br>1X13H3                                                                                                                                                                                                     | Intended for operation in weak corrosive media below 30°C (aqueous solutions of salts, dilute nitric and various organic acids, food media). Steels are adequately resistant to corrosion by fresh water, steam, air             |
| 9X18, 1X17H2, 2X17H2,<br>X17, 0X17T, X25T,<br>X25H91, X17H7K0,<br>0X21H5F, X28<br>1X21H5T, 00X18H10,<br>0X18H10, X18H9,<br>2X18H9, X18H10E,<br>0X18H10T, X18H10T,<br>0X18H10T, 0X18H12T,<br>X18H12T, 0X18H12E,<br>X28AH, X18H9T,<br>X17F9AH4, X17AF14,<br>0X10H20T2, X16H15M3B | Intended for operation in average corrosive media—nitric and organic (except acetic, formic, lactic, oxalic) acids, most of the solutions of organic and non-organic salts at various temperatures and in various concentrations |

| Steel grades                           | Uses                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0X21H6M2T,<br>X17H13M2T,<br>0X17H16M3T | For operation in highly corrosive media, organic acids in particular: formic, acetic, lactic, oxalic (below 5%), etc., as well as phosphoric (up to 32% P <sub>2</sub> O <sub>5</sub> ), containing fluoric compounds; boric acid with admixture of sulphuric acid (up to 1%); hydrosilicofluoric acids (up to 10% concentration)—for temperatures below 40°C                     |
| 0X23H28M2T                             | Recipients for dissolving: sulphuric acid in low concentrations (up to 20%) below 60°C; phosphoric acid, containing fluoric compounds, and for other highly corrosive media                                                                                                                                                                                                       |
| 0Х23Н28М3Д3Т                           | Recipients for sulphuric acids in all concentrations, below 80°C; phosphoric acid (32-50% P <sub>2</sub> O <sub>5</sub> ), containing fluoric compounds; hydrosilicofluoric acid in increased concentrations (up to 25%) below 70°C                                                                                                                                               |
|                                        | Carbon Tool Steel                                                                                                                                                                                                                                                                                                                                                                 |
| Y7 and Y7A                             | Cold chisels, cape chisels, simple hand dies, snaps, screwdrivers, lathe centres, plate cutters, augers, lettering dies, centre punches, dinking dies, compound pliers, cutting pliers, hammers, forging punches, chisels shaping dies, pneumatic tools, coppersmith's and tinner's tools, woodworking planing cutters, chip axes, twist drills, joiner's tongs and mason's tools |
| <b>у</b> 8, У8А <b>,</b> У8Г           | The same as for grade V7 steel plus metal cutters, collets, simple dies for cold punching, plane bits                                                                                                                                                                                                                                                                             |
| У9, У9А                                | Blades for saws, cold punching dies, centres, woodworking tools—twist drills, changeable cutters, planing cutters, gouges, axes, chisels, planing bits, stone chisels                                                                                                                                                                                                             |
| У10, У10А, У11, У11А,<br>У12, У12А     | Small simple-shape metal cutters working under light loads: round-nose tools,                                                                                                                                                                                                                                                                                                     |

| Steel grades     | U'scs                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| У13, У13А        | metal slitting and end-milling cutters, drills, reamers, screw taps, threading dies, files, saw blades, scrapers, cold punching dies, hand wood saws, crosscut and band saws. Measuring tools. The choice of one of the above-mentioned steel grades is dependent upon the intended use of a tool*)  Scrapers, razors, engraving tools, drawing tools for the working of hard stones |
|                  | Alloy Tool Steel                                                                                                                                                                                                                                                                                                                                                                     |
| 7X3, 8X3         | Hot upsetting dies, dies and punches for hot bending, working below 500°C and                                                                                                                                                                                                                                                                                                        |
| 9X               | under slight impacts Rolls for cold rolling, cogging rolls, lettering dies, drifts, cold upsetting dies                                                                                                                                                                                                                                                                              |
| X09<br>X, ШX15   | and punches Cold punching dies, measuring tools Round-nose tools, milling cutters, drills, reamers, threading dies, screw taps, measuring tools, cold punching dies, wood saws. Grade IIIX 15 steel is superior to grade X steel                                                                                                                                                     |
| X05              | Scrapers, engraving tools, sharp surgical                                                                                                                                                                                                                                                                                                                                            |
| X12, X12М, X12Ф1 | instruments, razors, drawing tools Broaches, thread-rolling dies and knurls, drawing tools, knives for presses and cold metal slitting shears, intricate- shaped dies for cold pressing Grade X12 steel is intended for tools which require no great impact strength and which are not subject to heavy                                                                              |
| xr               | impacts  Long and fancy-shaped tools for which, at hardening, slight deformation is allowable such as cutting tools work- ing under light loads: milling cutters, screw taps, threading dies, reamers,                                                                                                                                                                               |

<sup>\*</sup> Tools subject to slight impacts in the course of operations should be manufactured from steels lower in carbon. Tools which require extra hardness and which suffer no impacts should be manufactured from high-carbon steels.

| Steel grades Uses |                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | broaches, etc.; measuring tools, cold<br>pressing dies, press moulds for plastics,<br>woodworking cutters, jig bushings                                                                             |
| B1                | Drills, screw taps, reamers, saw blades, roller knives                                                                                                                                              |
| XB5               | Cutting tools for working of extra-hard                                                                                                                                                             |
| 5ХВГ              | metals at low cutting speeds Intricate-shaped dies for cold and hot                                                                                                                                 |
| 5 A DI            | pressing, which tolerate slight warping only                                                                                                                                                        |
| 9XBΓ              | Cutting and measuring tools of compli-<br>cated shapes. Dies of complicated con-<br>figuration for cold pressing which tol-<br>erate slight warping only. Long knives<br>for cold cutting of metals |
| ХВГ               | Cutting and measuring tools of long and complicated configuration which tolerate slight warping only                                                                                                |
| Φ                 | Screw taps, threading dies, embossing dies for thin pieces, dies for the manufacture of bolts, nuts and rivets                                                                                      |
| 8ХФ               | Knives for cold cutting of metals, dies for cold trimming, centre punches                                                                                                                           |
| 85 X Φ            | Woodworking tools: saws, cutters, knives, etc.; paper-mill knife-tools                                                                                                                              |
| 4XC               | Dies for hot pressing, knives for cold and hot cutting of metals, pneumatic tools                                                                                                                   |
| 6XC               | Knives for cold and hot cutting of metals, small dies for cold pressing, pneumatic tools                                                                                                            |
| 9XC               | Cutting tools, mainly subject to grinding in the manufacturing process: drills, centre points, milling cutters, reamers, counterbores, screw taps, broaches. Dies for cold pressing                 |
| XIC               | Measuring tools                                                                                                                                                                                     |
| 4X B2C            | Press moulds for low-temperature pressure casting, hot pressing dies, knives for hot cutting of metals, pneumatic tools                                                                             |
| 5X B2C            | Dies for cold and hot pressing, knives for cold and hot cutting, press moulds for casting low-melting alloys, threading rolls                                                                       |

| Steel grades                           | Uses                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6X B2C                                 | Cold and hot pressing dies, threading rolls, woodworking tools                                                                                                                                                                                                                                               |  |
| 3X2B8                                  | Press moulds for pressure casting of aluminium and copper alloys, hot pressing dies and knives for not cutting of metals working under heavy-duty and high-temperature conditions                                                                                                                            |  |
| 4X8B2                                  | Press moulds for casting non-ferrous alloys, dies for hot pressing working under heavy-duty and high-temperature conditions                                                                                                                                                                                  |  |
| 5XHM, 5XFM, 5XHT,<br>5XHC, 5XHB, 5XHCB | Forging dies                                                                                                                                                                                                                                                                                                 |  |
| P9, P18                                | High-efficient cutting tools which retain their cutting ability at a temperature of up to 600°C. Grade P9 is more difficult to grind than the P18 grade Efficiency, wear resistance, and red hardness of steels listed below with their particular features and uses are higher than those of the P9 and P18 |  |
| Р9Ф5                                   | grades Chiefly used for the manufacture of finishing tools. A difficult-to-grind ma- terial                                                                                                                                                                                                                  |  |
| P9K10                                  | Heavy-duty cutting tools. Drills for working of heat-resistant alloys and hard-to-work materials  This steel has a tendency to decarburise                                                                                                                                                                   |  |
| Р14Ф4                                  | Cutting tools for the working of extra-<br>hard materials. A difficult-to-grind<br>material                                                                                                                                                                                                                  |  |
| Р18Ф2                                  | Cutting tools for the working of materials of different hardness numbers, and of stainless and heat-resistant alloys                                                                                                                                                                                         |  |
| Р18К5Ф2                                | Takes grinding satisfactorily Cutting tools for the working of hard- to-work materials                                                                                                                                                                                                                       |  |
| P18K5, P18K10                          | Satisfactory grindability High-speed cutting tools. Retain hardness at temperatures up to about 670° C                                                                                                                                                                                                       |  |

## Heat-resisting and Non-scaling Steels \*

| Grade                | Use                                                                                                      | Heat-re-<br>sisting      | Non-<br>scaling                         |
|----------------------|----------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|
|                      |                                                                                                          | up to, °C                |                                         |
| X5 <sup>.</sup>      | Pipes                                                                                                    |                          | 650                                     |
| X15М, X5ВФ           | Parts of oil-refinery equipment                                                                          | 600, v.l.d.              | 650                                     |
| X6CM                 | Pipes, parts of pumps, valves                                                                            | 660, 1.d.                | 700                                     |
| 1Х8ВФ                | Pipes for furnaces, apparatus and mains of oil-refining plants                                           |                          |                                         |
| 4X9C2.               | Exhaust valves of internal com-                                                                          | 500, 1.d.<br>  650. l.d. | 650                                     |
| 4X10C2M<br>(ЭИ107)   | bustion engines, pipes of re-<br>cuperators, heat exchangers,<br>fire bars                               | 050, 1.a.                | 850                                     |
| 1Х12Н2ВМФ<br>(ЭИ961) | Compressor disks, blades and various heavy duty elements                                                 | 600, s.d.                | 750                                     |
| 1XB, 2X13            | Parts of machines and hard-<br>ware requiring high plasticity:<br>turbine blades, valves, bolts,<br>etc. | 500, l.d.                | 750                                     |
| 0X 13                | Ditto                                                                                                    | _                        |                                         |
| 3X13, 4X13           | Machine parts requiring high hardness: cutting, measuring and surgical instruments, springs, hardware    |                          |                                         |
| 3X13H7C2<br>(ЭИ72)   | Valves for automobile engines                                                                            | _                        | 950                                     |
| 1 X 13 H3            | Heavy duty parts working in fresh and/or sea water                                                       | : <del>-</del>           | _                                       |
| 1X17H2<br>(ЭИ26-8)   | High-strength steel for blades of axial compressors                                                      | . <del>-</del>           | :<br>:::::                              |
| 9Х18 (ЭИ229)         | Bearings for oil-refinery equip-<br>ment and various extra-hard<br>wear-resistant parts                  |                          | 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 |
| Х6С10 (ЭИ428)        | Parts of boiler installations                                                                            | _ :                      | 700                                     |
| IX11МФ               | Blades of steam boilers                                                                                  | 550, l.d.                | 750                                     |
| IX12ВНМФ<br>(ЭИ802)  | Rotors, disks, blades, bolts                                                                             | 570, l.d.                | 750                                     |
| <u> </u>             | si pamban lisa a protes 📗                                                                                | ·                        |                                         |

<sup>\*</sup> The terms "heat-resisting" and "non-scaling" when referring to steel are rather loosely used and it is necessary to finalise their meaning.

Heat-resisting steels are those that retain much of their strength at elevated

Non-scaling steels are those that are highly resistant to corrosion at elevated temperatures.—Tr.

| Grade                                               | Use                                                                                                                                       | Heat-re-<br>sisting | Non-<br>scaling |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|
|                                                     |                                                                                                                                           | up to,              | °C              |
| 2X12BMБФР<br>(ЭИ993)                                | Rotors, disks, blades, bolts                                                                                                              | 600, l.d.           | 750             |
| 1 X 12B2MФ<br>(ЭИ756)                               | Rotors and disks of steam tur-<br>bines, blades                                                                                           | 600, l.d.           | _               |
| 1X12СЮ<br>(ЭИ404)<br>X14 (ЭИ241)                    | Valves of engines and various other parts Parts turned in automatic                                                                       | _                   | 950             |
| X17                                                 | lathes—screws, nuts, threaded parts Equipment of nitric acid plants,                                                                      |                     | _               |
| 0Х17Т (ЭИ645)                                       | hardware. Not recommended<br>for welded structures<br>The same as for the X17 steel                                                       | -                   | 900             |
| <b>X</b> 25T (ЭИ439)                                | and also recommended for welded structures Structures (including welded                                                                   | _                   | 900             |
|                                                     | structures), working in more corrosive media than the X17 steel. Thermocouple shields, pipes for pyrolisis installations, etc.            |                     | 1050            |
| Х 18СЮ (ЭИ484)                                      | Pipes for pyrolisis installations,                                                                                                        |                     |                 |
| X 28 (ЭИ349)<br>X 28АН (ЭИ657)                      | various equipment, etc. Same uses as for steel X25T, as well as for media containing acetic acid. Pipes for pyrolisis installations, heat | -                   | 1050            |
| 2X13H4Г9<br>(ЭИ100),<br>X18H9,<br>2X18H9,           | exchangers Parts manufactured from sheets and strips welded by point welding. When welded by other methods, intercrystal-                 | _                   | 1150            |
| X18H10E<br>(ЭИ453),<br>X14ГМН,<br>X17НГ14,          | line corrosion is possible. Furnace fittings, etc.                                                                                        | -                   | 800             |
| X17Г9АН4<br>X15Н9Ю<br>(ЭИ904),<br>X17Н7Ю<br>(ЭИ973) | Extra-strength steel working in the air                                                                                                   |                     | -               |
|                                                     |                                                                                                                                           |                     | ÷               |

| Grade                                                                                                                 | U <b>s</b> e                                                                                                                | Heat-re-<br>sisting | Non-<br>scaling |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|
|                                                                                                                       |                                                                                                                             | up to, °С           |                 |
| 2X 17H2                                                                                                               | The same as above, but in corrosive media                                                                                   |                     | 10.00           |
| 0Х2ЭНМ14С2<br>(ЭИ <b>7</b> 32)                                                                                        | Pipes                                                                                                                       | _                   | 1050            |
| X20H14 <b>C2</b><br>(ЭИ211)                                                                                           | Furnace conveyors, carburising boxes                                                                                        | _                   | 1050            |
| 0X21H5T<br>(9И53),<br>1X21H5T<br>(9И811),<br>X18HЮT,<br>X18H9T,                                                       | Manufacture of welded apparatus for various branches of industry. Furnace fittings, parts of exhaust manifolds              | -                   | 800             |
| X18H12T,<br>X14T14H3T<br>9X18H10T<br>(ЭИ914),<br>0X18H11<br>(ЭИ684),<br>00X18H10<br>(ЭИ842),<br>0X18H12T,<br>X18H12T, | Welded apparatus operating in higher corrosive media than those manufactured from steel X18H10T. Parts of furnace equipment | -                   | 800             |
| 0X18H12B<br>0X21H6M2T<br>(ЭИ54),<br>X17H13M2T<br>(ЭИ448),<br>X17H13M3T<br>(ЭИ432),<br>0X17H16M3T                      | Parts operating in boiling phosphoric, formic, lactic, acetic acids and other highly corrosive media                        | _                   | -               |
| (ЭИ580)<br>0X 23H28M2T<br>(ЭИ628)                                                                                     | Welded structures operating in<br>hot phosphoric and sulphuric<br>acids, below 60°C                                         | _                   | _               |
| 0X 23H 28M3Д3Т<br>(ЭИ943)                                                                                             | hot sulphuric acids (below 80°C), resistant also to hy-                                                                     |                     |                 |
| 4X 18H25C2                                                                                                            | drofluoric acids Furnace conveyors and other                                                                                | _                   | 1100            |

| Grade                                                                            | Use                                                                                      | Heat-re-<br>sisting    | Non-<br>scaling             |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|-----------------------------|
| " Glade "                                                                        | Use .                                                                                    | up to.                 |                             |
| 0X23H18,<br>X23H18(ЭИ417)                                                        | Pipes and parts for methane conversion and pyrolisis in-                                 |                        |                             |
| V.051114D74D                                                                     | stallations, for gas mains, combustion chambers                                          | 1000, d.               | 1050                        |
| X 25H16Г7AP<br>(ЭИ835)<br>X 25H20C2                                              | Parts of gas mains, manufac-<br>tured from sheet steels<br>Boiler brackets and supports, | 950, s.d.              | 1100                        |
| (ЭИ283)<br>1X25H25TP<br>(ЭИ813)                                                  | pipes for pyrolisis installations Parts of different systems                             |                        | 1200<br>1100                |
| Х Н38ВТЮ<br>(ЭИ787)<br>Х Н60Ю                                                    | Turbine and compressor disks<br>and blades<br>Parts of gas mains, and equip-             | 750, s.d.              | 900                         |
| (ЭИ559A),<br>XH70IO<br>(ЭИ652)                                                   | ment                                                                                     | 850-1100,<br>s.d.      | 1200                        |
| (ЭИ052)<br>X H 78 Т (ЭИ435)<br>X H 70 (ЭИ442)<br>4 X 12 H 8 Г 8 М Ф Б<br>(ЭИ481) | Ditto<br>Equipment<br>Turbine disks                                                      | 650, s.d.              | 1100<br>1150<br><b>7</b> 50 |
| X 12H22T3MP<br>(ЭИЗЗ)                                                            | Turbine disks                                                                            | <b>75</b> 0, s.d.      | 850                         |
| 0X I4H28B3T3ЮР<br>(ЭИ786)                                                        | Ditto                                                                                    | 750, s.d.              | 900                         |
| X 12H20T3P<br>(ЭИ695)                                                            | Turbine parts                                                                            | 700, s.d.              | 850                         |
| 1X [4H16Б<br>(ЭИ694),<br>1X 14H16БР                                              | Superheater pipes and extra-<br>high pressure pipelines                                  | 650, l.d.              | 850                         |
| (ЭИ694Р),<br>1Х14Н18В2Б                                                          |                                                                                          | 650, l.d.              | 8 <b>5</b> 0                |
| (ЭИ695),<br>1Х14Н18В2БР                                                          |                                                                                          | 700, 1.d.              | 850                         |
| (ЭИ695Р)<br>1Х14Н18В2БР1                                                         | Turbine rotors, disks and                                                                | 700, 1.d.              | 850                         |
| (ЭИ726)<br>4X 14H14B2M<br>(ЭИ69)                                                 | blades Engine valves, pipeline fittings                                                  | 700, 1.d.<br>650, 1.d. | 850<br>850                  |
| 4X15H7Г7Ф2МС<br>(ЭИ388)<br>1X16H13M2Б                                            | Blades of gas turbines, fasten-                                                          | 650, s.d.              | 800                         |
| (ЭИ680)                                                                          | Forgings for disks and rotors, blades                                                    | 600, v.l.d.            | 850                         |
|                                                                                  | ,                                                                                        | i                      |                             |

| Grade                    | Use                                               | Heat-re-<br>sisting      | Non-<br>scaling |
|--------------------------|---------------------------------------------------|--------------------------|-----------------|
|                          |                                                   | up to, °                 | c               |
|                          |                                                   |                          |                 |
| X 16H 15M3Б<br>(ЭИ847)   | Superheater pipes and high-<br>pressure pipelines | 350, v.l.d.              | 850             |
| 3X19H9MBB                | Rotors and disks, bolts                           | 600, v.l.d.              | 800             |
| (ЭИ572)                  | 1                                                 | 000, 7                   | 1               |
| <b>X</b> Ĥ3 <b>5B</b> T´ | Gas-turbine blades, disks, ro-                    |                          | )               |
| (ЭИ612)                  | tors, fastenings                                  | 700, l.d.                |                 |
| X Н35ВМТ<br>(ЭИ692)      | Turbine blades, fastenings                        | 700, 1.d.                | 900             |
| (301692)<br>X H35BTP     | Gas-turbine parts manufactured                    |                          |                 |
| (ЭИ725)                  | from thick sheets                                 | 750, v.l.d.              | 900             |
| X H38BT.                 | Parts manufactured from sheet                     | ,                        |                 |
| (ЭИ703)                  | steel and working at medium                       |                          |                 |
| VIIIOD MIOT              | pressures                                         | 600-950, s.d.            | 1050            |
| х H70ВМЮТ<br>(ЭИ765)     | Blades, fastenings                                | 750, v.l.d.<br>800, l.d. | 1000            |
| хн70ВМТЮ                 | Turbine blades                                    | 850, s.d.                | 1000            |
| (ЭИ617)                  | 1                                                 |                          |                 |
| х Н80ТБЮ                 | Turbine blades, fastenings                        | 700, v.l.d.              | 1050            |
| (ЭИ607)<br>У 170МВ ТЮБ   | Turbine blades                                    | 950 0 4                  | 1000            |
| Х Н70МВТЮБ<br>(ЭИ598)    | Turbine blades                                    | 850, s.d.                | 1000            |
| X H67MBTIO               | Turbine blades                                    | 800, 1.d.                | 1               |
| (ЭИ445P)                 | J                                                 | 850, s.d.                | 1000            |
| х Н75МБТЮ                | Turbine parts manufactured                        | 200 250 1                | 1050            |
| (ЭИ602)                  | from sheet steel Turbine disks and blades         | 800-950, s.d.            | 1050<br>1050    |
| ХН77ТЮ<br>(ЭИ437А)       | Turbine disks and blades                          | 750, s.d.                | 1090            |
| XH77TЮP                  | Ditto                                             | 750, s.d.                | 1050            |
| (ЭИ437)                  |                                                   |                          |                 |
| XĤ60B                    | Turbine parts manufactured                        |                          |                 |
| (ЭИ868)                  | from sheet steel                                  | 800-1000,<br>s.d.        | 1200            |
|                          |                                                   | 3.4.                     | 1200            |
|                          | 1                                                 | 1                        | ]               |
|                          |                                                   |                          | }               |
|                          |                                                   | 1                        | l               |

Notes. 1. High-temperature resistance is defined as the temperature of the beginning of intensive scaling.
2. Short duration of service of an element (s.d.) denotes a life span from 100 to 1,000 hours, while long duration (l.d.) implies an interval from 1,000 to 10,000 hours; very long duration (v.l.d.) signifies a considerably longer period, extending usually from 50,000 to 100,000 hours.

### Chapter IV

### HEAT-TREATMENT OF STEEL

### 1. HEATING OF STEEL

A heat-treatment procedure consists in heating metals and alloys to a certain temperature, holding and cooling them at various rates with the aim of altering their structure and properties.

Each of the heat-treatment processes comprises the following opera-

tions:

1. Heating to a prescribed temperature.

2. Holding for heat saturation and completion of structural changes.

Cooling at a requisite rate.

The rate of heating depends on chemical composition, shape and size

of the work.

A. When using flame or electric furnaces the following work may be charged into a furnace preheated to a given temperature: (1) articles from low-carbon steels, regardless of their structure, shape and size; (2) small- and medium-size articles from other grades of steels which have been annealed or normalised.

Articles with sharp angles, large-size articles, as well as any articles subject to repeated hardening should be heated up gradually, after be-

ing charged to a cooled furnace.

B. When using salt or lead baths, the following articles may be immersed in a bath preheated to a given temperature: (1) articles from low-carbon steels, regardless of their structure, shape or size; (2) articles from other grades of steel having simple configuration, and with no abrupt changes in section (rolls, rollers, tools with welded bits, etc.).

The heating of all other articles should comprise a preheating procedure to about 500-800°C. Preheating can be carried out in separate furnaces as well as in bath-type furnaces hy repeated (depending on size) immersion of the article in molten salts (see Table 37) or lead for 2-3 seconds. Two preheatings, up to 600 and 850°C, are necessary for articles from high-speed steels having a highly complicated configuration.

Approximate duration of heating in various furnaces may be found

by referring to Table 38.

The duration of heating is influenced by many factors, e.g., the number of articles charged into the furnace, the useful volume of the furnace, the arrangement of articles in the furnace (in bulk or in such a way that each piece is flushed by the hot gases), charging tempera-

fure, temperature uniformity, looseness of furnace door, etc. Practically, the duration of heating is to be determined on the spot with due consideration of the all above-mentioned factors.

Heating temperature, holding time, and cooling rate are dependent upon the steel grade and the heat-treatment process employed.

Table 37
Salt Mixtures Most Frequently Used for Heating in Salt Baths on Hardening

| Mixture components                | Chemical<br>formula                     | Weight,      | Melting<br>point, °C | Recommended temperature ranges, °C |
|-----------------------------------|-----------------------------------------|--------------|----------------------|------------------------------------|
| Common salt<br>Soda ash           | NaCl<br>Na <sub>2</sub> CO <sub>3</sub> | 50<br>50     | 560                  | 590-900                            |
| Common salt<br>Calcium chloride   | NaCl<br>CaCl <sub>2</sub>               | 50<br>50     | 595                  | 630-850                            |
| Common salt<br>Barium chloride    | NaCl<br>BaCl <sub>2</sub>               | 22.5<br>77.5 | 635                  | 665-870                            |
| Common salt<br>Potassium chloride | NaCl<br>KCl                             | 44<br>56     | 660                  | <b>72</b> 0-900                    |
| Common salt                       | NaCl                                    | 100          | 800                  | 830-1100                           |
| Barium chloride                   | BaCl <sub>2</sub>                       | 100          | 962                  | 1100-1350                          |

Table 38

Approximate Heating Time for Articles in Various Types of Furnaces

|                  | Furnace      | Heating time for 1 mm of dia<br>or thickness of article, so |         | m of diameter<br>rticle, sec |
|------------------|--------------|-------------------------------------------------------------|---------|------------------------------|
|                  | temperature, | Round                                                       | Square  | Rectangular                  |
|                  | °C           | section                                                     | section | section                      |
| Electric furnace | 800          | 40-50                                                       | 50-60   | 60-75                        |
| Oil furnace      | 800          | 35-40                                                       | 45-50   | 55-60                        |
| Salt bath        | 800          | 12-15                                                       | 15-18   | 18-22                        |
| Lead bath        | 800          | 6-8                                                         | 8-10    | 10-12                        |
| Salt bath        | 1300         | 6-8                                                         | 8-10    | 10-12                        |

### 2. OXIDATION AND DECARBURISATION ON HEATING

The furnace gases affect the heated steel by oxidising and decarburising it. The combination of the oxygen of the furnace gases with iron results in the formation of scale, while its combination with steel carbon causes decarburisation.

The best method to protect the work from oxidation or decarburisation is the use of muffle furnace provided with controlled or protective

atmosphere.

Controlled atmosphere composed of CO2, CO, H2, and N2 is mostly

used in the practice of heat-treatment shops.

Controlled atmospheres may be produced by incomplete combustion of coke-oven, generator, natural and various other gases, purified from CO2 and thoroughly dried to remove water vapours.

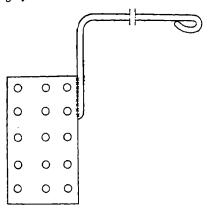



Fig. 5. Perforated cylinder used for deoxidising salt baths

If no installations are available for the production of controlled atmosphere, the articles to be heat-treated are packed into containers filled with insulating solid material consisting of: (a) used carburiser; (b) cast-iron chips, fresh or with the addition of 50% of the used ones; (c) burned asbestos, etc.

Pure charcoal is not an effective means of protection of high-carbon

steels against decarburisation.

Tools from high-speed and high-chromium steels are protected against decarburisation by preliminary immersion in a saturated solution of

Upon heating, the borax melts and spreads itself in a thin layer over the surface of the article, thus safeguarding the latter from reaction with the oxidising medium.

To protect heated parts against oxidation, some charcoal is placed

in the furnace near the charging door.

Smaller parts are protected against scaling by immersion in the solution prepared as follows: I part of calcium chloride is dissolved in 25 parts of water; after boiling the solution is allowed to cool, then

2 parts of ground fluorite are added to it.

To avoid decarburisation, salt baths should be deoxidised 2-3 times per shift by adding, to the molten salt, crushed 75% ferrosilicon (200-300 g per one CN3-75 type bath), boric acid, and 40 to 50 g of potassium ferrocyanide or potassium ferricyanide per bath. The deoxidation of a barium chloride bath is effected at 1300-1320°C. With the deoxidising agent charged, the bath is allowed to stand for 15-25 minutes, after which the slag is skimmed and the temperature brought down to the required level.

Deoxidation of salt baths with charcoal is widely gaining recognition. A perforated cylinder with a welded handle (Fig. 5) is filled with charcoal and immersed in the molten salt. As the cylinder with charcoal is immersed, big tongues of flame appear and then fade away gradually (within 15-20 minutes) and disappear. This indicates the end of the deoxidising process. It is recommended to deoxidise the baths in

the above manner 2-3 times per shift.

Salt baths are checked for deoxidation with the aid of ordinary safety razor blades. A blade heated for 3-5 min. in a properly deoxidised bath and quenched in water should rather break than bend.

The deoxidation of alkaline baths is effected by charging potassium

ferrocvanide on the bath surface in the amounts equal to 0.2-0.3% of the alkali weight. The bath should be mixed for 15-20 minutes, after which the slag is skimmed.

A layer of charcoal 15-20 mm thick is charged on the surface of lead baths to protect the latter against oxidation.

Files are safeguarded against decarburisation by luting (Table 39).

Table 39 Lutes Used to Protect Files Against Decarburisation on Hardening

| Material     | Compos                    | sition, %                   |
|--------------|---------------------------|-----------------------------|
| -            | No 1                      | No. 2                       |
| Crushed horn | 30<br>3<br>38<br>12<br>17 | 45<br>4.5<br>45<br>—<br>1.5 |

A Leningrad plant uses abrasive powder No. 100 as a protective lute. The files are flushed with joiner's glue, coated with the abrasive powder to a layer 1.0-1.5 mm thick, and dried. A simple reliable protective means is a prehardening pickling of files for 10-15 minutes in an acid solution composed of (% by volume): sulphuric acid (concentrated) — 7%, nitric acid (concentrated) — 7%, water—86%. After pickling, the files are dried near the furnace.

### 3. ANNEALING

Annealing is used to decrease hardness, to relieve internal stresses, to correct structure, to eliminate strain hardening, to improve machinability. Data given in Table 40 may be useful to determine the type of annealing necessary.

Recrystallisation Annealing of Cold-Worked Steels

| Grade of steel                                                                                                                            | Heating<br>temperature,<br>°C | Cooling<br>medium |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| У7-У13, У8, Ф. В1, 08-70, 15Г-70Г, 10Г2-50Г2, 70С2ХА, ЕХЗ                                                                                 | 680                           | Air               |
| ШХ6-ШХ15, ШХ15СГ, 40Х, 38ХА, 20Х3,<br>40ХФА, 38ХМЮА, 30ХГСА, X, 9X,<br>X05, 7Х3, 8Х3, 9ХС, ХГС, 4ХС, ХГ,<br>4ХВ2С, 5ХВ2С, 6ХВ2С, ХВГ, ХВ5 | 700                           | Air               |
| P9, P18                                                                                                                                   | 760-780                       | Water             |
| X12, X12M, X12Φ1, 9X18                                                                                                                    | 730-750                       | Water             |
| X9C2, X10C2M, X17                                                                                                                         | 850                           | Water             |
| 1X13, 2X13, 3X13, 4X13                                                                                                                    | 720                           | Air               |
| 0X18H10, 1X18H9, 1X18H9T, 2X13H4F9,<br>X18H11B, 2X18H9, X15H60, X20H80,<br>X20H80M3, 4X14H14B2M, 4X18H25C2                                | 850                           | Water             |
| 12XH3A, 12X2H4A, 20XH3A, 30XH3A, 37XH3A, 40XHMA                                                                                           | 660                           | Air               |
| 18XHBA, 25XHBA, 20XH4ΦA                                                                                                                   | 640                           | Air               |
| X13Ю4, 1X17Ю5, 0X17Ю5, 1X25Ю5,<br>0X25Ю5, X25, X27, X28, X25T                                                                             | 700                           | Water             |

Note: Holding at recrystallisation temperature on open heating can last up to one hour.

A Rough Guide for the Choice of Annealing Treatments

| Type of annealing                            | Steels subject to the<br>process                                           | Heating<br>temperature, °C                                | Cooling rate                                                                                                                                                          | Purpose                                                                                                                                                                       |
|----------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Full annealing                               | Hypoeutectoid, eu-<br>tectoid, small- and<br>medium-size steel<br>castings | Ac <sub>3</sub> + 20-30,<br>Ac <sub>1</sub> + 20-30       | Down to 500-600° C at a rate of: 2. Stress relieving 2) 50-100° C per hour for arbon steels; 2) 20-60° C per hour for alloy steels                                    | 1. Softening 2. Stress relieving 3. Structure improve- ment                                                                                                                   |
| Process anneal-<br>ing                       | Hypoeutectoid                                                              | Between Ac <sub>1</sub><br>and Ac <sub>3</sub>            | Ditto                                                                                                                                                                 | 1. Softening<br>2. Stress relieving                                                                                                                                           |
| Spheroidising (globular pearlite anneal-ing) | Hypereutectoid                                                             | $Ac_1 + 10-20$                                            | Down to 500-600° C at a<br>rate of 20-30° C per<br>hour                                                                                                               | Down to 500-600° C at a rate of 20-30° C per 2. Improvement of machin-ability (cutting) 3. Improvement of cold broaching 4. Preparation of structure for subsequent hardening |
| Isothermal<br>annealing                      | Chiefly for alloy steels                                                   | 1. Ac <sub>1</sub> + 20-30;<br>2. Ac <sub>1</sub> - 20-30 | 1. Ac <sub>1</sub> +20-30; Rapid cooling down to The same 2. Ac <sub>1</sub> -20-30 Ar <sub>1</sub> -20-30°C, holding an the said temperature followed by air cooling | The same as for full annealing                                                                                                                                                |

| Purpose                       | To eliminate coarse cast<br>structure and segrega-<br>tion | 1. Softening 2. Stress relieving 3. Improvement of machinability                   | Regeneration of structure<br>after cold working |
|-------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|
| Cooling rate                  | With the lurnace                                           | With the furnace or in 2. Stress relieving the air 3. Improvement of machinability | Ref. to Table, § 3                              |
| Heating<br>temperature, °C    | Ac <sub>3</sub> + 150-250                                  | Ac <sub>1</sub> —15-30                                                             | Ref.                                            |
| Steels subject to the process | Large steel castings Ac, + 150-250 and ingots              | High tempering Hypereutectoid and low-tempera-<br>fure anneal-<br>ing)             | All grades of steels following cold working     |
| Type of annealing             | Interdiffusion<br>annealing<br>(homogeni-<br>sation)       | High tempering (low-tempera-ture anneal-ing)                                       | Recrystallisa-<br>tion annealing                |

Notes. 1. Spheroidising is also carried out as a step or cyclic annealing process according to the diagram presented in Fig. 6.

2. Rapid cooling from the temperature of initial heating down to the temperature of sich remains a fine temperature of sich remains to a furnace heated to a predetermined temperature or by cooling in the lumace with its door open.

3. High temperature of softening operation for chrome-nickel-tungsten of step (pendulum)

### 4. NORMALISING

Normalising is used to correct the structure of overheated steel, to relieve internal stresses and to improve machinability of structural carbon and low-alloy steels.

For normalising, the articles are heated to 30-50°C above the Ac,

point and then cooled in still air.

When it is necessary to increase the depth of hardening of carbon tool steels, they are also normalised.

Hardness numbers of carbon steels in annealed and normalised conditions are presented in Table 41.

Table 41

Brinell Hardness Numbers of Steels in Annealed and Normalised Conditions

|           | Structural steels |        |        |
|-----------|-------------------|--------|--------|
| Condition | Low-              | Medium | High-  |
|           | carbon            | carbon | carbon |
| Annealed  | 125               | 160    | 185    |
|           | 140               | 190    | 230    |

### - 5. HARDENING

Hardening is used to impart maximum hardness to steel. Prior to hardening of hypoeutectoid steel, the latter is heated to 20-30°C above  $Ac_3$ , while eutectoid and hypereutectoid steels are heated to 20-30°C above  $Ac_1$  and then, after holding, rapidly cooled. The work is cooled in water, oil or air depending on its chemical composition, size, and shape.

Cooling of work on hardening. The rate of cooling on hardening should be sufficient to ensure the transformation of austenite to martensite. In practice, the required rate of cooling is attained by cooling carbon steels in water; alloy steels, depending on their composition, are cooled in water, oil, kerosene or between plates, while certain grades

of high-alloy steel are air-cooled (Table 42).

Table 42 Cooling Rates of Steels in Various Quenching Media (according to S. S. Steinberg)

| Cooling media                                                                                                                                                                                                                                                                                                            | Cooling rate per second at                                                                    |                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                          | 650-550° C                                                                                    | 300-200° C                                                                                 |
| Water at 18° C Water at 26° C Water at 50° C Water at 74° C Solution of 10% of sodium hydrate in water at 18° C Solution of 10% of common salt in water at 18° C Solution of 10% of soda in water at 18° C Solution of 10% of sulphuric acid in water at 18° C Soap water Mineral oil Kerosene Copper plates Iron plates | 600<br>500<br>100<br>30<br>1200<br>1100<br>800<br>750<br>30<br>100-150<br>160-180<br>60<br>35 | 270<br>270<br>270<br>200<br>300<br>300<br>270<br>300<br>200<br>200-50<br>40-60<br>30<br>15 |

Table 43 Oils Used for Isothermal and Step Hardening and Tempering

| Oil           | Flash<br>point, °C | Oil                        | Flash<br>point, °C              |
|---------------|--------------------|----------------------------|---------------------------------|
| Spindle oil 2 | 170<br>180<br>180  | Cylinder oil 2 Viscosine 3 | 215<br>240<br>290<br>300<br>320 |

Oil retains its hardening ability from 20 to 150°C.
Copper and iron plates are better when hollow and water-cooled.
When using massive plates, their surface should be coated with a thin film of oil to add to their cooling ability.

When hardening work from high-carbon steels and of very complicated configuration, 50% aqueous solution of caustic soda (sp.gr. 1.36) at 20-60°C is used as a hardening medium. The quenching in the above solution is to be effected under the hood.

When employing isothermal or step hardening, hot oil or low-melt-

ing salts are to be used (Tables 43, 44).

Fig. 7 shows the manner in which the work should be immersed in the cooling medium to prevent warping.

Table 44
Compositions of Salts Most Frequently Used for Hardening and Tempering

| Constituents      | Formula                                                                                                                 | Weight,                     | Melting<br>point,<br>°C    | Temperature recommended for use, °C      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|------------------------------------------|
| Potassium nitrate | KNO <sub>3</sub><br>NaNo <sub>2</sub><br>KNO <sub>3</sub><br>NaNO <sub>3</sub><br>NaNO <sub>3</sub><br>KNO <sub>3</sub> | 56<br>44<br>50<br>50<br>100 | 153<br>} 220<br>317<br>337 | 175-500<br>245-500<br>325-500<br>350-500 |

When considering hardening, the following methods are to be distinguished:

1. Hardening in one cooling medium. The heated work is cooled down to below 150-100°C in one medium. This is the chief procedure for hardening oil-cooled alloy steels and carburised carbon steels cooled in water: this method is also used for hardening simple-shaped work from

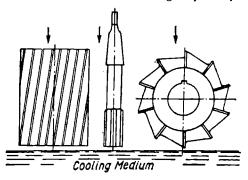



Fig. 7. Direction of immersion of tools in a cooling medium.

medium- and high-carbon steels. Carbon-steel articles up to 6-7 mm in

diameter are oil-hardened.

2. Hardening in two cooling media. The heated work is cooled in water down to 200-250°C, then it is quickly transferred to an oil bath for further cooling. Approximate duration of cooling in water prior to transfer is about 1-1.5 sec for every 5-6 mm of diameter or thickness. This is the main hardening procedure for carbon tool steels.

Table 45 Effect of Salt Temperature on Cooling Time of Heated Steel Cylinders

| <u> </u>       |                    | Salt temperature, °                  | C                  |
|----------------|--------------------|--------------------------------------|--------------------|
| Diameter of    | 205                | 260                                  | 315                |
| cylinder, mm   | Time necessary     | to bring the cyling temperature, min | ider to the salt   |
| 25<br>50<br>70 | 5.0<br>8.0<br>13.5 | 4.0<br>7.0<br>12.5                   | 3.5<br>6.0<br>11.5 |

3. Jet hardening. Cooling is by a water jet or shower, this method

being used for work with through or blind holes.

4. Isothermal hardening. The heated work is cooled in hot oil, molten salt or metal (lead, tin) at 20-30°C above the beginning of the martensitic transformation for the grade of steel considered (Table 45). Once the transformation of austenite is over, the work is air-cooled. As a result of isothermal transformation, acicular troostite is formed. Tempering, following isothermal hardening, is optional.

This method is used to harden work of complex shape with a view

to avoid cracks and warpage.

5. Step hardening. 1) The heated work is cooled in a hot medium to 20-30°C above the martensitic transformation point to even the temperature throughout the cross-section, following which it is aircooled. After the work is removed from the heated medium, it can be straightened before the austenite transformation is over. This method is used for the hardening of complex-shape articles from carbon tool steel up to 8-10 mm in diameter.

2) The heated work is cooled, first in a hot medium at 150-180°C, to balance its temperature, then in the air. This method prohibits the straightening operation but the number of rejected pieces due to cracks and warpage, as compared to the usual hardening procedure, is consid-

erably reduced.

6. Tempering combined with hardening. The working edge of the heated work is water-cooled, then removed and tempered to the colour required. This method is mainly used for percussive tools made of carbon steel.

7. Hardening through air-cooling. The work, heated above the required temperature, is air-quenched down to normal hardening temperature, after which it is hardened. This method is widely employed for carburised work when the latter is hardened directly from the case-hardening temperature (chiefly used for dies manufactured from grade 5XHT steel, etc.).

8. Bright hardening. The work, heated to hardening temperature is cooled in molten alkalis, after which it is flushed, first in hot water, then with a heavy jet of cold water and, finally, immersed in aqueous solution of 1.5% sodium nitrite and 0.3% soda ash to prevent corrosion. The bright-hardening technique, while displaying all the merits of the isothermal and step hardening procedures, is superior to them on the following points: the work remains bright, warping is minimised and higher mechanical properties are obtained.

Salt baths used for heating prior to bright hardening should confain no barium chloride as its presence spoils the alkali bath. The best composition is 100% KCl or a mixture of 50% NaCl and 50% KCl. Table 46 gives chemical compositions of alkali baths and their opera-

tion temperature charts.

Table 46
Chemical Composition of Alkalis Used for Bright Hardening

| Bath composition                 | %             | Melting point, | Temperature range of use, °C |
|----------------------------------|---------------|----------------|------------------------------|
| Potassium hydrate                | 75<br>25<br>6 | 130            | 150~250                      |
| Potassium hydrate Sodium hydrate | 63<br>37      | 159            | 180-350                      |
| Sodium hydrate                   | 100           | 322            | 350-700                      |

Baths working above 250°C are deoxidised, when necessary, by additions of potassium ferrocyanide (0.2-0.3% of alkali weight). Parts treated in non-deoxidised baths blacken. Baths working below 250°C do not require deoxidising. In case the bath hickens, small amounts of 30-50% aqueous solution of potassium hydrate are added, at below 200°C, in minute portions, with the aid of a long-handled ladle, in order to fluidise the bath and to enhance its hardening ability.

Hardening power of low-temperature alkali baths depends on the amount of water added to it. Maximum hardness is displayed by articles processed in baths with 10% of water. A greater amount of water

causes soft spots. No eruptions are observed when water is added. The amount of water in the bath is determined by measuring the hardness of samples hardened under similar conditions. Fig. 8 presents hardness curves of samples from grade 45 steel 25 mm in diameter and 50 mm in length.

The alkali bath should be agitated by an impeller at 800 to 1,400 r.p.m. or by a rotating worm at 600 to 800 r.p.m. The bath

should be cleaned periodically from foam and sediments.

When bright-hardened parts rust as a result of inadequate flushing, the defect may be corrected without change of the part's size, by heat-



Fig. 8. Relation of hardness number of a sample from steel Cr. 45 to the amount of water introduced into a low-temperature alkall bath:

1—bath temperature equal to 200°C;

2—bath temperature equal to 250°C

ing it in a special solution at 70-80°C for 30-40 min (to remove rust) with subsequent thorough washing by a strong water jet and immersion in a solution of sodium nitrite. The solution is prepared as follows: 100 grams of chromic anhydride and 110 grams of orthophosphoric acid (sp.gr. 1.6) are dissolved in 200 cm³ of water, after which water is added to obtain 1 litre of solution.

9. Sub-zero hardening (sub-zero treatment). The structure of hardened carbon and alloy steels always includes some amount of austenite. In articles tempered above 200-250°C, this austenite turns to tempered martensite upon heating. In articles tempered below 200°C, the austenite is "frozen dead" and remains unaltered in the steel.

Austenite is remarkably stable in some high-alloy steels, and on tempering, its transformation to martensite is incomplete. Maximum austenite decay can be achieved through additional cooling to below zero after hardening. Table 47 lists the sub-zero treatment temperatures for some grades of steels. Sub-

zero treatment should be carried out immediately after the article has cooled down to room temperature, since maturing at room temperature makes austenite very stable. Time interval from hardening to sub-zero treatment should not exceed 1-3 hrs while it should be still shorter for carbon tool steels. Sub-zero treatment should be carried out prior to tempering. It has been found that sub-zero treatment does not improve the cutting ability of high-speed steels. Rapid cooling should be avoided in order to prevent cracks. Liquid nitrogen, liquid oxygen, solid carbon dioxide, freon, etc., may be used as cooling media.

### Sub-zero Treatment Temperatures for Some Grades of Steels to Enhance Austenite Transformation

| Grade of steel                | Treatment<br>temperature,<br>°C | Grade of steel                                                 | Treatment<br>temperature,<br>°C |
|-------------------------------|---------------------------------|----------------------------------------------------------------|---------------------------------|
| У8<br>У10<br>У12<br>ХГ<br>ХВГ | 0<br>0<br>20<br>50<br>80        | IIIX15<br>X12Ф1<br>18XHBA (carburised)<br>12X2H4A (carburised) | -30<br>-70<br>-85 *<br>-85 *    |

<sup>\*</sup> For the carburised layer.

10. Surface hardening. It is effected by heating the work quickly in an electrolyte, oxygen-gas flame, by contact method or high-frequency current.

The electrolyte used is a 5-10% aqueous solution of soda ash or pot-

ash. Direct current at 180 V, as a minimum, is used.

There are three methods of heating in an electrolyte:

(a) butt heating used to heat the tip of an article;

(b) surface-heating method used to heat the work surfaces;

(c) heating in which the work is gradually passed through an electrolyte. The lower part of the work is insulated by a bushing and is not heated.

11. Surface hardening by oxy-gas flame (flame hardening). This procedure consists of local heating of the part to be hardened by means of an oxy-gas flame, and of subsequent cooling. The depth of hardening ranges from 1 to 6 mm, and cooling is ensured by a sprayer.

There exist the following methods of surface hardening by oxy-gas

flame:

1. Stationary. The work and the burner are stationary, the former being cooled after the withdrawal of the burner.

2. Rotary. The work rotates at 100-200 r.p.m. The burner is stationary. The work is cooled following the extinguishing of the burner.

3. Flat-translatory. The work moves in a straight line, while the burner is stationary, or vice versa. Cooling is continuous, being applied at a distance of 10 to 20 mm from the burner.

- 1. Parts with negligible hardened areas, such as teeth of chain gear, cams, lathe centres, short end-cutting tools, etc.
- 2. Cylinder-shaped parts up to 20 mm in diameter, e. g., necks, journals of arbors and axles, low-module gears, etc.
- 3. Flat parts of considerable length: frame guides, shears, etc.

- 4. Rotary-translatory. The part rotates slowly. The burner is stationary. Cooling is continuous, being applied at a distance of 10 to 20 min from the burner.
- 5. Helical-translatory. The work rotates slowly. The burner moves in a straight line. Cooling is continuous, being applied at a distance of 10 to 20 mm from the burner.
- 6. Combined. The ring-shaped burner moves in a straight line along the axis of the part which rotates rapidly inside the burner. Cooling is continuous, being applied at a distance of 10 to 20 mm from the burner.

4. Cylinder-shaped parts with diameters exceeding 200 mm: wheel bands, mounting rings. crane wheels, large-diameter rollers, etc. A tempered streak borders on the hardened area.

5. Cylinder- and helix-shaped parts: worms, screws, etc. An annealed streak is formed at the point where the helices meet.

6. Slim cylinder-shaped parts: shafts, spindles, rods, etc.

Gas burners used for prehardening heating should follow the profile of the work to be hardened (Fig. 9). This ensures uniform heating and

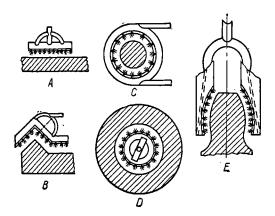



Fig. 9. Configuration of hardening inductors: a - flat rectilinear configuration; b - angle configuration; c-annular configuration for surface hardening of cylinder-shaped parts; d-annular configuration for hardening of internal surfaces; e - modular configuration

completion of the hardening process in one run. Cooling is ensured by water dispersed by a sprayer. Water consumption is 0.4-0.5 litres/min per 1 cm<sup>2</sup> of the surface being cooled. The less the distance from the burner to the hardened work and the less the speed, the greater the hardened depth.

Stationary or rotary hardening procedures for alloy steels are to be followed by oil-cooling. Large parts are hardened in special hardening machines which ensure the requisite direction and speed of the work and the burner. Hardening in special machines permits automation, use of control instruments, etc.

12. Hardening by high-frequency current. When a high-frequency current flows through a solenoid-shaped inductor, a magnetic field is created in the coil. As a result of a great number of magnetising cycles per second, current is generated in the work located in the magnetic field; the current heats the work up very quickly, the depth of heat penetration being a function of the current frequency.

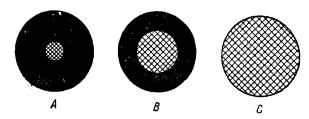



Fig. 10. Diagram illustrating distribution of currents in a conductor at various frequencies:
a-at 50 cps; b-at 2,500 cps; c-at 250,000 cps

Heat-treatment induction heating makes use of audio- (from 1,000 to 10,000 cps) and radio-frequencies (from 100,000 to 1,000,000 cps). The depth of heat penetration diminishes, as current frequency increases. Fig. 10 presents a diagram showing the effect of current frequency on heat penetration.

In practice, radio-frequency current, supplied by radio-tube oscillators, is employed to heat articles up to 2-3 mm in depth, while a deeper heating, including heat soaking, requires audio-frequency current,

supplied by motor generators.

The best material for inductors is red copper. Brass should be used only when red copper is not available. Usually, the inductors are made of square or rectangular red-copper tubes which carry water for cooling.

Table 48 gives data on tube profiles. Inductors for fancy-shaped work are made sectional, cast or forged. The thickness of the sides of a water-cooled inductor ranges from 0.5 to 2 mm, while that of an uncooled one reaches 7-10 mm.

To prevent the inductor from coming into contact with the work, if is wound with asbestos cord impregnated with soluble glass.

| Initial                                                             | liameter, mm                                                                                                         | * Cross                                                                                                                              | Initial d                                                                              | iameter, mm                                                                                           | Cross                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External                                                            | Internal                                                                                                             | section, mm                                                                                                                          | External                                                                               | Internal                                                                                              | section, mm                                                                                                                                                                                                                                                      |
| 4<br>5<br>6<br>7<br>8<br>9<br>9<br>10<br>10<br>11<br>11<br>12<br>12 | 3<br>4<br>4.5<br>5<br>6.5<br>7<br>7<br>7<br>8.5 or 7<br>8.5 or 7<br>9 or 8<br>9 or 8<br>9 or 8<br>10 or 9<br>10 or 9 | 2.5×5.5<br>3.5×4<br>4.5×5<br>4×7<br>5×7.5<br>4×10<br>5×9<br>7×7<br>5×10.5<br>7.5×8<br>5×12<br>6×11<br>8.5×8.5<br>7×12<br>8×11<br>9×9 | 13<br>13<br>14<br>14<br>14<br>15<br>15<br>16<br>16<br>17<br>18<br>19<br>19<br>20<br>20 | 11 or 10 11 or 10 12 or 11 12 or 11 13 or 12 13 or 12 14 or 13 14 or 13 16 or 14 16 17 or 16 17 or 16 | $\begin{array}{c} 8\times12.5\\ 10\times10.5\\ 8\times14\\ 10\times12\\ 11\times11\\ 8.5\times15\\ 10.5\times13\\ 10\times5\\ 12.5\times12.5\\ 10\times16.5\\ 12\times16.5\\ 12\times16.5\\ 10\times20\\ 15\times15\\ 11.5\times20\\ 15\times16.5\\ \end{array}$ |

The inductors should be brazed with hard solder.
The following methods of induction hardening are in general use:

- 1. Simultaneous hardening of the whole area to be treated.
- 2. Step hardening of separate sections of the work. Each section is heated separately. When treating pieces with large surface areas, the heating is carried out by a continuous-successive method.
- 3. Continuous-successive method of hardening (Fig. 11).
- 1. Used for hardening disk-shaped pieces.
- 2. Used for hardening gear teeth, axle journals, etc.
- 3. Used for hardening parts of great length. Cylinder-shaped parts are to be rotated in order to obtain a uniform hardened layer; speed of rotation is from 50 to 200 r.p.m.

To prevent uneven heating, particular care should be taken to centre the work properly in the inductor. The clearance between the work and the inductor should remain within 2-6 mm. Inadequate spacing may cause contact between the work and the inductor, or the puncture of the air gap between them, and overheat the external layer, particularly when vacuum-tube oscillators are used. Larger clearance is required for brazing or for deeper hardening. The spacing of turns in a

multiturn inductor should be minimum to ensure uniform heating. Practically this gap should average 2 mm.

Induction heating considerably raises critical points of steel and

widens hardening temperature ranges.

Fig. 12 presents temperature diagrams for induction heating of some grades of steel in initial annealed state.

To avoid overheating and even melting of the sharp edges of the work, it is recommended to fill the grooves with brass or copper inserts

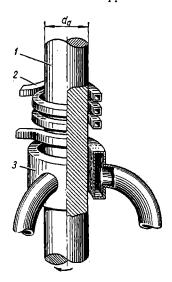



Fig. 11. Relative positions of inductor and sprayer when hardening a shaft: 1-shaft; 2-inductor; 3-sprayer

or to use an adequately shaped inductor in which the sharp edge of the work would remain at considerably greater distance from the sides of the inductor than the rest of the work.

Parts from carbon steels, heated by means of high-frequency current, are cooled in water, those from medium-alloy structural steels—in aqueous solutions, while those from high-alloy steels—in oil. The latter is practicable only in case of simultaneous hardening of the whole work.

When the continuous-successive method of hardening is employed, cooling is effected by a sprayer in which the orifices, 1-2 mm in diameter, are spaced at an angle of 20-30° to the axis of the work and oriented away from the inductor. This prevents early cooling of the heated work.

When the simultaneous method of hardening is used and the work is cooled by water or aqueous solutions, spraying is ensured by the inductor itself (Fig. 13), the internal section of which is provided with a number of orifices. After the work has been heated, current is switched off and the inductor tube is supplied with water or aqueous solution under pressure, which quenches the work.

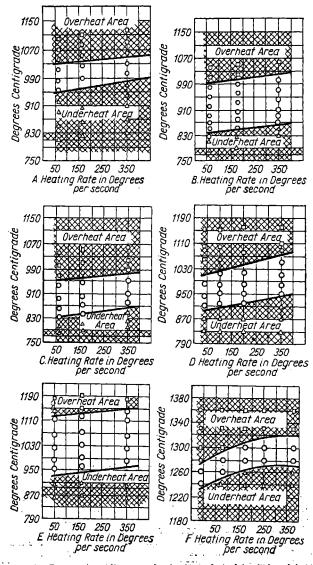



Fig. 12. Temperature diagrams for heating of steel by induced heat:
a-for steel Cr. 50; b-for steel V8; c-for steel V12; d-for steel 9XC; efor steel 30ΧΓCA; i-for steel P9

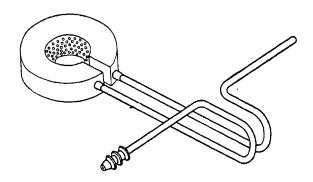



Fig. 13. Inductor for simultaneous hardening of articles

### 6. TEMPERING

Tempering is employed to lessen or eliminate entirely internal stresses, to soften the hardened steel and to increase its ductility.

Tempering consists in heating the hardened steel to below Ac<sub>1</sub>, in maintaining the work at the said temperature and in subsequent cooling. For tempering, the work is heated in oil, saltpetre or alkali baths, as well as in furnaces with air atmosphere. The total holding time for work in such a furnace should not be less than 30-40 minutes and should average 2-3 min per each millimetre of the least section.

When the work is charged in bulk in large numbers, the holding time should be increased 1.5-2 times. After tempering, the work is usually air-cooled.

To avoid temper brittleness in some grades of steels, the latter are cooled in oil in the 450-650°C range; these steels include chromium, chrome-nickel, chrome-silicon, chrome-manganese, chrome-silicon-manganese, chrome-nickel-vanadium, chrome-aluminium steels.

Colour tempering or tempering with surface hues as temperature indicators is carried out in the 220-330°C range (Tables 49 and 50), with subsequent dipping in oil or water.

Colour tempering of selected areas of the work is done chiefly in lead baths which ensure rapid heating necessary to prevent tempering of the rest of the work.

The above-mentioned tempering process may be effected much quicker in an inductor. The rate of heating and the necessary tempering colour are dependent upon the distance between the work and the inductor. To facilitate and stabilise the operation, the inductor is encased in an asbestos sheath (Fig. 14) which serves as a mounting for the work to be tempered. The thickness of the sheath permits adjusting the duration and degree of tempering.

### Tempering Colours

| Tempering colours | Temperature, °C | Approximate thickness of oxidised layer, microns |
|-------------------|-----------------|--------------------------------------------------|
| Pale yellow       | 220             | 0.45                                             |
| Straw             | 240             | 0.50                                             |
| Purple brown      |                 | 0.65                                             |
| Blue              | 300<br>315      | 0.72                                             |
| Grey              | 330-350         |                                                  |

Table 50

| Tool diameter<br>or thickness,<br>mm | Furnace type            | Holding time at the tempering temperature, hrs |
|--------------------------------------|-------------------------|------------------------------------------------|
| Up to 20                             | Oil or saltpetre baths, | 1.0                                            |
| 21-40                                | electric shaft furnace, | 1.5                                            |
| 41-60                                | type ПН-31, ПН-32 or    | 2.0                                            |
| Above 60                             | ПН-34 furnaces          | 2.5                                            |

Approximate Holding Time at Tempering Temperatures

At present, tempering, in some plants, is carried out in induced heat installations at the expense of incomplete cooling following hardening; this is the so-called "self-tempering". The work heated for hardening in an induced heat installation is cooled for a definite length of time, determined by calculation or, in most cases, experimentally. At a given moment cooling is automatically cut out and the work heats itself up to the tempering temperature at the expense of accumulated heat. This method is applicable in plants with mass or large-scale production, provided they are equipped with up-to-date automatic machines.

To avoid warping and cracking, the work, after grinding, is subjected to low-temperature tempering, also called ageing, at 120-160°C.

The heat-treatment process consisting in hardening the work with subsequent high-temperature tempering at 500°C and above is called improving\*.

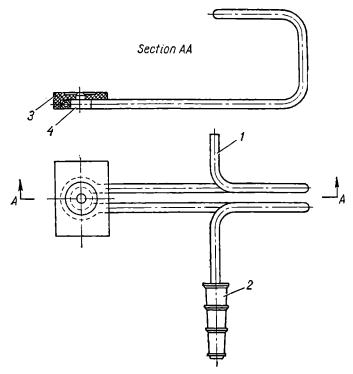



Fig. 14. Inductor for tempering of parts:
 1 - inductor; 2 - nipple; 3 - asbestos sheath; 4 - asbestos plug for fastening and centering the sheath

The improving is used to reduce the coarseness of structure as well as to attain the best combination of strength and toughness in structural steels, and chiefly in the alloy steels.

Table 51 lists defects which may be met with in heat-treatment processes.

<sup>\*</sup> The word improving (a literal translation from the Russian) is used to denote a special heat-treatment procedure aimed at bettering the properties of steel, -Tr.

Defects in Heat-treatment of Steel

| Chief measures to prevent and correct the defect |  |
|--------------------------------------------------|--|
| Chief cause                                      |  |
| Detection                                        |  |
| Defect                                           |  |

# 1. Annealing and Normalising Defects of Structural Steels

| Repeat annealing or<br>normalising at normal<br>temperatures                                                                | Repeat annealing or normalising at normal temperature. In case of considerable overheat                                            | ing use double annearing, the first one at a temperature by 50-150°C above, the normal | ž                                                                                                           | Repeat annealing at the<br>required cooling rate |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Underheat. Annealing Repeat annealing or temperature below that normalising at normal required or insufficient temperatures | 0                                                                                                                                  |                                                                                        | Overheat. Heating of steel in an oxidising atmosphere at high temperatures, in the proximity of the melting | Excessive cooling rate                           |
| Tensile test                                                                                                                | Coarse-grained fracture. Fracture inspection. Ten-<br>Low ductility and, sile and impact tests<br>particularly, impact<br>strength |                                                                                        | Very coarse and bright Fracture inspection. Mi-<br>fracture crostructural analysis                          | Hardness test                                    |
| Low ductilify, the frac- Tensile test ture being relatively fine-grained                                                    | Coarse-grained fracture. Low ductility and, particularly, impact strength                                                          |                                                                                        | Very coarse and bright<br>fracture                                                                          | High hardness                                    |

|                                                       | Repeat annealing at a requisite temperature and follow strictly the prescribed cooling schedule, or temper at high temperature | Normalising or hardening with subsequent tempering at 670-700°C, holding time not less than 2 hrs |                                      | Irreparable defect. Preventive measures:  1. Whenever possible use step-hardening, as well as intermittent hardening in two quenching media  2. Avoid manufacturing parts with acute angles and sharp changes in section; when this is unavoidable, use only alloy steel  3. No water should be present in the oil quenching tank      |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tool and High-speed Steels                            | Underheat     Excessive cooling rate     in normal annealing     or insufficient holding     in isothermal annealing           | Heating above Ac                                                                                  | 3. Defects in the Hardening of Steel | Visual inspection and Stresses caused by changes crack detector test; kerin volume arising from sosne test and black-ing-in ing-in temperatures below as intermittent hardening, as well temperatures below as intermittent hardening as intermittent hardening in two quenching media are should be present in the oil quenching tank |
| 2. Defects in Annealing of Tool and High-speed Steels | Hardness test                                                                                                                  | Microsection inspection<br>under a microscope                                                     | 3. Defects in the F                  | Visual inspection and crack detector test; kerosene test and blacking-in                                                                                                                                                                                                                                                               |
| •                                                     | High hardness                                                                                                                  | Carbide lattice                                                                                   |                                      | Cracking                                                                                                                                                                                                                                                                                                                               |

Table 51 continued

| 2                                                 |                                                                          |                                                                                                                                                                            |                                                                                                                                                                    |
|---------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defect                                            | Detection                                                                | Chief cause                                                                                                                                                                | Chief measures to prevent<br>and correct the defect                                                                                                                |
| Cracking                                          | Visual inspection and crack detector test: kerosene test and blacking-in | Stresses caused by changes in volume arising from transformation of austenite to martensite at temperatures below 1250° C                                                  | 4. Heat slowly the hard-<br>ened work when hard-<br>ening procedure is re-<br>peated<br>5. Grooves, holes near<br>edges, sharp transitions<br>in section should be |
| Insufficient hardness                             | Hardness test                                                            | Low hardening tempera-<br>ture, insufficient hold-<br>ing or low cooling rate                                                                                              | insulated with asbestos The work should be nor- malised or annealed and hardened again accord- ing to normal schedule                                              |
| Increased brittleness.<br>Coarse-grained fracture | Visual inspection of fracture. Impact test                               | Excessive hardening temperature or too prolonged holding                                                                                                                   | To be corrected by the same method as is used for insufficient hardness defect                                                                                     |
| Soit spots                                        | Hardness tests at various points                                         | Ineffective cooling, local decarburisation, scaling, non-uniform grain size, contamination of steel by abnormally high amounts of slag, mutual contact of parts on cooling | ັດ                                                                                                                                                                 |
|                                                   | _                                                                        |                                                                                                                                                                            |                                                                                                                                                                    |

| If the depth of penetration is greater than the grinding allowance, the defect is irreparable. To prevent the defect, the part should be heated in a controlled atmosphere, and, if the latter is not available, in cases containing castrion turnings (50% fresh, 50% used), charcoal with 5% soda, etc. To avoid decarburisation, cushed ferrosilicon (1.0-1.5% of the weight of the salt), borax, boric acid, potassium ferrocyanide (25-30grams), are added to the salt), are to the salt, and the salt, and the salt, are added to the salt, are the salt, are added to the salt, are added to the salt, are the salt, a | baths two-three times per shift or the bath is deoxidised with charcoal. The defect is mostly irreparable. To prevent it, hardening temperature and cooling rates should be lowered and finegrained and alloy steel used. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combination of furnace atmosphere oxygen with the iron of the work (oxidation) or with its carbon (decarburisation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Structural transformation<br>in the 650-500° C range<br>and below 300° C, caus-<br>ing distortion                                                                                                                         |
| Oxidation is detected by inspection, while decarburisation by hardness tests and microstructure analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Checking for size                                                                                                                                                                                                         |
| Oxidation and decarbu-<br>risation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deformation (change in dimensions)                                                                                                                                                                                        |
| o pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ch <i>z</i>                                                                                                                                                                                                              |
| ion a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eformation<br>dimensions)                                                                                                                                                                                                 |
| Oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deform<br>dime                                                                                                                                                                                                            |
| 4*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                         |

Table 51 continued

| Defect                                           | Detection                                                            | Chief cause                                                                                             | Chief measures to prevent<br>and correct the defect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warping (change in shape)                        | Checking for beat (in centres) or by thickness gauge on a face plate | Incorrect immersion of work in quenching media, internal stresses prior to heating, etc.                | Reparable defect which can be corrected through: 1) cold or hot straightening; 2) grinding if the warping does not exceed the allowance. Preventive measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Point or groove-like pit-<br>ting of the surface | Visual inspection                                                    | Uneven scaling. High content of sulphuric salts and chemical                                            | in the martensite range, proper dipping in quenching media, uniform heating, and checking for warpage prior to hardening Prevention: 1) scrupulous calks used for heating of the proper seals used for heating in the properties of |
|                                                  |                                                                      | action of chloride safts<br>in saft baths. Contact<br>with molten lead spilled<br>on the furnace hearth | 2) deoxidation of salt baths; 3) covering of lead bath surface with charcoal; 4) elimination of oxidising atmosphere in the furnace; 5) strict control of hearth contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Correction: 1) heat to 1140-1160° C, hold for 3-8 min, cool to 800-720° C, hold for 15-30 min, cool in air; 2) repeat the above operation; 3) conduct normal amealing; 4) apply hardening and tempering (this procedure is in need of further investigation) |                              | Deoxidise alkali bath additionally with potassium ferrocyanide  Deoxidise additionally the salt bath                                                                                                                                    | Bring the bath to proper consistency by adding the required salt                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annealing at high temper-<br>ature. Repeated hard-<br>ening omitting inter-<br>mediate annealing                                                                                                                                                             | 4. Bright Hardening Defects* | Alkali bath is insuffi-<br>ciently deoxidised<br>Salt bath is deoxidised<br>insufficiently                                                                                                                                              | Salt bath is too fluid                                                                                                                                                                 |
| Visual inspection                                                                                                                                                                                                                                            | 4. Bright Hard               | Darkening or oxide tinting 1. Heat thoroughly a bright work in an alkali bath and dip in water  2. Heat work in a salt bath 150-200°C below bath 150-200°C below in salt bath 150-200°C below in salt bath 150-200°C below in salt bath | ture national tempera-<br>ture and cool in alkali<br>3. Check by chemical<br>analysis to make sure<br>the salt composition<br>meets the appropriate<br>technological require-<br>ments |
| Coarse-grained flaky fracture characteristic of high-speed steel articles over 12 mm in diameter                                                                                                                                                             |                              | Darkening or oxide tinting of the work                                                                                                                                                                                                  |                                                                                                                                                                                        |

\* Column "Defection" lists methods of detecting causes of the blackening of the work in molten alkali in the bright hardening processes.

### Table 51 continued

| Defect                            | Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chief cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chief measures to prevent<br>and correct the deject                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Sooty deposits on the<br>work     | Sooty deposits on the yeis for absence of salt- work  Sooty deposits on the alkali bath bath petre in the alkali bath pet | Presence of saltpetre in<br>the alkali bath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Make up a new alkali<br>bath and prevent salt-<br>petre from getting into           |
| Required hardness is not attained | Visual inspection of surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Visual inspection of sur- Addition to the alkali Heat the alkali at the face hath of an excessive operating or somewhat amount of potassium higher temperature for ferrovaride used as a few house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heat the alkali at the operating or somewhat higher temperature for                 |
|                                   | Hardness testing with machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | devices and devices as a device as a devic | Adequate mixing of the bath in operation                                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Lack of water in low- Check the bath for water temperature alkali baths by thermal analysis and adjust its amount to that required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check the bath for water by thermal analysis and adjust its amount to that required |

## 5. Defects in Steel Tempering

| Low temperature or insuf-   Repeat tempering accord-ficient holding time   ing to normal schedule              |
|----------------------------------------------------------------------------------------------------------------|
| Low temperature or insuf-<br>ficient holding time                                                              |
| Hardness test                                                                                                  |
| Under-fempering, In- Hardness test creased hardness and low ductility. A drop in hardness for high-speed steel |

|   | ₹                                                                  | nig to normal schedule<br>Prevention: 1) cool in<br>water or oil after tem-<br>pering at 450-600°C;<br>2) use steel containing<br>molybdenum, titanium<br>and niobium | Correction: repeated tempering followed by oil cooling, the temperature being by 20-30°C above that of the initial tempering |  |
|---|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
|   | Tempering at temperature<br>above that required                    | Carbides, oxides, nitrides<br>and phosphides separate<br>out at the grain boun-<br>daries                                                                             |                                                                                                                              |  |
| _ | Hardness and tensile tests                                         | Izod impact test                                                                                                                                                      |                                                                                                                              |  |
| _ | Over-tempering. Low hardness and low tensile strength and elastic. | Temper brittleness, Low resilience after temper spring at 450-600°C and slow cooling                                                                                  |                                                                                                                              |  |

### Chapter V

### CASE-HARDENING

The combined chemical and heating treatments called case-hardening consist in the heating of the work up to a given temperature in a specially chosen chemically active medium, e. g., in coal with additions of salts, in a medium producing atomic nitrogen, in chemically active molten salts, etc. As a result of the interaction with the surrounding medium, the chemical composition of the outer layer of the work is altered.

The work subjected to case-hardening acquires surface hardness, high resistance to corrosion, heat resistance, wear resistance or the ability to harden, depending upon the nature of the treatment. Pertinent details on the different case-hardening processes can be summarised as in the following paragraphs.

### 1. CARBURISING

Carburising consists in the saturation of the surface layers of the steel with carbon. The carburised work, following hardening, acquires an extra-high surface hardness while retaining a tough core.

Carburising is used for work from carbon and alloy steels with up to 0.25% carbon. Steels with up to 0.3-0.4% C may be used for large simple-shaped parts as well as for parts requiring high core strength.

In shop practice carburising is being used for tool steels (chiefly alloy chromium steels) hardened in oil. Cold stamping dies of regular shape, extruding dies, etc., are subjected to carburising which raises considerably the wear-resistance of the above tools.

Carburised tools are not to be ground, as in this case the most valuable wear-resistant layer will be removed. The carburising procedure follows the usual pattern yielding a 1-mm case. Hardening should be carried out carefully, with all precautions taken against warping and decarburisation. Hardening temperature averages 800-820°C, while tempering is accomplished at lower temperatures.

Steels are carburised in solid, gas or liquid media, called carburis-

ers.

Carburising by solid carburising compounds (pack carburising). Table 52 lists the chemical composition of carburisers used in shop practice. Charcoal, chiefly oak or birch by its nature, is crushed to pieces 3 to 10 mm in size and impregnated with a solution of carbonate

salts, after which it is dried at 100-150°C. Sometimes plain mixing of charcoal with powdered carbonate salts proves to be satisfactory.

Table 52
Composition of Carburisers for Pack Carburising
(% by weight)

| _                                          |                                                         |                                              |                                             |                                |                              |                                               |                                       |
|--------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------|------------------------------|-----------------------------------------------|---------------------------------------|
| No.                                        | Charcoal                                                | Barium<br>carbonate                          | Soda ash                                    | Cal-<br>cuim<br>carbon-<br>ate | Coke                         | Turf coke                                     | Fuel oil                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9* | 74-78<br>65<br>87<br>85-90<br>90<br>—<br>60<br>45<br>98 | 12-15<br>10<br>—<br>10<br>—<br>40<br>12<br>2 | 1.0-1.5<br>10<br>10-15<br><br>10-15<br><br> | 3.5                            | 20<br><br><br><br><br>43<br> | 85-90<br>———————————————————————————————————— | 4.5-5.0<br>3<br>—<br>—<br>—<br>—<br>— |

<sup>\*</sup> This carburiser is used for boron-bearing steel.

The moisture content of the carburiser should not exceed 5.7%. A carburising mixture consists of 20-30% and 70-80% of fresh and used carburiser, respectively. Parts subject to carburising should be dry and free from scale, rust, dirt, grease, etc. The parts are packed into boxes or containers made of heat-resisting steel, and, when the necessary steel is not available, boxes manufactured from plain structural

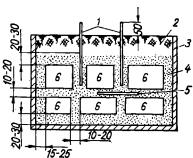



Fig. 15. Arrangement of parts in containers: 1 - outside "witnesses": 2 - luting; 3 - container; 4 - carburiser; 5 - internal "wifness"; 6 - parts

steel are used; the wall thickness of the box or container should be equal to 4-6 mm. The shape of the box should follow, as much as possible, that of the carburised work. The packing of the work should conform to the dimensions indicated in Fig. 15. The width of the box should not exceed 250 mm in order to facilitate its handling and to hasten heating.

The boxes are luted with a mixture consisting of two parts of refractory clay and one part of river sand, diluted to paste-like consistency.

The boxes are charged into a furnace heated to the required temperature. The boxes should be heated through at 780-800°C, after which the temperature is raised to 900-950°C, this being taken as the beginning of the carburising process.

Table 53

Relation of Holding Time to Layer Thickness in Carburising by Solid Carburisers at 900-950° C

|                                    |                                      | Thickness of carburised layer, mm |                          |                          |                          |                           |                            |                             |  |
|------------------------------------|--------------------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------|----------------------------|-----------------------------|--|
| The least cross-<br>section of the | 0.25                                 | 0.5                               | 0.7                      | 0.9                      | 1.1                      | 1.2                       | 1.3                        | 1.4                         |  |
| box, mm                            | Total holding time in furnace, hours |                                   |                          |                          |                          |                           |                            |                             |  |
| 100<br>150<br>200<br>250           | 3.0<br>3.5<br>4.5<br>5.5             | 4.0<br>4.5<br>5.5<br>6.5          | 5.0<br>5.5<br>6.5<br>7.5 | 6.0<br>6.5<br>7.5<br>8.5 | 7.0<br>7.5<br>8.5<br>9.5 | 7.5<br>8.5<br>9.5<br>10.5 | 8.0<br>9.5<br>10.5<br>11.5 | 8.5<br>10.5<br>11.5<br>12.5 |  |

Too rapid a heating to  $900-950^{\circ}C$  of cold boxes causes a difference in carbon saturation of parts situated near the walls and in the centre of the box.

Witness samples for determining the depth of the case are 6 to 10 mm in diameter. These samples are manufactured from the same steel as the carburised parts, or from grade Cr. 15-20 steel.

After the supposed ending of the carburising process, the outer witness sample is extracted from the container, hardened and the fracture is etched for I minute in a compound composed of 100 cm<sup>3</sup> of methylated alcohol, I cm<sup>3</sup> of hydrochloric acid and 2 g of copper chloride. Copper separates out at the non-carburised core. The thickness of the case can also be found by tempering of the fractured hardened witness until tempering colours are observed; in this instance the case and the core are coloured in different tints.

After the case-hardening process, the containers are cooled on the shop floor.

Paste carburising. Table 54 presents the composition of pastes used for carburising. The prepared powder of one of the pastes indicated is diluted in a 15% aqueous solution of molasses or glue, to a consistency which permits colouring.

The surface to be carburised or the whole work is coated by a layer 3-4 mm thick, the coating being accomplished by immersion or by the use of a brush. This done, the parts are dried and packed into boxes provided with sand seal (ref. to Fig. 22). The paste carburising process is carried out at 920-930°C, the approximate speed of case-hardening being 1 mm per hour.

When the carburising is completed, the parts are air-cooled or quenched immediately after they are taken out of the container.

Gas carburising. In gas carburising, the parts are heated up in a gas atmosphere containing carbon.

The following gases are used for carburising: 1) natural gases, 2) ar-

tificial gases (producer gas, pyrolysis gas, etc.).

An artificial gas produced by dissociation (pyrolysis) of oil products has gained widest application.

Table 54 Chemical Composition of Pastes Used for Carburising

| ,                                                                                                                                                                                              |                                          |                                             | Pas                                         | ste num                                  | ber                                           |                                          |              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------------|--------------|--|
| Paste component                                                                                                                                                                                | Stalite                                  |                                             | 3                                           | 4                                        | 5                                             | 6                                        | 7            |  |
| Paste component                                                                                                                                                                                | ī                                        | 2                                           |                                             | 7                                        |                                               |                                          |              |  |
|                                                                                                                                                                                                | Composition in % by weight               |                                             |                                             |                                          |                                               |                                          |              |  |
| Ivory black or coke Barium carbonate Sodium or potassium carbonale Cyanide compound "FUNTX" Sodium or potassium oxalate Nickel formiate or cobalt oxalate Ferrochrome (for carbon steel). Sand | 30-60<br>20-40<br>5-10<br>—<br>—<br>5-10 | 30-60<br>20-40<br>5-10<br>5-10<br>5-10<br>— | 30-60<br>30-60<br>—<br>5-10<br>—<br>15<br>— | 35<br>15<br>20<br>—<br>—<br>—<br>15<br>— | 45<br>20<br>20<br>—<br>—<br>—<br>—<br>—<br>15 | 40<br>15<br>20<br>—<br>—<br>—<br>5<br>20 | 50<br>40<br> |  |

Note. The composition of the cyanide compound "ГИПХ" is given in the footnoie to Table 64.

Carburising is effected chiefly in shaft furnaces of the "II" series. When the carburising is carried out in shaft furnaces, the pyrolysis of oil products occurs directly in the furnace retort, as the carburi-ser is fed by drops. Kerosene, benzene, pyrobenzene, spindle oil, and synthol filtered from solids are used as carburisers.

Table 55

Amounts of Black, Coke and Gas Obtained in the Pyrolysis of Some
Carburisers

| Carburiser | Amount of gas<br>(litres) from 1 cm <sup>3</sup><br>of carburiser | Amount of black and coke (grams) per 1 cm <sup>3</sup> of carburiser |
|------------|-------------------------------------------------------------------|----------------------------------------------------------------------|
| Benzene    | 0.73                                                              | 0.60<br>0.54<br>0.39<br>0.28                                         |

A new carburiser for gas carburising, the so-called synthol, which produces less black and coke and increases the speed of the process, has currently found wide application in shop practice. Table 55 presents data on the amounts of black, coke and gas generated in the pyrolysis of some carburisers. Maximum effectiveness has been obtained with the use of synthol in continuous furnaces. Synthol is currently used in a great number of plants.

Table 56

Recommended Kerosene Feeding Rate for Carburising in Shaft
Furnaces of Various Sizes

|                                                                                                         |                |                | Furna            | ice type |                    |      |
|---------------------------------------------------------------------------------------------------------|----------------|----------------|------------------|----------|--------------------|------|
|                                                                                                         | Ц25            | Ц35            | Ц60              | Ц75      | Ц90                | Ц105 |
|                                                                                                         |                |                | Drops p          | er minut | e                  |      |
| During the heating with temperature reaching 800° C During the heating with temperature reaching 900° C | 20-40<br>60-70 | 40-50<br>70-80 | 70-80<br>110-130 |          | 120-140<br>200-220 | l    |

Table 56 presents the kerosene feeding rates recommended for shaft furnaces of various sizes during the carburising process. These data are compiled from published literature, and practical results obtained in a number of plants. The author considers it expedient to cut off the carburiser feed one hour beforethetermination of the gas carburising process in order to give the carbon enough time to diffuse into the inner areas of the work and to avoid oversaturation of the outer layers. This is of utmost importance when a thicker case is required.

As the carbon absorption rate on the work surface decreases with holding time, some investigators believe that kerosene should be fed at maximum rate at the beginning of the carburising process and that its supply should then be gradually diminished (Table 57).

Table 57

Kerosene Feed Rates Recommended for Carburising in Shaft Furnaces
(Data by Chirikov V. T.)

| Furnace type                      | Kerosene i                  | fed during the<br>al period | Kerosene fed (drops<br>per min) during the |
|-----------------------------------|-----------------------------|-----------------------------|--------------------------------------------|
|                                   | Drops per min               | Feed duration, hrs          | remaining period                           |
| Ц25, Ц35<br>Ц60, Ц75<br>Ц90, Ц105 | 70-80<br>100-120<br>200-300 | 2-3<br>2-3<br>2-3           | 20<br>30-40<br>50-70                       |

Note. Furnaces may be fed either with artificial or natural gases, instead of the iquid fuel.

The following sequence of technological operations for gas carburising process in shaft furnaces is recommended:

1. Charge the work into the furnace heated to 850-950°C.

- 2. Witness samples for process control should be charged at the same time as the work.
  - 3. Press the cover tightly on the retort.
  - 4. Feed the kerosene according to Table 56.
- 5. Set fire to the waste gases; in a normal process the flame should smoke slightly.
- 6. The termination of the process is determined with the aid of witness samples; to this end, the process is interrupted, the samples extracted and hardened (Table 58).

At present the gas carburising process has been automated by controlling the carburising medium for its dew point.

Table 58

# Approximate Holding Time for Gas Carburising at 900-950° C in "U"-Type Furnaces

| Ti    | me, hrs |      | 2-3     | 4-5     | 6-7     | 8-9     | 9-10    |
|-------|---------|------|---------|---------|---------|---------|---------|
| Layer | depth,  | mm . | 0.3-0.5 | 0.6-0.7 | 0.8-1.0 | 1.1-1.2 | 1.2-1.4 |

Note. Time is counted off from the moment the temperature of 900°C has been attained.

The composition of the waste gases should be within the following limits: carbon dioxide—0.5%, oxygen—0.5%, unsaturated hydrocarbons—10%. Surplus pressure varies from 8 to 25 mm water gauge.

Liquid carburising. This process is practised in a number of plants, in baths, where the carburising component is carborundum (silicon carbide). The usual composition of the bath is: soda ash  $(Na_2CO_3)$ —80%, common salt (NaCl)—10-12%, carborundum (SiC)—8-10%. This compound is currently supplemented with ammonium chloride  $(NH_4Cl)$ , which speeds up the carburising process, and produces active nitrogen, which in conjunction with carbon saturates the surface of the work.

A liquid carburising process such as it is practiced at the Kharkov

Sewing Machine Plant is described below.

The composition of the bath is: soda ash 70-74%, common salt 9-12%, ammonium chloride 8-9%, carborundum 9-10%. The carborundum used is black, coarse-grained, the size of grains being 24-50 mesh (mesh is the number of openings per linear inch).

Soda and salt are melted first, then ammonium chloride is added. As soon as the bath heats up to 850-870°C, carborundum is charged.

Ammonium chloride and carborundum, to avoid vaporisation and rapid burning out, are charged into the bath in paper wire-corded packets, sunk to the bath bottom with a poker, perforated bell or some other object and held there till melting, after which the bath is brought to the carburising temperature through continuous mixing. The process is sometimes accompanied by such intensive foaming that the bath temperature is to be temporarily lowered.

To protect the bath against oxidation, a layer of slag 10-15 mm thick is left over, while the remainder is skimmed. The amount of salt should not exceed  $^2/_s$  of the bath height, the remaining volume being

intended to counteract foaming.

The work subject to carburising should be dry and clean. The temperature of the process averages 850-900°C. Holding time is a function of the case thickness (Table 59). Hardening is carried out either in oil or water depending upon the grade of the steel.

Table 59

Approximate Time of Carburising in a Liquid Carburiser as a Function of Case Thickness

| Case<br>thickness, mm | Duration of the process, hrs | Case<br>thickness. mm | Duration of the process, hrs |
|-----------------------|------------------------------|-----------------------|------------------------------|
| 0.4                   | 1                            | 1.2                   | 4                            |
| 0.6                   | 1.5                          | 1.4                   | 5                            |
| 0.8                   | 2                            | 1.6                   | 6.5                          |
| 1.0                   | 3                            | 1.8                   | 8                            |

Note. The bath should be refreshed every 5-8 hrs of operation by adding carborundum (2-5% of the total salt weight).

A complete replenishment of salt is carried out every 3-4 weeks of continuous bath operation, as the bath thickens and loses carburising ability.

The bath is controlled by observing the following practical symptoms: 1) considerable flaming and foaming (runs against the normal functioning of the bath); 2) the work should possess a uniform silvery colour (dark spots are signs of bath exhaustion).

Carborundum consumption averages 10-12 kg per 1 ton of work. High-temperature carburising. High-temperature carburising, at 1050°C and above, is currently finding increasing application. Pack carburising at the above temperatures is effected in furnaces with silit (silicon carbide) resistors. After carburising, normalising and hardening or double hardening are carried out.

High-temperature gas carburising is a current practice at the Likhachev Plant, where induction heating in a special installation is

being applied.

Protection of work surface not required to be carburised.

1. Positive allowance which is machined off after carburising.

2. Luting (Table 60).

3. Copper-plating (Table 61).

To protect holes against carburising, a mixture of quartz sand and scale (from the hardening tanks) is used, or the apertures are plugged with metallic plugs.

Heat-treatment schedules for carburised work are presented in Ta-

ble 62.

## Lutes Used for Protection against Carburising

| Lute composition           |                  |                                                                                                                                                                                                                                                                                                          |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component                  | %                | Method of manufacture                                                                                                                                                                                                                                                                                    |
| Copper monochloride Minium | <b>7</b> 0<br>30 | The powders are mixed thoroughly and diluted in alcohol rosin varnish (250 g of varnish per litre of ethyl alcohol). The lute is spread over the surface of the part in a uniform layer with the aid of a brush. Layer thickness is equal to 0.5-1 mm                                                    |
| Silica                     | 3                | The paste consists of both the liquid (20-25% by volume) and solid (75-80% by volume) phases. The liquid phase comprises 80% soluble glass and 20% water. Prior to use, both phases are mixed and then spread over the part with a brush. After drying (after 30-40 min) the part is given a second coat |

Table 60

| Lute composition |                          | Walland of manufacture                                                                                       |
|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Component        | %                        | Method of manufacture                                                                                        |
| Sand             | 40<br>44<br>10<br>3<br>3 | The compound is diluted in soluble glass and applied uniformly over the work. The clay should be well ground |
| Talcum           | 50<br>25<br>25           | The clay is well ground. The compound is diluted in soluble glass to paste-like consistency                  |
| Fireclay         | 90-95<br>5-10            | The compound is diluted in water to paste-like consistency                                                   |

Table 61
Relation of Copper Coating Thickness to Depth of Carburising

| Required carburising depth, mm  | Below 0.8 | 0.8-1.2   | Above 1.2 |
|---------------------------------|-----------|-----------|-----------|
| Thickness of copper coating, mm | 0.02      | 0.03-0.04 | 0.05-0.07 |

Table 62 Heat-treatment Schedules for Carburised Articles

| Heat-treatment schedule                                                           | Application                                                                                                                              | Notes |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Hardening from 860-900° C<br>Hardening from 760-800° C<br>Tempering at 160-180° C | For natural coarse-<br>grained steel in-<br>clined to overheating     Whenever extra-high<br>quality is required<br>for carburised parts |       |
| Hardening from 800-850° C<br>Tempering at 160-180° C                              | For natural fine-<br>grained steel     For non-critical parts<br>from natural coarse-<br>grained carbon steel                            |       |

| Heat-treatment schedule                                                                                                                                                                                                                                        | Application                                                        | Notes                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1. a) Tempering at 640-650°C b) Hardening from 850-860°C c) Tempering at 160-180°C d) Sub-zero treatment e) Tempering at 160-180°C                                                                                                                             | For high-alloy steel<br>(grades 18XHBA,<br>12X2H4, 12XH3,<br>etc.) | tempering and                                                                                                     |
| 2. a) Rapid partial cooling in a molten salt or oil from carburising temperature to 250-550°C b) Transfer to a furnace heated to 550°C, and a 4-8 hr holding c) Air cooling d) Tempering at 630-680°C for 8-10 hrs with cooling in air or furnace e) Hardening |                                                                    | The heat-treatment method was proposed by V.T. Chirikov to ensure optimum structure both of the case and the core |
| f) Low-temperature tempering. Hardening from carburising temperature with air-blast cooling to 740-840° C. Tempering at 160-180° C. Sub-zero treatment. Tempering at 160-180° C                                                                                |                                                                    |                                                                                                                   |
|                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                   |

#### 2. NITRIDING

Nitriding (nitrogen-hardening) consists in the saturation of surface layer of steel or cast iron with nitrogen. There exist two varieties of nitriding:

1. Strength-nitriding aimed at increasing hardness, wear resistance and fatigue endurance (Table 63).

2. Anticorrosive nitriding aimed at increasing the resistance to cor-

rosion in water (fresh) and in humid atmosphere (Fig. 16).

Strength-nitriding. Nitriding is chiefly applied to special grades of steel (35 X IOA and 38 X M IOA), containing aluminium, with a view to raise their hardness. In addition to these, alloy tool and stainless steels are also nitrided. Maximum hardness, after nitriding, is displayed by articles made from grade 35 X IOA and 38 X M IOA steels (1000-1150  $H_V$ ).

Plain alloy structural steels—chrome-nickel, chrome-nickel-molybdenum, etc.—are nitrided to increase fatigue endurance. Surface hard-

ness of these steels, after nitriding, is 600-700  $H_{\nu}$ .

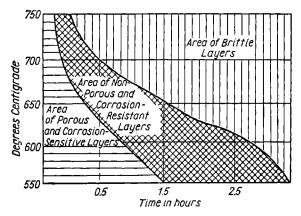



Fig. 16. Diagram for computing optimum schedules of anticorrosion nitriding

Cast irons, subject to nitriding, should contain some aluminium and chromium. Hardness of cast irons following nitriding is  $1000 \ H_{V}$ .

Prior to nitriding, steel parts are hardened and tempered at 550-650°C, while those from cast iron are hardened and tempered at 600-650°C.

Protection against nitriding. Areas not to be nitrided are to be insulated by one of the following methods: (1) tinning; (2) nickel plating; (3) luting with compounds composed of three parts of powdered tin, one part of powdered lead and one part of powdered chromium oxide. A well ground mixture is diluted in a solution of zinc chloride. After luting, the part should be dried.

Strength-nitriding checking. 1) Hardness is checked by instruments with diamond tips, at low loads (Table 8). 2) Brittleness is characterised by the distortion of the diamond indentation (shearing of the indentation edges). 3) The layer depth is determined by etching a ground

Strength-nitriding Schedules

|                       |         |                      |                           | Silving                       | STATE THE THE STATE OF THE STAT | S Contract                | 3          |                      |                           |           |                                       |
|-----------------------|---------|----------------------|---------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|----------------------|---------------------------|-----------|---------------------------------------|
|                       |         |                      | lst step                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2nd step                  |            | . 8                  | 3rd step                  |           |                                       |
| Nitriding<br>schedule | Version | Тетрега-<br>Сиге, °C | Dissociation<br>degree, % | гіте, һтз                     | Tempera -<br>O°, 49111.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissociation<br>degree, % | erd , smiT | -sraqmeT<br>D°, suri | Dissociation<br>degree, % | end ,emiT | Thickness of<br>nitrided<br>layer, mm |
| One-step              | - 2     | 480-520              | 20-25                     | 20-25 Up to 90<br>30-50 36-65 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                         | ı          | ı                    | 1                         | I         | 0.5-0.7                               |
| Two-step              | - 6     | 500-510              | Below<br>25<br>30         | 18-20                         | 550-570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35-55                     | 20-24      | I                    | 1                         | 1         | 0.5-0.7                               |
| Three-step            | 1       | 500-520              | 20-35                     | 12-15                         | 550-570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40-60                     | 12-15      | 500-520              | 40-60                     | 12-15     | 0.5-0.8                               |

butt of a sample with a 4% solution of aqueous nitric acid, as well as by the nature of the fracture and the microsection.

Anticorrosion nitriding. Articles from carbon and alloy steels and cast iron may be subjected to anticorrosion nitriding. Prior to nitrid-

ing, the parts should be thoroughly degreased.

Nitriding of work from high-carbon steels requiring high hardness should be followed by hardening at adequate, for the given steel, temperature.

The degree of dissociation should be maintained within the range of

1 ne de 35-70% .

Anticorrosion nitriding checking is effected through dipping or wetting the part with 10% aqueous solution of blue vitriol (copper sulfate) for 1-2 min. Copper is deposited at pores, fractures, and other defective points.

Uniform heating throughout the muffle furnace is essential for successful nitriding. The volume of the retort should be filled with parts

to maximum capacity.

#### 3. CYANIDING

Cyaniding consists in the simultaneous saturation of the surface of the steel both with carbon and nitrogen. Cyaniding is carried out in liquid, gas or solid media.

Two types of cyaniding are distinguished: (a) high-temperature cyaniding aiming to increase hardness, wear resistance, and fatigue endurance of parts from structural steels; (b) low-temperature cyaniding intended to increase hardness and red hardness of tools from high-speed steel.

1. High-temperature liquid cyaniding. To prepare the bath for operation, first neutral salts (soda ash, etc.) are melted, then cyanides are



Fig. 17. Effect of duration of cyaniding at 900° and 950°C on the depth of cyanided layer



Fig. 18. Effect of duration of cyaniding of steel 20X at 850°C on the depth of cyanided layer

added. In baths containing compounds 6 and 7 (Table 64) excessive foaming occurs when cyanide compound is charged; the excess foam is removed, a thin layer being left to protect the bath from exhaustion. The melt surface of a deep cyaniding bath (compounds 4 and 5) is covered with a layer of graphite, 3-4 mm thick, for the same reasons.

The working temperature averages 830-860°C for common cyaniding and 900-950°C for deep cyaniding (Figs. 17 and 18).

The refreshing of baths with sodium cyanide is effected by adding high-percentage sodium cyanide at a rate of 0.5-1% of the weight of the salts in the bath per hour; for baths containing the " $\Gamma$ И $\Pi$ Х" cyanide compound, the additions should average 2-4% of the weight of the

salts in the bath every 2 hours of operation.

The author practises high-temperature cyaniding, in conjunction with bright hardening, in a bath containing 38-40% sodium chloride, 38-40% potassium chloride and 20-24% potassium ferrocyanide. The latter should be well dried and added by small portions, while mixing the bath. On charging, foam and slag are formed, and they should be removed.

Table 64
Composition of Baths for High-temperature Cyaniding

|                                 | Composition of baths, %        |                               |                                     |                                              |                     |                    |  |  |  |  |
|---------------------------------|--------------------------------|-------------------------------|-------------------------------------|----------------------------------------------|---------------------|--------------------|--|--|--|--|
| Compound<br>No.                 | Sodium<br>cyanide              | "ГИПХ"<br>cyanide<br>compound | Soda ash                            | Common<br>salt                               | Calcium<br>chloride | Barium<br>chloride |  |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 25<br>40<br>45<br>50<br>6<br>— | <br><br><br>9<br>9            | 15-20<br>30<br>35-40<br>—<br>—<br>— | 55-60<br>30<br>15-20<br>15<br>14<br>26<br>37 |                     | 35<br>80           |  |  |  |  |

Note. The "ΓΜΠΧ" cyanide compound consists of: 43-49% Ca(CN)<sub>3</sub>; 2-3% CaCN<sub>2</sub>; 30-35% NaCl; 14-16% CaO: 4-5% C.

After requisite holding in the bath, the work is cooled in a 50% aqueous solution of caustic soda. Hardened parts are clean and bright. The depth of cyaniding equals 0.15 mm, the holding time for the abovementioned compound averaging 15 min.

2. High-temperature gas cyaniding. Gas cyaniding is carried out in a mixture of ammonium and carbonaceous gases used for gas carburising. The cyaniding mixture comprises: ammonium 20-30%, carburis-

ing gas 70-80%.

Benzene, pyrobenzene, kerosene and synthol are used as materials for producing carburising gas. They are fed dropwise direct into the retorts

of shaft furnaces.

The working temperature of gas cyaniding should average 840-860°C. For parts of simple shapes, the temperature may be raised to 900°C.

Approximate depth of cyaniding after 1 hour of operation at 850°C

is 0.12-0 16 mm (Fig. 19).

The hardening of the work, following liquid and gas cyaniding, should be effected as soon as the work is withdrawn from the furnace

at the fermination of cyaniding. On high-temperature cyaniding, the work is air-blast cooled. After hardening, the parts are tempered at 160-200°C. Small non-critical parts from low-carbon steels are not tempered at all.

Parts to be machined after cyaniding are air-cooled, then tempered at 630-650°C; after machining they are hardened and then tempered

again.

Areas not to be cyanided are copper-plated, the thickness of the coat being 0.018-0.025 mm; the copper-plated layer should be compact.

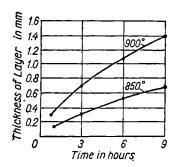



Fig. 19. Variation in the depth of cyanided layer in relation to the duration of gas cyaniding at various temperatures

The cyanided parts are checked in the shop by testing hardness with the aid of a file, diamond pyramid or cone, depending on cyaniding depth.

3. Low-temperature liquid cyaniding. Tools are cyanided after final machining, sharpening, cleaning, and degreasing. The temperature of the process averages 540-560°C (Tables 65 and 66).

 ${\it Table~65}$  Composition of Baths for Low-temperature Cyaniding

| Sodium<br>cyanide   | Potassium<br>ferrocyanide | Soda ash            | Sodium or potassium hydrate | Melting<br>point, °C |
|---------------------|---------------------------|---------------------|-----------------------------|----------------------|
| 50-55<br>85-90<br>— | <u>-</u><br>80-90         | 23-30<br>10-15<br>— | 15-20<br><br>10-20          | 515<br>490-500       |

Relation of Holding Time to Cyaniding Depth in Low-temperature Cyaniding of High-speed Steels

| Holding                                 | Layer thicknes<br>below-me                                  | s in mm, the bath co                                        | ntaining the<br>yanide                                      |
|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| time, min                               | 90%                                                         | 50%                                                         | 30%                                                         |
| 5<br>15<br>30<br>45<br>60<br>120<br>360 | 0.008<br>0.020<br>0.035<br>0.037<br>0.045<br>0.055<br>0.080 | 0.006<br>0.018<br>0.030<br>0.035<br>0.043<br>0.055<br>0.075 | 0.006<br>0.015<br>0.030<br>0.035<br>0.040<br>0.052<br>0.070 |

Tools smaller than those indicated in Table 67 are not cyanided because of high brittleness. Optimum cyaniding depth for cutting tools is 0.02-0.035 mm. Prior to cyaniding, the tools should be preheated in a separate furnace or near the crucibles. Long, slim tools should be

suspended throughout the heating and cooling.

One of the Kiev plants performs low-temperature cyaniding in a bath with a slightly poisonous compound of the following composition: 70% sodium hydrate and 30% potassium ferrocyanide. Potassium ferrocyanide is added to the bath in the same way as for high-temperature bath. The bath is analysed for CN and CNO once every two days. Normal cyaniding requires at least 5% CNO. Potassium ferrocyanide is added as the bath exhausts itself. The above-mentioned plant cyanides dies for pressure casting; for more information refer to page 185.

4. Low-temperature gas cyaniding. The composition of the gas cyaniding medium and the proportions of the gases are the same as for

high-temperature cyaniding.

After being held at 540-560°C the tools are air-cooled or cooled in a furnace down to 200°C. In the latter case the tools acquire a silvery

tint (Table 68).

One of the plants in Leningrad conducts low-temperature cyaniding of tools from high-speed steel in a "IL25" furnace, the kerosene feed amounting to 60-80 drops per minute and that of ammonium to 2 litres per minute. Aluminium-silicon alloy turnings are used as catalyst. Taking over the practice of the above-mentioned plant the author introduced gas cyaniding of stamping dies from grade 3X2B8 steel in a shopmade electric furnace with a retort 200 mm in diameter and 600 mm high. The feeding rates are: kerosene—10-15 drops per minute, ammonium—1 2-1.4 litres per minute. Positive mixing of the medium is essential. Fig. 20 presents a schematic view of a cyaniding furnace.

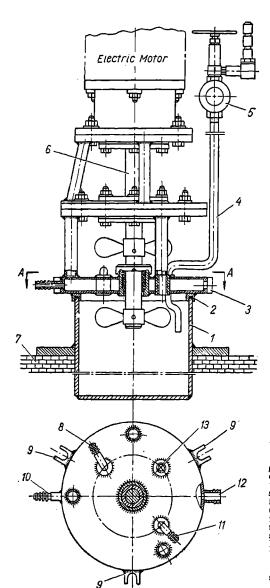



Fig. 20. Gas cyaniding installation:

1 — muffle; 2 — rubber gasket; 3 — water-cooled muffle Ild; 4 — tube for feeding kerosene into the furnace; 5 — kerosene dropper; 6 — impeller shaft; 7 — furnace lining; 8 — ammonia feed sleeve; 9 — shackle for fastening lid to crucible; 10 — water inlet sleeve; 11 — gas outlet sleeve; 12 — water outlet sleeve; 13 — kerosene feed orlice

Table 67

Recommended Holding Time for High-speed Steel Tools Cyanided in Liquid Media with Minimum Content of 50% Sodium Cyanide

| Tools                                                                                                                                     | Diameter or<br>thickness, mm                            | Holding<br>time at<br>560°C, min         |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|
| Drills, reamers, and counterbores                                                                                                         | 3-5<br>6-10<br>10-15<br>15-20<br>20-30                  | 6<br>8<br>10<br>12<br>15                 |
| Taps                                                                                                                                      | Above 30<br>5-8<br>8-12<br>12-20<br>20-30               | 16-23<br>5<br>8<br>10<br>12              |
| Broaches                                                                                                                                  | Above 30<br>5-10<br>10-15<br>15-20<br>20-30<br>Above 30 | 14-18<br>8<br>12<br>14<br>16<br>20-25    |
| Threading cutters with non-honed teeth                                                                                                    | 25-35<br>35-50                                          | 12<br>15                                 |
| Threading cutters with honed teeth                                                                                                        | Above 50<br>25-35<br>35-50                              | 18<br>10<br>12                           |
| Tangential threading dies Hob cutters with non-honed teeth Hob and slot cutters with honed teeth Cylindrical profile cutters and end cut- | Above 50<br>50-60<br>Above 60<br>50-60<br>Above 60      | 15<br>8-10<br>30<br>40-50<br>16<br>20-26 |
| ters with honed teeth                                                                                                                     | Up to 30<br>30-40<br>40-60<br>Above 60                  | 10-12<br>16<br>20<br>25-30               |
| Disk milling cutters                                                                                                                      | 1-2<br>2-5<br>5-10<br>10-15<br>Above 15                 | 6<br>8<br>12<br>15<br>18-23              |
| Forming and tangential cutters Cutters for tooth-cutting machine Turning and shaping tools Gear cutters                                   |                                                         | 12-30<br>10-12<br>12-40<br>15            |

Note. Holding above the recommended limits results in a brittle cyanided layer.

5. Low-temperature solid cyaniding. The cyaniding mixture consists of the following well-mixed components: 60-80% charcoal (size of grains approximates 3-6 mm) and 20-40% powdered potassium ferrocyanide. The tools are packed into iron containers in the same manner as for carburising (Fig. 15).

The temperature of the process is 550-560°C. Cooling is effected with-

out unloading the containers, in the air, down to 100-200°C.

Some of the defects which are met with in case-hardening of steel are listed in Table 69.

#### 4. CALORISING

Calorising or aliting is employed to increase the resistance to scaling of steel articles working at high temperatures, and consists in the saturation of steel surface layer with aluminium. Calorising can be carried out in solid, liquid or gas media, but at the present time solid calorising treatment is most widely used. In this method, clean, degreased articles are packed into steel containers filled with thoroughly mixed powder-like mixture, consisting of 99.5% ferro-aluminium alloy and 0.5% ammonium chloride.

Articles are packed in the same manner as for the pack-carburising procedure. Areas not to be calorised are covered with asbestos or luted with fireclay. Emphasis should be placed upon thorough luting of the containers to avoid oxidation of the calorising mixture. A calorising compound consists of used and fresh mixtures (80% and 20%, respectively). The temperature of the process is within 850-1000°C. Calorising rate is approximately 0.05-0.08 mm per hour depending upon the temperature of the process.

The calorised layer is highly brittle which cannot be tolerated for a number of critical parts. These calorised parts are annealed at 900-1000°C for 3-6 hours to bring down the aluminium content of the sur-

face layer at the expense of its diffusion into the inner areas.

In thin parts, this may lead to a through calorising of the article and cause brittleness throughout the whole section. Such defects should be prevented by adequate choice of temperature and duration of annealing.

#### 5. SULPHIDING (SULPHATING)

Sulphiding is used to raise wear resistance of machine parts and certain tools manufactured from high-speed steel by saturating their sur-

face layers with sulphur.

Sulphiding is brought about through treatment in liquid or solid media. In the liquid sulphiding process degreased dry articles are placed in baths containing: 1) sodium chloride—17%; 2) calcium chloride—38%; 3) barium chloride—25%; 4) iron sulphide—13.2%; 5) sodium sulphate—3.4%, and 6) potassium ferrocyanide—3.4%.

The former three salts are melted first, then, gradually, the remaining components of the bath are fused. After the complete fusing of the salts and subsequent cleaning of the bath, the latter's surface is covered with graphite. Sulphiding is effected within the 560-750°C temper-

Table 68

Recommended Holding Time for Tools from High-speed Steels in Gas and Solid Cyaniding

|                                                                                  | Diameter or thickness.                             | Holding time in hours<br>at 550-560° C              |                                                     |  |
|----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|
| Tool                                                                             | mm                                                 | In gas<br>medium                                    | In solid<br>medium                                  |  |
| Drills, counterbores, reamers Taps                                               | Up to 15<br>15-25<br>25-50<br>Up to 15             | 1.0-1.5<br>1.5-2.0<br>2.0-3.0<br>0.5-1.0            | 2.0-2.5<br>2.5-3.0<br>3.0-4.0                       |  |
| Threading cutters:                                                               | 15-25<br>25-50                                     | 1.0-1.5<br>1.5-2.0                                  | _                                                   |  |
| <ul><li>a) honed teeth</li><li>b) non-honed teeth</li></ul>                      | 25-50<br>Above 50<br>25-50<br>Above 50             | 1.0-1.5<br>1.5-2.0<br>1.5-2.0<br>2.0-2.5            | 1.5-2.0<br>2.0-3.0<br>2.0-2.5<br>2.5-3.0            |  |
| Threading chasers and dies:  a) screw pitch up to 2 mm b) screw pitch above 2 mm |                                                    | 1.0-1.5                                             | 1.5-2.0                                             |  |
| Worm and slitting cutters a) honed teeth                                         | 50-75<br>Above 75                                  | 1.0-1.5<br>1.5-2.0                                  | 2.0-2.5<br>2.5-3.0                                  |  |
| b) non-honed teeth  Cylindrical, profile and end cutters                         | 50-75<br>Above 75<br>Up to 50<br>50-75<br>Above 75 | 1.5-2.0<br>2.0-2.5<br>1.0-1.5<br>1.5-2.0<br>2.0-2.5 | 2.5-3.0<br>3.0-4.0<br>2.0-2.5<br>2.5-3.0<br>3.0-4.0 |  |
| Disk cutters                                                                     | Up to 10<br>Above 10                               | 1.0-1.5                                             | 2.0-3.0<br>3.0-4.0                                  |  |
| Round-nose cutters                                                               | Up to 5                                            | 1.0-1.5                                             | 2.0-2.5                                             |  |
| Tangential cutters                                                               | 5-15<br>10×10<br>25×25                             | 1.5-2.0<br>1.5<br>2.0                               | 2.5-3.0<br>3.0<br>3.5                               |  |
|                                                                                  |                                                    |                                                     |                                                     |  |

Notes. 1. Holding time is counted off from the moment the tool is heated through.

2. Holding time in excess of that recommended results in a brittle cyanided layer.

| Processes      |
|----------------|
| Case-hardening |
| Ξ,             |
| Defects        |

|                                                                               | Derects III                                                     | Detects in case-naturaling Processes                                                                          |                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defect                                                                        | Detection                                                       | Cause                                                                                                         | Prevention and correction                                                                                                                                                                                           |
|                                                                               | 1. Defects                                                      | 1. Defects in Carburising of Steel                                                                            |                                                                                                                                                                                                                     |
| Pitting Vitreous bulges on the surface of articles                            | Visual inspection<br>Visual inspection                          | Over 3-6% of sulphate in the carburiser Presence of sand in the carburiser                                    | Prevention: Keep sulphate content below 3-6% Prevention: Keep sand out when storing or unpacking                                                                                                                    |
| Uneven carburising<br>depth                                                   | carburising Fracture inspection                                 | Poor mixing of carburise.<br>Uneven heat soaking of<br>containers                                             | carouniser. Pass the carburiser through a sieve Prevention: Thorough mixing of the carburiser; use of a solution of carbonates                                                                                      |
| Excessive carburising depth. Increased carbon content in the carburised layer | Fracture inspection<br>Microscope inspection<br>of microsection | Elevated temperature and holding time on carburising. Strong carburiser used                                  | in the manufacture of the carburiser. Uniform heat soaking of the containers Correction for excess carbon: Hardening in oil or normalising at 900-910° C for carbon steels and 850-860°C for alloy steels with sub- |
| Low carbon content in<br>the carburised layer                                 | Hardness test. Microsection inspection                          | Carburising at low temperature. Weak solid carburiser or insufficient gas or kerosene feed in gas carburising | sequent hardening at 760° C<br>Correction: Repeated carbu-<br>rising at normal tempera-<br>ture and with normal car-<br>buriser Prevention: Use adequately<br>strong carburiser                                     |

| Correction: Repeated carburising at normal temperature and with normal car- | buriser. Prevention: Use stronger carburiser Correction: Repeated short-term carburising at normal temperature. Prevention: Cooling of the boxes       | in the air  Prevention: Strict conformance to technology chart. Use natural coarse-grained | Correction: Heating in containers, filled with charcoal plus 3-5% soda ash, up to 920-940°C and holding at this temperature for | 2-4 hours Correction: 1. Sub-zero treatment. 2. Improving with subsequent hardening from 750° C. 3. Hardening with air-blast cooling to 650- | Correction: Accurate proportioning of carburising material fed to the furnace |   |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|
| Ca                                                                          | kerosene feed in gas car-<br>burising Too slow cooling of contain-<br>ers in the furnace after<br>carburising (particularly<br>when coarse-lumped car- | buriser is used) Dirty, greasy work surface, shrinkage of carburiser, abnormality of steel | Use of a strong carburiser                                                                                                      | High carbon content in carburised layer; too rapid quenching                                                                                 | Excessive gas or kerosene<br>feed to the furnace                              |   |
| Fracture and microsection inspection                                        | Hardness test. Micro-<br>section inspection                                                                                                            | Hardness test                                                                              | Visual inspection                                                                                                               | Hardness test                                                                                                                                | Visual inspection                                                             |   |
| Insufficient carburising depth                                              | Surface decarburisa-<br>tion of carburised<br>layer                                                                                                    | Non-uniform carburis-<br>ing                                                               | Scaling-off of hardened<br>carburised layer                                                                                     | Increased amounts of Hardness test residual austenite.  Low hardness. Defect is characteristic of high-alloy steels                          | Considerable sooty deposits on gas carburising                                | • |

Table 69 continued

| Prevention and correction |                                  | - Pi                                                                                    |                                                                       | <u>a</u> <u>a</u>                                                                                                                                                                  |
|---------------------------|----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cause                     | 2. Defects in Nitriding of Steel | Warping and distor- Checking for size and stresses caused by the differ- heat core core | Presence of distinct boundary between the nitrided layer and the core | Slag inclusions in the part surface Excessive saturation of the skin by nitrides as a result of coarse-grained structure and surface decarburisation on preliminary heat-treatment |
| Detection                 | 2. Defects                       | Checking for size and<br>beat                                                           | Visual inspection                                                     | Bulges on the surface Visual inspection Brittleness (surface Visual inspection. Diapiting) of the nimond pyramid hardided layer ing of indentations                                |
| Defect                    |                                  | Warping and distortion                                                                  | Cracking (scaling-off<br>of the nitrided lay-<br>er)                  | Bulges on the surface Visual inspection pitting) of the nitrided layer trided layer ing of indental                                                                                |

|   | Prevention: Phosphating prior to nitriding and careful preparation of the surface of the articles | Correction: Repeated nitriding with shorter holding time. For small-sized threaded parts this defect is irreparable |                                  | Prevention: Strict checking of neutral salts for sulphates Prevention: Oil hardening with air-blast cooling down to 600-650° C. Correction: Sub-zero treatment | Correction: Heating a salt-<br>petre bath at 550-560° C<br>with a 30-min holding                           |    |
|---|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|
|   | iamond pyramid Local tinned areas on the hardness test nitrided surface                           | Insufficient holding time, great dissociation degree of ammonium, low temperature of the process                    | 3. Defects in Cyaniding of Steel | Over 0.7-0.8% of sulphates in neutral bath salts Inadequate cooling rate                                                                                       | Prolonged holding and heating in high-percentage baths. High ammonium content (above 40%) in gas cyaniding |    |
| _ | Д                                                                                                 | Testing by 1-min immersion in a 10% aqueous solution of blue vitriol                                                | 3. Defects                       | Visual inspection<br>Hardness test                                                                                                                             | Inspection of the indentation after the diamond pyramid hardness test                                      |    |
| _ | Uneven hardness. Characteristic of parts subjected to local                                       | Invitating Insufficient or porous layer. Characteristic of anticorrosion ni- triding                                |                                  | Pitting on high-tem- Visual inspection perature cyaniding Residual austenite in the layer, low hardness after hardening. Characteristic of al-                 | loy steels Brittleness of cyanided layer of articles from high-speed steel                                 |    |
|   |                                                                                                   |                                                                                                                     |                                  |                                                                                                                                                                |                                                                                                            | 10 |

ature range, but in no case above the tempering temperature of the article. Approximate sulphiding rate is 0.1 mm per hour at 560°C. The duration of sulphiding of high-speed steel tools, depending upon tool size, is within the limits of 1 to 3 hours. In solid sulphiding process, the articles are packed in steel containers filled with a compound having the following composition: 1) ground iron sulphide—30-40%;

2) graphite-50-60%; 3) potassium ferrocyanide-10%.

The heating temperature is the same as for liquid sulphiding. Holding time in solid sulphiding is approximately three times greater than in the liquid process. After sulphiding, the parts are flushed in hot water and heated in an oil bath at 110-120°C in order to protect them against corrosion. The hardness of the articles after sulphiding remains practically unaltered.

## 6. CLEANING AND PICKLING OF ARTICLES AFTER HEAT-TREATMENT

Articles are cleaned from salts, oil, and dirt in an aqueous solution containing up to 3% caustic soda or 10% soda ash. The temperature of the solution is approximately 80-90° C. Flushing takes 5 min and longer. The solution is replenished at least every ten days.

The articles are descaled in sand- or shot-blasting installations and

in pickling baths.

Sand-blasting makes use of dry river sand, with grains sized to 1-2 mm, the necessary air pressure being within 5-6 atmospheres.

Sand-blasting may be replaced, for the sake of improving the working conditions, by hydro-sandblasting, in which the articles are dressed by a mixture of 50% sand and 50% water. This mixture is atomised by high-pressure air supplied to the mixer outlet.

Hydraulic cleaning using a 150-atmosphere water jet may also be

used to dress larger articles.

Shot-blasting uses shots 0.5-2.0 mm in diameter.

Ferrous metals are pickled in a 5-18% aqueous solution of sulphuric acid or 7-20% aqueous solution of hydrochloric acid. To avoid overpickling, the solution carries 1% of the "KC" or 0.5% of the "K" organic additions (by volume of the pickling solution). The addition is effective for 100-150 hours. Pickling time ranges from 30 to 60 min, the temperature averaging 40-90°C for the sulphuric acid and 30-60°C for the hydrochloric acid. The temperature should be increased as acid concentration decreases. The minimum permissible acid content of the working bath is 3-4%.

Stainless steels are pickled at 40-50°C in a bath composed of: 47% hydrochloric acid, 5% nitric acid and 48% water. They are then immersed in a 5% solution of nitric acid and held over for 3-5 min. Pickled articles are flushed in warm water, then in a 0.5% solution of caustic soda, and dried at 120-150°C to eliminate pickling brittleness.

Overpickling may occur when chemical descaling is applied; because of this, parts finished to size or designed with negligible machining allowance are to be electrochemically pickled in special shops.

#### 7. ANTICORROSION PROTECTION FOR ARTICLES AFTER HEAT-TREATMENT

After heat-treatment associated with the use of salts, alkalis, water, and various other materials, which may cause corrosion of articles on long-term storage, the latter are given the anticorrosion treatment involving a 5-min dipping of cleaned, flushed and dried articles in a 20-30% aqueous solution of sodium nitrite; this done, the articles are wrapped in paper impregnated with the same solution.

In such a wrapping, the parts can be stored for a long period of time.

### Chapter VI

#### HEAT-TREATMENT TECHNOLOGY

#### 1. APPROXIMATE HEAT-TREATMENT SCHEDULES AND MECHANICAL PROPERTIES OF VARIOUS GRADES OF STEELS

Plain carbon steels (grades from Cr. 1 through Cr. 7) are heat-treated and case-hardened according to charts specified for structural steels with similar carbon content.

Free-cutting steel is heat-treated and case-hardened according to the

same charts as above.

High-quality structural carbon steel, depending upon carbon content and application, can be normalised, annealed, hardened or carburised. In shop practice, steels with up to 0.5% carbon are normalised, while those with a higher carbon content are annealed to improve machinability. Cooling rate is 50-150°C per hour down to 500-600°C with subsequent air-cooling.

Annealing is to be carried out in the lower range of temperatures indicated in Table 70, while the upper temperature range is preferred

for normalising.

One must bear in mind that steels of the medium-carbon grades (grades 45, 50, etc.) are inclined to cracking when hardened in water, and they should be quenched with intermediate transfer to oil bath.

Steels with high manganese content have a tendency to overheat. and because of this their heating and holding time should be as short as possible.

After tempering at 400-600°C, manganese steel should be cooled

rapidly so as to prevent temper brittleness.

Steel castings. Large steel castings which acquire quite a coarsegrained non-uniform structure as a result of slow cooling are, first, homogenised at Ac. +150-250°C, then annealed at normal temperature.

Medium- and small-size steel castings which are currently produced in great numbers by precision casting are, as a rule, annealed or normalised at  $Ac_1+20-50^{\circ}C$  for hypocutectoid steels and at  $Ac_1+20-60^{\circ}C$ 30°C for eutectoid and hypereutectoid steels. Holding time on annealing and normalising should be increased by 1.5 times as compared to that specified for forgings and rolled blanks.

Castings can be, depending upon the specifications, subjected to improving (heavy duty machine parts) or hardened with subsequent low-temperature tempering (tools, etc.) according to usual schedules.

Steel castings subjected to any kind of heat-treatment are less ductile than forgings and rolled stock.

Approximate Heat-treatment Schedules and Mechanical Properties of Quality Structural Carbon Steels

|       | For Far-                                                       |                   | e.                           | Mechanical properties  |                      |                                |                    |
|-------|----------------------------------------------------------------|-------------------|------------------------------|------------------------|----------------------|--------------------------------|--------------------|
| Grade | Heating to perature hardening, normalisin or full anne ing, °C | Cooling<br>medium | Tempering<br>temperatu<br>°C | Hard<br>H <sub>B</sub> | iness R <sub>C</sub> | Tensile<br>strength,<br>kg/mm² | Elonga-<br>tion, % |

## Carbon Steels with Normal Manganese Content Steels Subject to Carburising

| 08<br>10<br>15<br>20 | 900-960<br>900-940<br>890-930<br>880-920 | Air<br>Air<br>Air<br>Air | <br> | 131<br>137<br>143<br>156 |   | 32<br>34<br>37<br>41 | 33 31 31 27 25 |
|----------------------|------------------------------------------|--------------------------|------|--------------------------|---|----------------------|----------------|
| 20                   | 880-920                                  | Air                      | _    | 150                      | _ | 41                   | 25             |
|                      |                                          |                          |      |                          |   |                      |                |

## Steels Subject to Improving

| 25 | 860-900    | Water  | 200-300   | ı <del>-</del> | 33-27   | 1        | I —      |
|----|------------|--------|-----------|----------------|---------|----------|----------|
| 30 | 850-890    | Water  | 200 300   |                | 35-30   |          | _        |
|    |            |        | 600       |                |         | 55       | 20 .     |
| 35 | 840-880    | Water  | 300-400   | [ <del>-</del> | 50-41   | <b> </b> |          |
|    |            |        | 400-500   | i —            | 41-31   | l — I    | _        |
|    |            |        | 500-600   | _              | 31-23   | l —      |          |
| 40 | 820-860    | Water  | 200-300   |                | 52-48   |          |          |
| -  |            | ]      | 300-400   |                | 48-41   | ] _ '    |          |
|    |            |        | 400 - 500 |                | 41-33   |          |          |
|    |            |        | 500-600   |                | 33 · 22 | <u> </u> |          |
| 45 | 810-840    | Water  | 200-300   | :              | 54-50   | l _      | _        |
| 50 |            |        | 300-400   | _              | 50-41   | l        | _        |
|    |            |        | 400-500   |                | 41-33   |          |          |
|    |            |        | 500-600   |                | 33-24   | l        | _ `      |
|    |            |        | 600-700   |                | 24-15   | l        |          |
| 55 | 790 - 830  | Water  | 430-450   |                | 42-33   |          |          |
| 60 | 785-820    | Water, | 400       | 321            | _       |          |          |
|    |            | oil    | 550-620   | 241-207        |         |          |          |
| 65 | 785-815    | Water, | 300-400   | 2.7 20.        | 52-45   |          |          |
| -  |            | oil -  | 400-500   | _              | 45-37   | l        | <u> </u> |
|    |            | "      | 500-600   |                | 37-28   | l        | :        |
| 70 | 770-815    | Water, | 400       | _              | 46-39   |          | _ ~      |
| 75 | 010        | oil    | 610-670   | 260 230        | 10-03   |          |          |
| 80 | 770-800    | Water, | 375-400   | 200-200        | 49-40   | !        |          |
| 85 |            | oil    | 560-600   |                | 33-26   | i i      |          |
|    |            |        | 200-000   | <del>-</del>   |         | -        | · _      |
|    |            |        |           |                |         |          |          |
| ı  | <b>5</b> . | Ė      |           | ا . ا          |         |          | ļ        |
|    |            |        |           |                |         |          |          |

| or g                                                                    |                   | <u> </u>                     | Me                     | chanical pr             | operties                       |                    |
|-------------------------------------------------------------------------|-------------------|------------------------------|------------------------|-------------------------|--------------------------------|--------------------|
| Grade Heating te perature for hardening, normalisin or fullanne ing, °C | Cooling<br>medium | Tempering<br>temperatu<br>°C | Haro<br>H <sub>B</sub> | iness<br>R <sub>C</sub> | Tensile<br>strength,<br>kg/mm² | Elonga-<br>tion, % |

#### Carbon Steels with Increased Manganese Content Steels Subject to Carburising

| 15F ! | 880-920 | 1 Air | i — | 163 | I — | 40 | 24 |
|-------|---------|-------|-----|-----|-----|----|----|
| 20Γ   | 860-900 | Air   |     | 197 |     | 43 | 22 |
| 25Γ   | 850-890 | Air   |     | 197 |     | 43 | 22 |

## Steels Subject to Improving

|     |         | ••      |         |               |            |     |     |
|-----|---------|---------|---------|---------------|------------|-----|-----|
| 30Γ | 840-880 | ) Water | 200-220 | _             | 54-52      | 1 - | i — |
|     |         |         | 400-500 | _             | 38-33      | l — | _   |
|     | :       |         | 600     | 196           | i —        | 70  | 15  |
| 40Γ | 820-860 | Water   | 600     | 235           |            | 80  | 15  |
| 50r | 800-840 | Water,  | 200     | _             | <b>5</b> 0 |     |     |
|     |         | oil     | 550-600 | 295-246       |            | 85  | 8   |
| 60Г | 790-820 | Water,  | 200-220 | _             | 60-56      |     |     |
|     |         | oil     | 380-420 | _             | 46-40      |     |     |
|     |         | l :     | 500-600 | 302-269       | l —        | 85  | 9   |
| 65Γ | 790-815 | Water.  | 150-200 | _             | 60-58      | _   | _   |
|     |         | oil '   | 200-300 |               | 58-54      |     | _   |
|     |         |         | 300-400 | <del></del> . | 54-47      |     |     |
|     |         |         | 400-500 |               | 47-39      |     | _   |
|     | )       |         | 500-600 | -             | 39-30      |     |     |
| 70F | 780-800 | Water,  | 200-220 |               | 62-58      |     | _   |
|     |         | oil ´   | 400-450 | _             | 46-40      | _   | _   |
|     | ,       |         | ] [     |               |            |     |     |
|     |         |         | ]       |               |            |     |     |
| ,   |         | J.      | ,       |               |            |     |     |

Notes. 1. After carburising, steels are hardened and annealed, according to usual schedules.

2. Mechanical properties of steels mentioned in the table refer to samples 60-80 mm in cross-section.

It should be borne in mind that steel castings, supplied to the heat-treatment shops, show a decarburised outer layer, the decarburisation being sometimes very high. Decarburisation in the casting bay is

caused by scales present in the moulding sand. When decarburisation is slight, the defect can be corrected by annealing in a carburising medium. Castings are rejected if there is considerable decarburisation.

Table 71

Approximate Heat-treatment Schedule and Hardness Number of Steel Used for Plough Shares

| Grade of steel | Heating temperature on<br>hardening, normalising or<br>full annealing, °C | Cooling<br>medium | Tempering<br>tempera-<br>ture, °C | Rockwell hardness number, $R_C$ |
|----------------|---------------------------------------------------------------------------|-------------------|-----------------------------------|---------------------------------|
| Л53            | 800-820                                                                   | Water             | 180-250                           | 58-55                           |
|                |                                                                           |                   | 250-300                           | 55-52                           |
|                |                                                                           |                   | 300-350                           | 52-50                           |
|                |                                                                           |                   | 350-400                           | 50-44                           |
|                | l                                                                         |                   |                                   | l.                              |

Structural alloy steels are either carburised or improved, depending on their carbon content. Alloy steels have lower heat conductivity, and because of this fancy-shaped parts should be heated slower than those from carbon steel.

Table 72 presents methods for softening alloy steel. Some grades of complex alloy chrome-nickel steels cannot be annealed and are softened only by means of high tempering with prolonged holding time. The parts are cooled down to 500°C within the furnace, and then in the air.

It is a customary practice in some plants to substitute high tempering for annealing for other grades of steel as well, as tempering is simpler than annealing, and gives good results. When one is not certain of the correctness of the forging procedure used for treating blanks, the latter should be normalised prior to tempering. Approximate heat-treatment methods for alloy steels are given in Table 73. Hardened parts from alloy steels containing chromium or manganese should be cooled in oil or air, after tempering, to prevent temper brittleness.

be cooled in oil or air, after tempering, to prevent temper brittleness. Spring steel is generally not ground, and special measures are, therefore, to be taken to prevent heat-treatment decarburisation. This applies especially to silicon steels which decarburise much quicker than other grades of steel. When hot-rolled, as well as heat-treated, spring steel is to be softened, high tempering at 660-700°C with minimum holding should be used. A tentative method for heat-treatment of spring steel is presented in Table 74.

 ${\it Table~72}$  Softening Procedures for Alloy Structural Steels

| Grade                                  | Operation                 | Heating<br>temperature,<br>°C | Cooling rate conditions                         |
|----------------------------------------|---------------------------|-------------------------------|-------------------------------------------------|
|                                        |                           |                               | 10. 500.0                                       |
| 30X, 35X, 38X, 40X,<br>45X, 50X        | Annealing                 | 800-860                       | 40-50°C<br>per hr                               |
| 15ΧΦ, 20ΧΦ, 40ΧΦ,<br>50ΧΦ              | Annealing                 | 840-860                       | 50-60° per hr                                   |
| 33ΧC, 37ΧC, 40ΧC<br>40ΧΓ, 35ΧΓ2        | Annealing                 | 860-880                       | 40-60° per hr<br>40-60° per hr                  |
| 40ΧΓ, 35Χ <b>Γ</b> 2                   | Annealing                 | 840-850                       | 40-60° per hr                                   |
| 20XFC                                  | Isothermal                | 880-900                       | Isothermal                                      |
|                                        | annealing                 | · ·                           | holding at                                      |
|                                        | l                         |                               | _ 660-680° C                                    |
| 25XTC                                  | Isothermal                | 870-890                       | Ditto                                           |
| 30XTC                                  | annealing                 | 000 000                       | Ditto                                           |
| 30X1 C                                 | Isothermal annealing      | 860-880                       | וונס                                            |
| 35 Х ГС                                | Isothermal                | 850-870                       | Ditto                                           |
| 35 AT C                                | annealing                 | 000-010                       | Ditto                                           |
| 27СГ, 35СГ                             | Annealing                 | 860-880                       | 50-60° per hr                                   |
| 25HA, 30HA                             | Normalising,              | 840-860                       | Air                                             |
| ,,                                     | tempering                 | 620-640                       | Air                                             |
| 13H2A, 13H5A, 21H5A                    | Tempering                 | 620-640                       | Holding, 5hrs                                   |
| 25H3, 30H3A                            | Tempering                 | 650-670                       | Ditto                                           |
| 15XMA                                  | Annealing                 | 880-900                       | 30-40° per hr                                   |
| 20 X M                                 | Annealing                 | 860-880                       | Ditto                                           |
| 30 X M                                 | Annealing                 | 840-860                       | Ditto                                           |
| 35 X M                                 | Annealing                 | 830 - 850                     | Ditto                                           |
| 38ХЮА, 38ХМЮА                          | Annealing                 | 860-880                       | 60-80° per hr                                   |
| 35 X МФ А<br>20 X Н                    | Annealing                 | 860-880                       | 40-50° per hr<br>30-40° per hr<br>30-40° per hr |
| 40XH, 45XH                             | Annealing                 | 840-860                       | 30-40° per hr                                   |
| 50XH                                   | Annealing<br>Annealing    | 800-820<br>790-810            | Ditto                                           |
|                                        |                           | 880-900                       | Ditto                                           |
| 12XH2, 12XH3, 12X2H4                   | Normalising, tempering    | 600-640                       | _                                               |
| 20 X H3, 30 X H3, 37 X H3A             | Normalising,              | 640-650                       | Prolonged                                       |
| ,                                      | tempering                 | 415 555                       | holding                                         |
| 20 X Н4ФА                              | Annealing                 | 850 - 860                     | 30-40° per hr                                   |
| 13XHBA, 18XHBA,                        | Tempering                 | 650-680                       | Prolonged                                       |
| 18XHMA, 25XHBA                         |                           |                               | holding                                         |
| 12X2H3MA, 12X2H4MA,<br>20XHM, 33XH3MA, | Tempering                 | 650-670                       | Holding for                                     |
| 20XHM, 33XH3MA,                        |                           |                               | 5-6 hrs                                         |
| 40X H.M.A                              | 1 1:                      | 050 070                       | 40 500                                          |
|                                        | Annealing                 | 850-870                       | 40-50° per hr                                   |
| 45XHBФA                                |                           | 000 000                       | •                                               |
| 45ХНВФА<br>18ХГТ                       | Normalising,<br>tempering | 900-930<br>670                | '                                               |

Approximate Heat-treatment Schedules and Mechanical Properties of Alloy Structural Steels

|       |               |                                     |                 |                    |          | Mechanical properties | properties                     |                   |
|-------|---------------|-------------------------------------|-----------------|--------------------|----------|-----------------------|--------------------------------|-------------------|
|       |               | Heating tem-<br>perature for        | Cooling         | Tempering          | Hardness | ness                  | :                              |                   |
|       | Grade         | nardening and<br>normalising,<br>°C | medium          | temperature,<br>°C | $H_B$    | $^RC$                 | lensile<br>strength,<br>kg/mm² | Elonga tion,<br>% |
| {     |               | 200                                 | -<br>-          | 000                |          | 04                    |                                |                   |
|       | 351.2         | 008-018                             | 110             | 200-300            | ļ        | 20-48                 | i                              | 1                 |
|       |               |                                     |                 | 300-400            | 1        | 48-38                 | 1                              | 1                 |
|       |               |                                     |                 | 400-200            | 1        | 38-34                 | ]                              | 1                 |
|       |               |                                     |                 | 550-620            | 241-217  | ı                     | 75-85                          | 15-18             |
|       | $40\Gamma 2$  | 810-840                             | Oi!             | 250-600            | 300-230  | ł                     | ı                              | !                 |
|       | 45 <b>Г</b> 2 | 800-840                             | Oil             | 300 - 400          |          | 49-43                 | 1                              | 1                 |
|       |               |                                     |                 | 400-200            | 1        | 43-33                 | 1                              | ł                 |
|       |               |                                     |                 | 200-600            | 325-262  | I                     | 1                              | ı                 |
|       | $50\Gamma 2$  | 790-820                             | Oil             | 200-600            | 321-269  | 1                     | 1                              | Up to 9           |
|       | 15X           | 780-820                             | Oil or          | 200                | 200      | l                     | 20                             | 10-11             |
| j_ 54 | 20X           | 780-820                             | water<br>Oil or | 200                | 220      | i                     | 80                             | 10                |
| - NI  | 15XP          | 780-810                             | water<br>Oil or | 200                | 1        | ı                     | 75                             | 12                |
|       | 30X           | 840-870                             | water           | 540-380            | 907-999  | I                     | 75-80                          | 14-18             |
| 119   | 35X           | 840-865                             | i               | 180-200            |          | 45-50                 | 3 1                            | : 1               |
|       |               |                                     | ;               | 480-520            | 1        | 28-31                 | ł                              | 1                 |
| , .   | 35 X P        | 860                                 | Oil             | 260                | 1        | 1                     | 95                             | 12                |
| 7. 18 | 38X A         | 830-860                             | Oil             | 180-200            | 1        | 45-52                 | 1                              | }                 |
| 1     |               |                                     | -               | 500-560            | 285-375  | l                     | 130-100                        | ſ                 |
|       |               | _                                   |                 | 099-099            | 200-285  | 1                     | 100-70                         | 1                 |

Table 73 continued

|                       |                              | Elongation,<br>%               | 1       | 1       | }       | 1       | ı       | 12           | 1 '      | <b>20</b> 6 | n (      | က    | <b>x</b> 0 | 12      | 6       | 6     | 6     | 1         | 10      | =       | 9       | <u>2</u> « | - <u></u> | :       |   |
|-----------------------|------------------------------|--------------------------------|---------|---------|---------|---------|---------|--------------|----------|-------------|----------|------|------------|---------|---------|-------|-------|-----------|---------|---------|---------|------------|-----------|---------|---|
| properties            |                              | Tensile<br>strength,<br>kg/mm² | 1       | 1       | 1       | 1       | ľ       | 00 <b>1</b>  | 1        | 100         | င္တ      | 105  | 110        | 90      | 100     | 001   | 150   | 1         | 100     | 001     | 18      | 86         | 86        | 3 1     |   |
| Mechanical properties | ness                         | RC                             | 54-52   | 52-45   | 45-36   | 36-30   | 30-27   | 1            | 25-52    | 1           | 1        | 1    | 1          | 1       | 1       | l     | 1     | 53-45     | !       | I       | 53-45   | 1 8        | 1 1       | 55-52   |   |
|                       | Hardness                     | $H_{B}$                        | 1       | ı       | i       | ı       | J       | 1            | 1 8      | 280-302     | 230-280  | 18   | 300        | 220     | 1       | 1     | 1     | 1         | 272-302 | 1       | 1 200   | 602-992    | > 269     | 1       | _ |
|                       | Tempering                    | temperature,<br>°C             | 200-300 | 300-400 | 400-200 | 200-600 | 600-650 | 540          | 200-220  | 500-580     | 080-090  | 220  | 200        | 180-220 | 180-220 | 200   | 200   | 200 - 250 | 250-600 | 250-600 | 220-250 | 950-950    | 620-640   | 250-280 |   |
|                       |                              | medium                         | Oil     |         |         |         |         | <del>.</del> | <u>.</u> |             | :        | 5    | 5          | Oi1     | Oil     | Oil   | Oil   | Oil       | į       | Oil     | Oil     | Ċ          | ;         | Oil     |   |
|                       | Heating tem-<br>perature for | normalising,<br>oC             | 825-860 |         |         |         |         | 860          | 8.50-850 |             | 0        | 840  | 815-845    | 800-820 | 800-820 | 870   | 820   | 088-098   | 1       | 850     | 820-860 | 900-930    |           | 900-930 |   |
|                       |                              | Grade                          | 40X     |         |         |         |         | 40XP         | 45X      |             | 11.25.27 | 45ÅŲ | 200<br>200 | JX02    | 18XFT   | 20XFP | 30XLT | 40XF      |         | 40XIP   | 35XF2   | 33XC       |           | 37XC    |   |

| 7. 2. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 90.<br>175.<br>175.<br>186.<br>186.<br>186.<br>186.<br>186.<br>186.<br>186.<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55.52<br>42.50<br>1.1<br>1.1<br>1.2<br>1.2<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241-269<br>241 |
| 600-650<br>240-260<br>600-650<br>230<br>475<br>550<br>600-620<br>650<br>550<br>650<br>650<br>650<br>650<br>650<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Oil Water Water Air Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 900-920<br>910-940<br>870-900<br>880-890<br>860-870<br>850-870<br>840-870<br>840-870<br>840-870<br>840-870<br>840-870<br>840-870<br>870-820<br>780-800<br>820-840<br>860-830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40XC 27CF 35CF 36F2C 15XM, 20XM 30XM 30XM 35X2MA 35X2MA 35X2MA 26XH 15XΦ, 20XΦ 40XH 45XH 12XH2 12XH3A 20XXH3A 20XXH3A 20XXH3A 20XXH3A 20XXH3A 20XXH3A 20XXH3A 20XXH3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 73 continued

| מחוב ום רחווווומבת |                       |              | Elongation,<br>%               | 6       | 15       | 7        | 69      | 120                | 10     | 12     | o (     | 12     | 10-12   | 12               | 12       | 12       | =       | =        | 12         | 12    | 01       | - 10   | 12     | 0       | 01      |  |
|--------------------|-----------------------|--------------|--------------------------------|---------|----------|----------|---------|--------------------|--------|--------|---------|--------|---------|------------------|----------|----------|---------|----------|------------|-------|----------|--------|--------|---------|---------|--|
| an an a            | properties            |              | Tensile<br>strength,<br>kg/mm² | 100     | 160      | 150      | 110     | 96                 | 100    | 110    | 165     | 110    | 100-120 | 120              | 6        | 120      | 95      | 100      | 105        | 100   | 150      | 110    | 8      | 120     | 100     |  |
|                    | Mechanical properties | ness         | $R_C$                          | 1       | 52-45    | 49-44    | 39-35   | 35-25              |        | 1      | 53-48   | 1      | 1       | 1                | 1        | 1        | 1       | !        | 1          | !     | 1        | 1      | 1      | l       | 1       |  |
|                    |                       | Hardness     | $H_{B}$                        | ≥ 292   | - 100    | 120-120  | i       | <br> -<br> -<br> - |        | 1      | 1       | 1 305  | 1       | !                | 1        | 1        | i       | ١        | ı          | 1     | 1        | 1      | 1      | l       | 1       |  |
|                    |                       | Tempering    | temperature,                   | 530     | 200-220  | 390-420  | 550-600 | 590                | 230    | 580    | 200-220 | 610    | 280     | 550-620          | 069      | 550-620  | 180     | 180      | 170        | 180   | 180      | 200    | 220    | 200     | 530     |  |
|                    |                       |              | medium                         | liO     | io<br>–  | Oij      |         | ë                  | 55     | Oi.1   | Oii     |        | ij      | ïÖ               | iö       | ΙίΟ      | Oil     | i.o      | Oil        | Ϊ́Ο   | Oil      | Oil    | 0!1    | Oil     | Oii     |  |
|                    | Hooting tom           | perature for | normalising.                   | 810-840 | 810-840  | 860-880  |         | 850-860            | 860    | 870    | 830-850 |        | 980     | 820              | 820      | 820      | 820-850 | 820      | 770-810    | 098   | 840-860  | 880    | 820    | 870     | 860     |  |
|                    |                       |              | Grade                          | 30XH3A  | 37 X H3A | 45X HMΦA |         | 36 X H1 M A        | 30XHBA | 38XHBA | 40XHBA  | 40XHMA | 30X2HBA | 38X H3B $\Phi$ A | 20X H4ΦA | 38XH3MΦA | 15XLHT  | 15X2FH2T | 15X2FH2TPA | 18XLH | 25X2FHTA | 30XFHA | 38X LH | 30X2FH2 | 18XCHPA |  |

| 10<br>10<br>6<br>6                      | 1       | i         | 1       | 1       | 1       | 16      | 1       | 10     | 15       | 10     | 15     | . 10    | 10      |  |
|-----------------------------------------|---------|-----------|---------|---------|---------|---------|---------|--------|----------|--------|--------|---------|---------|--|
| 145<br>80<br>150<br>110                 | 120-140 | 100-110   | 80-90   | 70-80   | ı       | 9/      | 160-180 | 95     | 100      | 100    | 09     | 110     | 130     |  |
| 50-46                                   | 1       | 1         | 1       | ı       | 53-46   | I       | 50-46   | I      | l        | ı      | 1      | 38-26   | 44-33   |  |
| 228<br>400<br>310                       | 337-390 | 285-315   | 235-265 | 211-235 | I       | ≥ 235   | 1       | ≥ 260  | ≥ 286    |        | 1      | 1       | 1       |  |
| 200<br>500-520<br>200<br>500<br>225-250 | 480-520 | 540 - 580 | 600-640 | 640-680 | 200-250 | 640-660 | 200-300 | 650    | 029-009  | 640    | 180    | 180-200 | 180-200 |  |
| io o                                    |         |           |         |         | Oil     |         | Oil     | Oil    | liO      | Oil    | Oil    | Oil     | Oil     |  |
| 870-900<br>890-910<br>890-910           |         | _         |         |         | 088-098 |         | 890-910 | 930    | 930-920  | 930    | 098    | 830-850 | 810-830 |  |
| 20XFCA<br>25XFCA<br>30XFCA              |         |           |         |         | 35X ΓCA |         | 30XTHCA | 38X IO | 38X MIOA | 38ХВФЮ | 13H2XA | 15ХГНР  | 20XTHP  |  |

Table 73 continued

|           | 2001                                | <br> <br> |                    |          | Mechanical properties | properties                     |                  |
|-----------|-------------------------------------|-----------|--------------------|----------|-----------------------|--------------------------------|------------------|
|           | perature for                        |           | Tempering          | Hardness | ness                  | :                              |                  |
| Grade     | nardening and<br>normalising,<br>oC | medium    | temperature,<br>°C | НВ       | RC                    | Tensile<br>strength,<br>kg/mm² | Elongation,<br>% |
| 14XF2HP   | 820-840                             | Oil       | 180-200            | 1        | 44 - 33               | 110                            | 10               |
| 14XF2CP   | 830-850                             | Oil       | 180-200            | ı        | 44-33                 | 110                            | 10               |
| 15XHF2BA  | 880-920                             | Oil       | 200                | ı        | 1                     | 1                              | 1                |
|           | 810-830                             | li0       | 180-200            | I        | 47-35                 | 115-120                        | 13               |
| 15X2F2CBA | 880-920                             | Oil       | 200                | ı        | ŀ                     | ı                              | 1                |
|           | 830-850                             | Oil       | 180-200            | I        | 47-35                 | 115-120                        | 12               |
| 35X2FCBA  | 880-890                             | Oil       | 200                | 555-477  | 1                     | 200                            | 80               |
|           |                                     |           | 460                | 477-401  | !                     | 150                            | 6                |
|           |                                     |           | 009                | 341-286  | 1                     | 105                            | 13               |
|           |                                     |           | 650                | 286-241  | <b>!</b>              | ı                              | ı                |
|           |                                     |           |                    |          |                       |                                |                  |

Note. The mechanical properties of carburised steels refer to the core, their hardness number being within  $56.62 \, R_{C}$ .

Table 74
Approximate Heat-treatment Schedules and Hardness Numbers of Spring Steels

| Grade                  | Heating tem-<br>peratures for<br>hardening and<br>normalising,<br>°C | Cooling medium | Tempering<br>temperature,<br>°C     | Hardness<br>number,<br>R <sub>C</sub> | Remarks                                                |
|------------------------|----------------------------------------------------------------------|----------------|-------------------------------------|---------------------------------------|--------------------------------------------------------|
| 55<br>65               | 790-830<br>785-815                                                   | Water<br>Oil   | 430-450<br>300<br>400<br>500<br>600 | 33-42<br>52<br>45<br>37<br>28         |                                                        |
| 70                     | 780-815                                                              | Oil            | 380                                 |                                       |                                                        |
| 75<br>25               | 780-815                                                              | Oil            | 380                                 | 39-46                                 |                                                        |
| 85<br>65 D             | 770-800                                                              | Oil<br>Oil     | 375-400<br>380-430                  | 40-49                                 |                                                        |
| 65Γ<br>55ΓC            | 790-815<br>790-820                                                   | Oil            | 390-430                             | 42-47<br>39-46                        |                                                        |
| 55C2                   | 850-890                                                              | Oil            | 580<br>480-500                      | 25-31<br>39-43                        |                                                        |
| 60C2                   | 840-870                                                              | Oil            | 400-510                             | . 43-50                               |                                                        |
| 60C2A                  | 840-870                                                              | Oil            | 400-425                             | 40-49                                 |                                                        |
| 0002/1                 | 820-840                                                              | Water          | 400-425                             | 40-49                                 | For wire up<br>to 13 mm<br>in dia<br>For wire<br>above |
| 63C2A                  | 860                                                                  | Oil            | 400-510                             |                                       | 13 mm                                                  |
| 70C3A                  | 850                                                                  | Oil            | 400-510                             |                                       | in dia                                                 |
| 50ΧΓ,                  | 000                                                                  | On             | 100-010                             |                                       |                                                        |
| 50 Χ Γ A               | 840-870                                                              | Oi1            | 450-480                             | 41-43                                 |                                                        |
| 60C2XA                 | 860                                                                  | Oil            | 420                                 |                                       |                                                        |
| 60C2XΦA                | 840                                                                  | Oil            | 450                                 |                                       |                                                        |
| 65C2BA                 | 840                                                                  | Oil            | 450                                 |                                       |                                                        |
| 60C2H2A                | 840                                                                  | Oil            |                                     |                                       | Ì                                                      |
| 55CΓ                   | 880                                                                  | Oi1            | 400-510                             |                                       |                                                        |
| 60CLA                  | 860                                                                  | Oil            | 400-510                             |                                       |                                                        |
| 50 X Φ                 | 840-870                                                              | Oil            | 475                                 |                                       | ĺ                                                      |
| 50 <b>Χ</b> Φ <b>A</b> |                                                                      |                | 370-420                             | 42-50                                 |                                                        |
| <b>50 Х ГФА</b>        | 850-880                                                              | Oil            | 550                                 | 39-43                                 | 1                                                      |
| 58CH2A                 | 875-900                                                              | Oi1            | 400-425                             | 46-49                                 |                                                        |

| Description                                                                                                                                                                                                                                                                            | Mechanical properties                                                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Spring steel wire, heat-treated, from 1.2 to 5.5 mm thick Carbon spring steel wire, from 0.14 to 8 mm thick: grade I grade II grade III Steel spring band, heat-treated, from 0.08 to 1 mm thick: 1 (first grade of strength) 2 (second grade of strength) 3 (third grade of strength) | Tensile strength from 180 to 130 kg/mm²*  Tensile strength: from 310 to 150 kg/mm² from 270 to 140 kg/mm² from 225 to 110 kg/mm²  H <sub>V</sub> 375-485  H <sub>V</sub> 486-600  H <sub>V</sub> over 600 |  |  |

<sup>\*</sup> Depending on wire thickness.

Table 76

Approximate Heat-treatment Schedule for Ball-bearing Steel

|          | Annealing                       |                                       | Hardening                       |                                                  | Tempering                       |                  |
|----------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|------------------|
| Grade    | Heating<br>tempera-<br>ture, °C | Hardness<br>number,<br>H <sub>B</sub> | Heating<br>tempera-<br>ture, °C | Minimum<br>hardness<br>number,<br>R <sub>C</sub> | Heating<br>tempera-<br>ture, °C | Hardness number, |
|          |                                 |                                       |                                 |                                                  |                                 |                  |
| ШХ6      | 780-800                         | 170-207                               | 800 - 825                       | 62                                               | 150-170                         | 60-62            |
|          | <b>500</b> 000                  |                                       |                                 |                                                  | 200-220                         | 56-58            |
| ШХ9      | 780-800                         | 170-207                               | 825-840                         | 62                                               | 150-180                         | 60-62            |
|          |                                 |                                       |                                 |                                                  | 200-260                         | 60-55<br>55-50   |
| ШХ10     | 820-830                         |                                       | 840-850                         |                                                  | 400                             | 50-45            |
| ШХ15     | 780-800                         | 170-207                               | 835-855                         | 62                                               | 150-200                         | 64-61            |
|          |                                 |                                       |                                 |                                                  | 200-300                         | 61-56            |
|          |                                 |                                       |                                 |                                                  | 300-400                         | 56-49            |
|          |                                 |                                       |                                 | }                                                | 400-500                         | 49-41            |
| ШХ15СГ   | 780-800                         | 170 007                               | 015 005                         | 1 00                                             | 500-600                         | 41-28            |
| m V 19C1 | 100-000                         | 170- <b>2</b> 07                      | 815-835                         | 62                                               | 170-200                         | 61-65            |

 $\it Note.$  Oil serves as a cooling medium for ball-bearing steels, while kerosene is used for plain-shaped articles requiring high hardness.

Ball-bearing steel. Ball-bearing steel is heat-treated according to procedures recommended in Table 76. On annealing, the work, following heat soaking, is cooled to 500-550°C at a rate of 30°C per hour for grade IIIX15CF steel and below 40°C per hour for grades IIIX6, IIIX9, IIIX15, after which the blanks are cooled in the furnace with the power switched off. Isothermal annealing is also being applied, according to the following sequence of operations: heating to 800°C, holding till heat soaking is complete, cooling down to 700-720°C, holding for 3-4 hrs, cooling in the furnace down to 400-450°C, followed by cooling in the air.

If no correction of structure is required and the annealing aims only at softening, high tempering at 680-700°C for 3-4 hrs may then be

successfully applied.

When hardening large parts from the  $\coprod X15$  steel, cooling should be effected in kerosene down to room temperature in order to ensure hardness above  $R_C$ =60. In this case all sharp changes of section and sharp grooves are to be covered with a mixture composed of asbestos and

clay, so as to prevent cracking.

Electric steels and alloys are annealed to improve their magnetic properties. Best results are obtained with vacuum annealing (Fig. 21). If no vacuum installation is available, the work is to be annealed in containers with solid protective media—white mountain sand, asbestos powder, aluminium oxide, etc. The protective mixture should be calcined prior to use in order to eliminate all moisture. Fig. 22 shows the packing of the containers. When a thin oxide skin is desirable, the parts are annealed in the same packets but with no protective mixture. Hydrogen annealing did not find wide application, because of explosion hazards and possible surface decarburisation.

Annealed parts are not to be distorted, dropped or hammered, as

this lowers their magnetic properties.

When cutting or stamping of permalloy is difficult, because of strain-hardening, the alloy should be annealed at 600-650°C (holding for 1-2 hrs and cooling at a rate of 100-200°C per hour).

Annealing schedules for electric steels and permalloys are given in

Table 77.

Magnetic steel is heat-treated according to schedules given in Table 78 in order to ensure the requisite magnetic properties. Holding time is counted off as soon as steel is heated to the required temperature.

A special post-rolling softening treatment intended to obtain a structure, ensuring best magnetic properties after hardening, is practised in some metallurgical plants. This must be taken into account by the users who should not re-anneal the stock as this will change the steel structure and entail (after hardening from normal temperatures) worsening of magnetic properties of steel.

When bending magnets, the work should be heated below 700°C for grades EX5K5 and E7B6, 750°C for grades EX and EX3 and 800°C for grade EX9K15M, in order not to impair magnetic properties

of steel.

Heat-treatment schedules for cast magnets are presented in Table 79. Stainless steel, on annealing, is to be cooled to 250-300°C within the furnace. Holding time on heating should be cut to a minimum so as

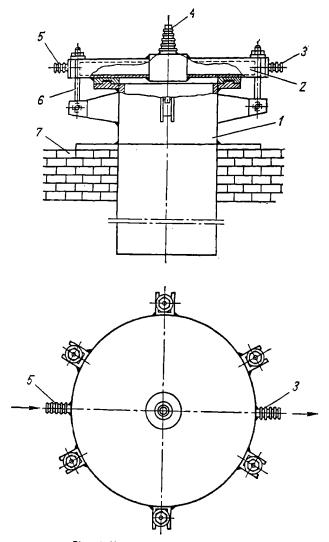



Fig. 21. Vacuum annealing installation:

1 - muffle; 2 - wafer-cooled muffle lid; 3 - water outlet nipple;
4 - air exhaust nipple: 5 - water inlet nipple; 6 - coupling bolts;
7 - furnace lining

to prevent grain growth. Depending on steel grade, the hardening procedure aims at toughening or increasing ductility and chemical resistance (tables 80 and 81).

It should be noted that hardening always increases the corrosion resistance of steel. Chromium stainless steels are characterised by tem-

per brittleness, and for this reason, they are to be cooled in water or oil

after tempering.

Manganese wear-resistant grade \(\Gamma\)13 steel is given a prolonged tempering at 600-650°C in order to improve its machinability.

Grade \$\Gamma 13 acquires high wear resistance after hardening in water at 1050-1100°C. Holding time on heating

is 2-3 hours.

Given below are approximate mechanical properties obtained after hardening:

Tensile strength  $\sigma_b = 70 \cdot 100 \text{ kg/mm}^2$ , elongation  $\delta=25-45\%$ ,

specific resilience  $a_k = 20-25 \text{kgm/cm}^2$ , Brinell hardness number 197-212.

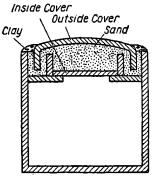



Fig. 22. Containers for oxidation-free annealing

After fempering at 400-450°C, the hardness of the Γ13 steel may reach as high as  $H_R=400$ . This steel has a tendency to decarburise. Because of its very low heat conductivity, the steel should be heated slowly up to 600°C, to prevent cracking.

Carbon tool steel. The work is cooled from annealing temperature at a rate of 20-50°C per hour down to 550°C, then the cooling is con-

tinued in the air.

This steel acquires best machinability and minimum hardness aft-

er sub-critical annealing (spheroidising).

Sub-critical annealing (spheroidising) is realised by heating and holding the said steel at 730-750°C, then cooling it down to 500-550°C at a rate of 20-30° C per hour, and, finally, cooling it in the air.

Carbon tool sfeel is "high" tempered at 680-700°C with prolonged holding and subsequent air-cooling, to lower hardness and remove stresses.

Tools are cooled, following hardening, chiefly in water and, subsequently, in oil. Small-sized tools are hardened in oil or kerosene (Ta-

ble 82).

Alloy tool steel. The work is first cooled from annealing temperature at a rate of 30-40°C per hour down to 550°C, and then in the air. In case of isothermal annealing, the steel can be air-cooled from isothermal holding temperature. When only decrease in hardness and stress removal are necessary, the work is high tempered at 650-680°C and then air-cooled.

Because of low heat conductivity, fancy-shaped tools should be heated slowly.

Table 77

Annealing Schedules for Electric Steels and Permalloys

|                                 |                                                                                                                                                                         |                         |                      | •                                                                                  |                                                                |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Grade of<br>steel or alloy      | Purpose of annealing                                                                                                                                                    | Heating<br>temperature, | Holding<br>time, hrs | Cooling<br>conditions                                                              | Equipment and materials required                               |
|                                 | Improvement of magnetic properties and formation of oxide skin                                                                                                          | 830-870                 | en                   | 50° C per<br>hour. Parts<br>are dis-<br>charged from<br>the container<br>at 150° C | Furnace and heat-resisting steel box                           |
| Steels: 931, 941, 942, 945, 947 | Improvement of magnetic properties without formation of oxide skin (bright annealing)                                                                                   | 006-098                 | 3-4                  | Ditto                                                                              | Furnace. Heat-resisting<br>steel box. Protective<br>atmosphere |
|                                 | Considerable improvement of magnetic properties due to conse-grained structure and removal of detrimental impurities from surface layer (no oxide skin after annealing) | 1000-1050               | 10-20                | 60-70° C per Furnace.<br>hour hydrog                                               | Furnace. Vacuum or<br>hydrogen annealing<br>installation       |

| Furnace. Vacuum or hydrogen annealing installation                           | Furnace                                                        | Furnace. Vacuum or<br>hydrogen annealing<br>installation          | Furnace. Vacuum annealing installation or container from heaf-resistant steel, and protective mixture |
|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Cooling in<br>the furnace.<br>Discharge at<br>100° C                         | Slow cooling within the furnace to 650°C, then in an air jet   | Slow cooling within the furnace to 200° C, under vacuum           | 100-150° C<br>per hour to<br>room tem-<br>perature                                                    |
| 3-4                                                                          | 10                                                             | 8-15                                                              | 3-4                                                                                                   |
| 780-820                                                                      | 1170-1230                                                      | 1000-1100                                                         | 850-930                                                                                               |
| Considerable increase in magnetic properties (no oxide skin after annealing) | Improvement of magnetic properties and formation of oxide skin | Improvement of magnetic properties. No oxide skin after annealing | 9, 3A, 3AA Improvement of magnetic properties                                                         |
| 9310                                                                         | Permalloys:<br>iron-nickel                                     | anoys or<br>various<br>grades                                     | 9, 3A, 3AA                                                                                            |

Note. When no heat-resistant steel Is available, the container should be made of plain structural steel. When annealing with the formation of oxide skin is contemplated, the parts are packed into containers without sand, with the packing being loose so that the annealing metal should occupy 20-25% of the volume of the container.

Heat-treatment Schedules for Magnetic Steels

|                   | Normalising                   | ising                | Tempering                     | ring                 |                                  | Hardening                     | )g                   |          |
|-------------------|-------------------------------|----------------------|-------------------------------|----------------------|----------------------------------|-------------------------------|----------------------|----------|
| Grade<br>of steel | Heating<br>temperature,<br>°C | Holding<br>time, min | Heating<br>temperature,<br>°C | Holding<br>time, min | Preheating<br>temperature,<br>°C | Final heating<br>temperature, | Holding<br>time, min | Cooling  |
| , H               | 001                           | ш                    |                               |                      | 000                              | 0 10                          | ;                    |          |
| 4                 | 1000                          | 2                    | 1                             | ļ                    | nna-nna                          | 920                           | - 10-12<br>- 10-12   | <u>.</u> |
| EX3               | 1050                          | 'n                   | I                             | 1                    | 200-000                          | 850                           | 10-15                | Ditto    |
| E7B6              | 1200-1250                     | 1                    | 1                             | 1                    | 200-600                          | 820-860                       | ٠.                   | Ditto    |
| EX5K5             | 1150-1200                     | 1                    | ı                             | 1                    | 500-650                          | 950                           | , <u>e</u>           | Ditto    |
| EX9K15M           | 1200-1240                     | _<br>                | 200                           | ၕ                    | 1                                | 1030-1050                     | 01                   | Ditto    |

Note. The magnets are aged for 5.8 hours in boiling water to stabilise their structure and magnetic properties.

Heat-treatment Schedules Recommended for Cast Permanent Magnets

Table 79

|                    |                                           |                 |                        |              | ø                                        |
|--------------------|-------------------------------------------|-----------------|------------------------|--------------|------------------------------------------|
| Grad               | Grade of alloy                            | Hardening or    | Cooling                | Tempering    |                                          |
| New                | PIO                                       | temperature, °C | medium                 | temperature, | Comments                                 |
| AH1<br>AH2         | АЛНИІ                                     | 1200<br>1200    | Boiling water<br>Ditto | 550          | Normalising is applied to thin magnets   |
| AH3                | АЛНИЗ                                     | _               | Air                    |              |                                          |
| AHK                | АЛНИСи                                    | _               | Ditto                  | J            | Slow cooling for thick magnets           |
| AHKol              | AJHMKo12                                  | _               | Ditto                  | J            | 0                                        |
| AHK <sub>0</sub> 2 | АЛНИКо15                                  | _               | Ditto                  | 1            |                                          |
| AHKo3              | АЛНИК018                                  | 1300            | Ditto                  | * 009        | Cooling from 1300°C is carried out in a  |
|                    |                                           |                 |                        |              | magnetic field of not less than 1,500    |
| A 1 1 1.7          | A 1111111                                 | 0001            |                        | 000          | oersteds, cooling rate not exceeding 5°C |
| AUN 04             | WALHUKO<br>MALHUKO                        | 1900            | 01110                  | 000          | per second, down to 500° C*              |
|                    | ( ) / *** * * * * * * * * * * * * * * * * |                 |                        |              |                                          |

\* The cooling rate is regulated, depending on volume and shape of the part, by wrapping it, prior to cooling, in asbestos paper.

Steel with high silicon content shows great tendency to decarburisation and, due to this, tools from grade 9XC and other similar steels, which are not subjected to grinding after heat-treatment, should be carefully protected against burning-out of carbon.

It is not recommended to cool the work within the furnace after

tempering (tables 83 and 84).

Table 80 Annealing Schedules Recommended for Corrosion-resistant and Non-scaling Steels

|                             |                    |                            | Mechanical                                 | properties                   |
|-----------------------------|--------------------|----------------------------|--------------------------------------------|------------------------------|
| Grade of steel              | Annealing<br>tempe | or tempering<br>rature, °C | Tensile<br>strength,<br>kg/mm²,<br>minimum | Elongation,<br>%,<br>minimum |
| 0X13, 1X13                  | Ann.               | 860-880                    | 40                                         | 21                           |
|                             | Temp.              | 740-800                    |                                            |                              |
| 2X13                        | Ann.               | 860-880                    | 50                                         | 20                           |
|                             | Temp.              | 740-800                    |                                            |                              |
| 3X13                        | Ann.               | 860-880                    | <b>5</b> 0                                 | 15                           |
|                             | Temp.              | 740-800                    |                                            |                              |
| 4X13                        | Ann.               | 860-880                    | 56                                         | 15                           |
|                             | Temp.              | 740-800                    |                                            |                              |
| X 17, 0X 17T<br>(ЭИ465)     | Temp.              | 740-780                    | 50                                         | 18                           |
| X25T, X28<br>(ЭИ439, ЭИ349) | Temp.              | 740-780                    | 54                                         | 17                           |
| Х 15Н9Ю (ЭИ904)             | Norm.              | 1040-1080                  | <110                                       | 20                           |
| X5                          | Norm.              | 850-870                    | 40                                         | 24                           |
| 4X9C2 (CX8)                 | Norm.              | 850-870                    | 75                                         | 15                           |
| Х 6СЮ (ЭИ 428)              | Temp.              | 750 - 800                  | 45                                         | 20                           |
| 1Х12СЮ (ЭИ404)              | Norm.              | 800-850                    | 50                                         | 15                           |
|                             | Norm.              | 800-850                    | 50                                         | 20                           |

Notes. 1. Abbreviations used: temp. - tempering; ann. - annealing; norm. normalising.
2. Either annealing or tempering is applied to steel grades 1X13 through

4X13.

Table 81

Hardness mumber, 51 - 5050-48 48-45 45-30 30-21 52-51 51-50 50-46 46-31 31-20 59-54 54-52 Mechanical properties Flonga-tion, % Hardening Schedules Recommended for Corrosion-resistant and Non-scaling Steels 1822 19989 9 Tensile strength, kg/mm² 8881 15888 83 1 Heating temperature, °C Tempering 1) 740-760 2) 550-600 375-500 Air, then from -30 Cooling medium Oil or air Oil or air to -70° C Ditto Ditto Ditto Ditto Ditto Hardening Heating temperature, °C 1000-1050 1000-1050 1000-1050 1000-1050 970-1040 1010-1050 1070-1130 925-975 1000-1050 1000 - 1050i 030-1070 4X10C2M (ЭИ107) 2X13H4Г9 (ЭИ100) X15H9Ю (ЭИ904) X17H7IO (ЭИ973) IX17H2 (3M268) Grade 0X13 1X13 2X13 3X13 4X13 9X 18

1 1

6

55

1

Air or water

1000 - 1150

0X 20H14C2 (3M732)

|   | I                 | 1        | 1               | 1        | 1                 | 1         | 1         | ]                 | 1            | ł                | 1         | 1         | 1         | ļ         | í                | 1         | 1         | ſ                |           | 1              |                             | !                     |           | ł                | 1                 | ]                | 1         | I                   | !                 | I                 |
|---|-------------------|----------|-----------------|----------|-------------------|-----------|-----------|-------------------|--------------|------------------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|------------------|-----------|----------------|-----------------------------|-----------------------|-----------|------------------|-------------------|------------------|-----------|---------------------|-------------------|-------------------|
| _ | 35                | 20       | 20              | 20       | 32                | 32        | 40        | 40                | 35           | 40               | 40        | 45        | 40        | 40        | 40               | 40        | 40        | 40               | 25        | 35             | According to specifications | 1 40                  | 2 2       | G ?              | 35                | 17               | 32        | 35                  | 32                | 32                |
| _ | 09                | 9        | 09              | 65       | 20                | 65        | 20        | 52                | 20           | 45               | 48        | 20        | 28        | 22        | 20               | 25        | 22        | 22               | 65        | 20             | ding to sp                  | 1 20                  | 2 6       | 9                | දු                | 54               | 22        | 72                  | 2                 | 25                |
|   | (                 | 1        | ı               | I        | 1                 | ŀ         | 1         | 1                 | I            | 1                | !         | 1         | 1         | l         | ١                | J         | 1         | 1                | 1         | 1              | Ассол                       |                       | 1         | 1                | Į                 | 1                | !         | ĺ                   | l                 | 1                 |
| _ | Air or wafer      | Air      | Ditto           | Ditto    | Oil, water or air | Ditto     | Ditto     | Diffo             | Ditto        | Ditto            | Ditto     | Ditto     | Ditto     | Ditto     | Ditto            | Ditto     | Ditto     | Ditto            | Ditto     | Ditto          | Ditto                       | 21110                 | 01110     | Ditto            | Ditto             | Water or air     | Water     | Water or air        | Water             | Water or air      |
|   | 1000-1150         | 950-1050 | 950-1050        | 950-1050 | 1100-1150         | 1000-1080 | 1050-1100 | 1050-1100         | 1050-1100    | 1050-1100        | 1050-1100 | 1050-1100 | 1050-1100 | 1050-1100 | 1050-1100        | 1050-1100 | 1050-1100 | 1050-1100        | 1100-1150 | 1100-1150      | 1100-1150                   | 0011-0011             | 0011-0011 | 1100-1150        | 1100-1150         | 850-950          | 1050-1070 | 1050-1080           | 1050-1070         | 1050-1080         |
| ~ | X 20H14C9 (3U211) | ٠(۲      | 1X21H5T (ЭИ811) |          | Х23Н13 (ЭИЗ19)    |           | -         | X17H13M2T (ЭИ448) | ` <b>_</b> _ | 00X18H10 (3N842) | _         | XIRHS     | 9X18H9    | X18H9T    | 0X18H10T (9M914) | X18H10T   | XI8HI2T   | 0X18H12E (3N402) | 4X18H25C2 | X23H18 (3N417) | ≆`                          | UX23H28M3JJ31 (3N943) | ∀,        | X25H20C2 (3M283) | 1X25H25TP (ЭИ8ІЗ) | X28AH * (3)(657) | X14F14H * | X17H13M3T * (ЭИ432) | X17AF14 * (3M213) | 0X18H11 * (ЭH684) |

\* Data apply only to sheet steel; for other grades of steel, the heat treatment schedules and mechanical properties listed hold good for specimens made from heat treated blanks of quality steel.

Table 82

Approximate Heat-treatment Schedules and Hardness Numbers of Carbon Tool Steels

|                       |                         |                                    |                               |                    |                                    |                               | •                                  |
|-----------------------|-------------------------|------------------------------------|-------------------------------|--------------------|------------------------------------|-------------------------------|------------------------------------|
|                       | Annealing               | aling                              |                               | Hardening          |                                    | Tempering                     | ering                              |
| Grade                 | Heating<br>temperature. | Hardness<br>number, HB,<br>maximum | Heating<br>temperature,<br>°C | Cooling<br>medium  | Hardness<br>number, R <sub>C</sub> | Heating<br>temperature,<br>°C | Hardness<br>number, R <sub>C</sub> |
| y7, y7A               | 740-760                 | 187                                | 800-830                       | Water, then<br>oil | 61-63                              | 160-200                       | 63-60<br>60-54                     |
|                       |                         |                                    |                               |                    |                                    | 300-400<br>400-500<br>500-600 | 54-43<br>43-35<br>25 97            |
| Y8, Y8A, Y8F,<br>Y8FA | 740-760                 | 187                                | 790-820                       | Ditto              | 62-64                              | 160-200                       | 64-60<br>60-55                     |
| ;<br>;                |                         |                                    |                               |                    |                                    | 300-400                       | 55-45                              |
|                       | i                       | _                                  |                               |                    |                                    | 500-600                       | 45-35<br>35-27                     |
| V9, V9A               | 740-760                 | 192                                | 780-810                       | Ditto              | 62-65                              | 160-200<br>200-300            | 64-62<br>62-56                     |
|                       |                         |                                    |                               |                    |                                    | 300-400                       | 56-46                              |
|                       | i i                     | ţ                                  | 0                             |                    |                                    | 500-600                       | 37-28                              |
| \$ 10, \$ 10A         | 077-067                 | 197                                | 770-800                       | Ditto              | 62-65                              | 160-200<br>200-300            | 64-62<br>62-56                     |
|                       |                         |                                    |                               |                    |                                    | 300-400                       | 56-47                              |
| V11, V12,             | 750-770                 | 207                                | 760-790                       | Ditto              | 62-66                              | 160-200                       | 47-38<br>65-62                     |
| VIIA, VI2A            |                         |                                    |                               |                    |                                    | 200-300                       | 62-57                              |
|                       |                         |                                    |                               |                    | _                                  | 300-400                       | 57-49<br>49-38                     |
| V13, V13A             | 750-770                 | 217                                | 062-092                       | Ditto              | 62-66                              | 160-200                       | 65-62                              |

High-speed steel. High-speed steel is annealed according to normal or isothermal procedures. In normal annealing the work is cooled at a rate of 30-40°C per hour. Isothermal annealing is conducted as follows: heating to 830-850°C, holding for 1.5-2 hours, rapid cooling to 720-750°C, holding for 3-5 hours, followed by air-cooling (Table 84). The steel is also high tempered at 720-750°C with subsequent aircooling, to lower its hardness.

High-speed steel possesses low heat conductivity and, because of this, the tools should be preheated to 800-850°C on hardening. Preheating may be omitted for regular-shaped and small-sized parts.

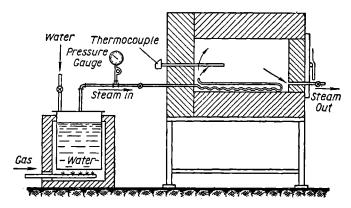



Fig. 23. Schematic view of a steam-treatment installation

The work is preheated either in special furnaces of by twofold or threefold dippings for 2-4 sec in the same bath wherein the final heating is carried out.

The work is hardened in oil, molten salt or air. Air-cooling results in low durability and can be recommended only for long thin tools with a view to diminish distortion (Table 85). Hardening in molten salts is effected at 250-500°C with subsequent air-cooling Tempering can be either single-stage with holding for 2-3 hours, or two-stage with 1-hour holding period for each stage.

Steam heat-treatment (tempering) of high-speed steel, recommended currently, consists of the following steps: 1) fully finished (including sharpening) tools are charged into an air-tight furnace, heated to 350-

370°C, after which steam is admitted into the furnace and the tools are held at the said temperature for 30 min; 2) the tools are then heated to 540-580°C (steam being introduced continuously) and held for 20-30 min at the above temperature. The work is first cooled in air down to 50-70°C, and then heated in oil to 40-50°C.

This treatment results in the formation of oxide film Fe<sub>3</sub>O<sub>4</sub>, dark blue in colour, which imparts appreciable corrosion resistance to the tools, as well as improves to some extent their service behaviour.

Table 83

| *        | Approximate F                 | feat-treatment         | Approximate Heat-treatment Schedules and Hardness Numbers of Alloy Tool Steels | Hardness No       | imbers of All                         | oy Tool Steel                                       | s                                         |
|----------|-------------------------------|------------------------|--------------------------------------------------------------------------------|-------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------|
|          | Anne                          | Annealing              |                                                                                | Hardening         |                                       | Tempering                                           | ring                                      |
| Grade    | Heating<br>temperature,<br>°C | Hardness<br>number, HB | Heating<br>temperature,<br>°C                                                  | Cooling<br>medium | Hardness number, $R_{m{\mathcal{C}}}$ | Heating<br>temperature,<br>°C                       | Hardness number, $R_C$                    |
| 7X3, 8X3 | 800-820                       | 229-187                | 820-860                                                                        | lio               | 61-63                                 | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 62-60<br>60-58<br>58-55<br>55-50<br>50-39 |
| X6       | 780-800                       | 217-179                | 820-850                                                                        | Ditto             | 64-62                                 | 150-250                                             | ſ                                         |
| ×        | 780-800                       | 229-187                | 835-855                                                                        | Ditto             | 65-62                                 | 150-200<br>200-300<br>300-400<br>400-500<br>500-550 | 64-61<br>61-55<br>55-49<br>49-41<br>41-35 |
| 60 X     | 780-800                       | 229-179                | 825-850                                                                        | Ditto             | 65-62                                 | 150-170<br>170-250<br>250-320                       | 62-60<br>60-55<br>55-50                   |
| X 05     | 780-800                       | 241-187                | 780-800<br>800-825                                                             | Water<br>Oil      | 65-62<br>65-63                        | 200-300<br>300-460<br>400-500                       | 62-55<br>55-50<br>50-41                   |
|          |                               |                        |                                                                                |                   |                                       |                                                     |                                           |

| 62-59<br>59-58<br>58-56<br>56-50<br>50-43 | 64-60              | 60-58<br>58-52<br>52-48       | 64-61<br>61-58<br>58-52<br>52-44<br>44-35           | 52<br>52-50<br>50-46<br>46-38<br>38-31              | 62-60<br>60-55<br>55-52<br>52-42<br>42-36           |
|-------------------------------------------|--------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 200-300<br>300-400<br>400-500<br>500-600  | 180-200            | 150-200<br>200-300<br>300-350 | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 200-250<br>250-350<br>350-450<br>450-550<br>550-650 | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 |
| 64-62                                     | 64-62<br>62-60     | 63-61<br>62-60                | 66-62                                               | 53-56                                               | 62 min                                              |
| Oil or<br>air jet                         | Water              | Water<br>Oil                  | 110                                                 | Ditto                                               | Ditto                                               |
| 950-1000                                  | 780-820<br>820-840 | 780-800<br>810-830            | 800 - 840                                           | 006-088                                             | 840-860                                             |
| 269-217                                   | 217-179            | 229-187                       | 241-197                                             | 207 - 170                                           | 229-187                                             |
| 850-870                                   | 760-780            | 780-800                       | 780-800                                             | 820-840                                             | 820-840                                             |
| X12                                       | Ð                  | Bl                            | XF                                                  | 4XC                                                 | бХС                                                 |

Table 83 continued

|            | Annealing                     | aling                  |                               | Hardening         |                        | Tempering                                           | ering                                     |
|------------|-------------------------------|------------------------|-------------------------------|-------------------|------------------------|-----------------------------------------------------|-------------------------------------------|
| Hea        | Heating<br>temperature,<br>oC | Hardness<br>number, HB | Heating<br>temperature,<br>°C | Cooling<br>medium | Hardness number, $R_C$ | Heating<br>temperature,<br>c                        | Hardness<br>number, R <sub>C</sub>        |
| 790        | 790-810                       | 241-197                | 850-880                       | lio               | 65-61                  | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 64-63<br>63-59<br>59-54<br>54-47<br>47-39 |
| <u>8</u> 2 | 780-810                       | 255-207                | 820-840                       | Ditto             | 62 тіп                 | 1                                                   | 1                                         |
| 908        | 800-820                       | 207-170                | 800-850                       | Water             | 64 min                 | 200-220                                             | 64-62                                     |
| 11         | 770-780                       | 207-170                | 840-860                       | 011               | 62-63                  | 200-400                                             | 60-50                                     |
|            | 1                             | 1                      | 820-840                       | Ditto             | 61-63                  | 300-325                                             | 51-56                                     |
|            | 800-820                       | 217-179                | 900-098                       | Ditto             | 56-53                  | 200-300<br>300-400<br>400-500<br>500-600            | 53-51<br>51-49<br>49-42<br>42-33          |
| 8          | 800-820                       | 255-207                | 006-098                       | Ditto             | 56-54                  | 150-200<br>200-300<br>300-400<br>400-450            | 54-52<br>52-48<br>48-42<br>42-36          |
|            | _                             | - <del>-</del>         |                               |                   |                        |                                                     |                                           |

| 58-53<br>53-49<br>49-43                  | 55-52<br>52-47<br>47-43<br>43-35         | 62-60<br>60-56     | 63-62<br>62-58<br>58-52<br>52-46<br>46-37           | 52-49<br>49-48<br>48-46<br>46-45<br>45-48<br>48-40             | 48-40     | 64-60<br>60-53<br>53-48<br>48-40         |
|------------------------------------------|------------------------------------------|--------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------|------------------------------------------|
| 200-300<br>300-400<br>400-500<br>500-600 | 200-300<br>300-400<br>400-500<br>500-600 | 170-230<br>230-275 | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 150-200<br>200-300<br>300-400<br>400-500<br>500-575<br>575-700 | 200-600   | 200-300<br>300-400<br>400-500<br>500-600 |
| 60-54                                    | 58-56                                    | 64-62              | 65-63                                               | 52-49                                                          | 54-51     | 67-64                                    |
| 011                                      | Ditto                                    | Ditto              | Ditto                                               | Oil or<br>air jet                                              | Ditto     | Water<br>Oil                             |
| 006-098                                  | 830-860                                  | 800-830            | 820-850                                             | 1075-1125                                                      | 1025-1075 | 800-820<br>820-860                       |
| 285-229                                  | 217-179                                  | 241-197            | 255-207                                             | 255-207                                                        | 255-207   | 285-229                                  |
| 780-800                                  | 760-780                                  | 780-800            | 780 - 800                                           | 860-880                                                        | 820-840   | 780-800                                  |
| 6XB2C                                    | 5XBF                                     | 9XBF               | XBL                                                 | 3X2B8                                                          | 4X8B2     | XB5                                      |

Table 83 continued

|        | Anne                    | Annealing              |                              | Hardening         |                                    | Tempering                                           | ering                                     |
|--------|-------------------------|------------------------|------------------------------|-------------------|------------------------------------|-----------------------------------------------------|-------------------------------------------|
| Grade  | Heating<br>temperature, | Hardness<br>number, HB | Heating<br>temperature,<br>C | Cooling<br>medium | Hardness number, $R_{\mathcal{C}}$ | Heating<br>temperature,                             | Hardness number, $R_{\mathcal{C}}$        |
|        |                         |                        |                              |                   |                                    |                                                     |                                           |
| X12M   | 850-870                 | 255-207                | 1000-1050                    | Oil or<br>air jet | 65-62                              | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 63-62<br>62-59<br>59-57<br>57-55<br>55-47 |
|        |                         |                        | 1115-1130                    | Ditto             | 48-45                              | 500-520<br>repeated<br>3-5 times                    | 59-62                                     |
| 5X H M | 790-820                 | 241-197                | 820-860                      | li0               | 60-58                              | 150-200<br>200-300<br>300-400<br>400-500<br>500-600 | 60-58<br>58-53<br>53-48<br>48-43<br>43-35 |
| 5XI'M  | 790-810                 | 241-197                | 820-850                      | Ditto             | 58-53                              | 200-300<br>300-400<br>400-500<br>500-600            | 57-52<br>52-46<br>46-40<br>40-34          |
| • -    |                         |                        |                              | <del></del>       | <del></del>                        |                                                     |                                           |

| 47-40<br>40-33                                      | 63-59<br>59-57     | 62-61                            | 46-40<br>40-34 | 41 - 35 | 47 - 41<br>41 - 34 | 46-41   | 46-41   |   |      |
|-----------------------------------------------------|--------------------|----------------------------------|----------------|---------|--------------------|---------|---------|---|------|
| 400-500                                             | 100-200<br>200-400 | 520-550<br>repeated<br>3-5 times | 400-500        | 200-600 | 400-500            | 440-460 | 440-460 |   |      |
| 58-53                                               | 64-62              |                                  | 59-55          | 59-55   | 59-55              | 59-55   | 1       |   |      |
| lio                                                 | Oil or<br>air jet  | Ditto                            | 0:11           | Ditto   | Ditto              | Ditto   | Ditto   |   |      |
| 830-860<br>with air-<br>blast cooling<br>to 720-760 | 1040-1080          | 1115-1150                        | 850-870        | 850-870 | 840-860            | 063-028 | 870-890 | _ | <br> |
| 235-192                                             | 255-207            |                                  | 255-207        | 255-207 | 241-197            | 241 тах | 241 max |   |      |
| 790-820                                             | 850-870            |                                  | 800-820        | 810-830 | 790-820            | 850-870 | 850-870 |   |      |
| 5XHT                                                | Х12Ф1              |                                  | 5XHC           | 5X HCB  | 5ХНВ               | 45XHT * | 45XHB * |   |      |

\* Data refer to cast die cubes.

To ensure adequate finish, the work is treated with superheated steam; to do this, steam is superheated in a tube, situated inside the furnace, prior to being admitted to the muffle.

Any type of boiler, of sufficient capacity, heated by any fuel can serve as a source of steam. Diagram of a steam-treatment installation

is presented in Fig. 23.

Recommended steel grades, tempering temperatures, and fool hardness numbers are presented in Table 86.

Table 84

Technological Schedules for Isothermal Annealing of Tool Steels

|                                                                                                                                 | Initial                                                                                             | heating                                                                                         | Isotherm                                                                                                              | al holding                                                  | Hardness                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Grade                                                                                                                           | Tempera-<br>ture, °C                                                                                | Holding,<br>hrs                                                                                 | Tempera-<br>ture, °C                                                                                                  | Holding,                                                    | number,                                                                                                                                     |
| X12<br>X12M<br>X, ШX15, ШX12<br>9XC<br>XΓ<br>XBΓ<br>B1<br>3X2B8<br>У11, У11A, У12,<br>V12A<br>У10, У10A<br>У9, У9A<br>P18<br>P9 | \$850-870<br>770-790<br>780-810<br>790-810<br>770-790<br>750-770<br>750-770<br>750-770<br>\$830-850 | 1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5<br>1.5-2.5 | 720-750<br>670-720<br>680-720<br>700-730<br>700-730<br>670-700<br>710-740<br>640-680<br>620-660<br>600-650<br>720-750 | 3-5<br>3-4<br>3-4<br>3-4<br>3-4<br>3-4<br>1-2<br>1-2<br>1-2 | 288-255<br>217-255<br>197-228<br>207-241<br>217-255<br>197-228<br>187-228<br>187-228<br>187-207<br>179-197<br>170-187<br>217-255<br>228-255 |
| P18K5, P18K10                                                                                                                   | 850-870                                                                                             | 1-2                                                                                             | 730-750                                                                                                               | 4-6                                                         | 217-269                                                                                                                                     |
|                                                                                                                                 |                                                                                                     | i                                                                                               |                                                                                                                       |                                                             |                                                                                                                                             |

In Table 86 hardening temperatures and cooling media are not indicated. These data are given in tables 70, 72, 81, 82, 84. Hardness numbers of tools are given in accordance with the Soviet Standards, while those of machine parts—according to specialised handbooks.

Table 85 Approximate Heat-treatment Schedules for High-speed Steels

|                  | Annea                           | ling                                  | Haı                             | dening                           |                                       | Tempe                           | ring                      |
|------------------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------|---------------------------------------|---------------------------------|---------------------------|
| Grade            | Heating<br>tempera-<br>ture, °C | Hardness<br>number,<br>H <sub>B</sub> | Heating<br>tempera-<br>ture, °C | Cooling<br>medium                | Hardness<br>number,<br>R <sub>C</sub> | Heating<br>tempera-<br>ture, °C | Hardness<br>number,<br>RC |
|                  |                                 |                                       | 1000 1050                       | _                                |                                       | [                               |                           |
| P9               | 830-860                         | 207-255                               | 1230-1250                       | icy<br>ent                       | 61-63                                 | <b>540-58</b> 0                 | ≥ 62                      |
| Р9Ф5             | 840-860                         | 293                                   | 1240 - 1260<br>1220 - 1250      | air. For<br>endency<br>ibsequent | 62-64                                 | 575-585                         | 64-66                     |
| Р10К5Ф5          | 840-860                         | 293                                   | 1230-1250<br>1210-1240          | 0°C, a<br>g a te<br>th sub       | 62-64                                 | 575-585                         | 65-67                     |
| P9K10            | 840-860                         | 293                                   | 1230-1250                       | vin<br>wi                        | 62-64                                 | 575-585                         | 65-66                     |
| P14Ф4            | 840-860                         | 293                                   | 1250-1270                       | 25 - 50<br>C                     | 62-64                                 | 575-585                         | 65-66                     |
| P18              | 830-860                         | 207-255                               | 1280-1300<br>1250-1290          | alta<br>e too<br>at 2<br>in o    | 62-64                                 | 540-580                         | ≥62                       |
| Р18Ф2            | 840-860                         | 293                                   | 1280-1300<br>1260-1290          | ricat<br>ricat<br>oil<br>down    | 63-65                                 | 575-585                         | 65-66                     |
| Р18К5Ф2          | 840-860                         | 293                                   | 1280-1300<br>1260-1290          | int<br>int<br>ack                | 63-65                                 | 575-585                         | 64-66                     |
| P18K5<br>P18K10} | See<br>Table 84                 | !                                     | 1280-1320                       | Oil,<br>very<br>to cr<br>cooli   | 60-64                                 | 550-570                         | 62-65                     |
|                  |                                 | 1                                     | 1                               | 1                                | 1                                     | İ                               | l                         |

Notes. 1. On annealing the cooling rate is 20-25°C per hr.

Notes. 1. On annealing the cooling rate is 20-25°C per fir.

2. The hardening temperatures given as numerators refer to cutters and those given as denominators—to fancy-shaped tools; the lower temperatures apply to thin tools, whereas the upper range—to the larger tools.

3. Tempering procedures are repeated from 2 to 4 times for tools made of steel grades P905, P10 K505 and P1404, and 2-3 times for the remaining grades, the holding time lasting 1 hour in each case.

## 2. PRACTICAL HINTS ON HEAT-TREATMENT OF ARTICLES

Cutting tools. Long, slender tools should be suspended on heating. When using chamber furnaces, the tools mentioned above should be placed on special supports (Fig. 24) which ensure rectilinearity of the tool on heating. Welded tools should be heated below the welding seam. When heating large tools in electrode-salt baths, care should be taken to prevent contact between the tools and the electrodes so as to avoid sticking.

Upon air-cooling, tools should not be placed on the floor or plates, but suspended or driven into sand boxes by their shanks.

Toble 36

Toble 36

Toble 36

Temperatures and Hardness Numbers

| Tune of too                  | Recommended                               | Temperature<br>for tempering  | Hardness number, $R_C$  | er, R <sub>C</sub> |
|------------------------------|-------------------------------------------|-------------------------------|-------------------------|--------------------|
|                              |                                           | the working<br>section        | Working section a       | Shank b            |
|                              |                                           | Cutting Tools                 | s <sub>1</sub>          |                    |
|                              |                                           |                               |                         |                    |
| II<br>Tool with a welded bit | P18, P9                                   | 540-580                       | 61-65                   |                    |
|                              | P18, P9, 3/1347<br>V11A, V12A, XBF<br>9XC | 540-580<br>150-180<br>180-200 | 62-65<br>61-64<br>61-64 |                    |
|                              |                                           |                               |                         |                    |
| Circular tool                |                                           |                               |                         |                    |
|                              | 9XBF, X, V10A.                            | 540-580                       | 62-65                   |                    |
|                              | VIIA<br>9XC                               | 150-180<br>180-200            | 61-64<br>61-64          |                    |
| Grooving cutter              |                                           |                               |                         |                    |

|                                                                              | 30.45<br>30.45<br>30.45                       | 30-45                                                                           |
|------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|
| Below 1 mm 60-63<br>Above 1 mm 61-64<br>Below 1 mm 58-62<br>Above 1 mm 60-64 | 62-65<br>61-64<br>61-64                       | Below 5 mm 60-64<br>Above 5 mm 62-65<br>Below 10 mm 59-63.<br>Above 10 mm 61-64 |
| 540-580<br>180-240 )<br>200-250 }                                            | 540-580<br>150-180<br>180-200                 | 540-580<br>150-220<br>180-240                                                   |
| P18, P9, ЭИ347<br>У12A, X12M<br>9XC                                          | P18, P9, ЭИЗ47<br>У10A, У11A, X,<br>XF<br>9XC | V10A, V11A,<br>V10A, V11A,<br>V12A<br>XBT, IIX12, X,<br>9XC                     |
| Slitting cutter                                                              | End milling cutter                            | Twist drill                                                                     |

Table 86 continued

|                                         |                                                     |                              | י ביינים                                                 | י בפונ פס פסונים ומכת   |
|-----------------------------------------|-----------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------|
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Temperature Recommended steel for tempering         | Temperature<br>for tempering | Hardness number, $R_C$                                   | er, $R_C$               |
| 1ype of tool                            | grades                                              | the working section          | Working section a                                        | Shank b                 |
|                                         |                                                     |                              |                                                          |                         |
|                                         | P9, 3N347                                           | 540-580                      | Below 6 mm 61-63                                         | 30-45                   |
|                                         | <i>y</i> 10A, <i>y</i> 11A,<br><i>y</i> 12A, X, XBF | 150-220                      | Above 6 mm 62-65<br>Below 8 mm 59-63<br>Above 8 mm 60-64 | 30-45                   |
| Reamer. Counterbore                     | 9XC                                                 | 180-240                      |                                                          |                         |
|                                         | Р18, Р9, ЭИ347                                      | 540-580                      | Вејом 6 шт 61-63                                         | Below 4 mm              |
| 9                                       | У10A-У12A, Ф<br>X XГ XВГ                            | 160-220                      | Above 6 mm 62-65<br>59-62                                | From 4 to<br>8 mm 35-55 |
| Тар                                     | 9XBr, IIIX12<br>9XC                                 | 200-270                      |                                                          | Above 8 mm<br>30-45     |
|                                         | y 10A-Y12A, X,                                      | 180-220                      | 58-62                                                    |                         |
|                                         | AI, 9ABI, W                                         | 220-280                      | <b>.</b>                                                 |                         |
| Round threading die                     |                                                     |                              |                                                          |                         |

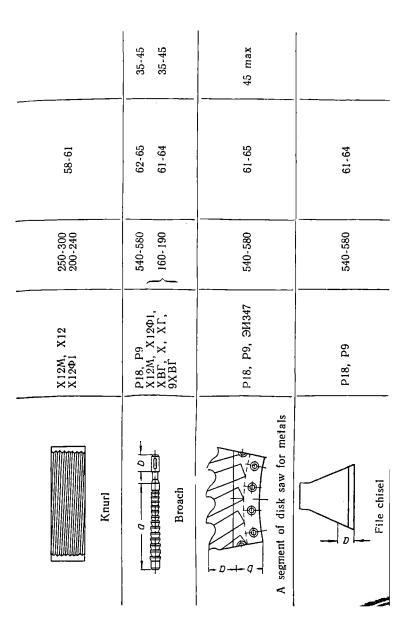



Table 86 continued

| ļ |                                             |                   | 1                                                                                                                                                   | 1                  |
|---|---------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|   | r, RC                                       | Sildlik           | 35 тах                                                                                                                                              | 40-45              |
|   |                                             | working section a | Should stick to a plate with hard-ness number above $R_C = 54$ Files for sharpening saws should stick to a plate whose hardness is above $R_C = 57$ | 58-61<br>58-61     |
|   | Temperature<br>for tempering<br>the working | section           |                                                                                                                                                     | 180-220<br>220-250 |
|   | Recommended<br>steel grades                 |                   | V7.V13, ШХ6,<br>ШХ9, ШХ12                                                                                                                           | y8-y12<br>9XC      |
|   | Type of tool                                |                   | File                                                                                                                                                | Hack saw blade     |

|                 |                                                                      | -                 | Lower by 50 100 H <sub>B</sub> as compared to the working section         |
|-----------------|----------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------|
|                 | 56-64                                                                |                   | 40-43<br>35-44<br>33-41<br>35-41<br>30-34<br>30-34<br>31-38               |
| · sp            | 150-180                                                              | Dies              | 400-430<br>500-600<br>500-600<br>488-550<br>460-600<br>560-600<br>530-600 |
| Measuring Tools | V10A-V12A, XF,<br>XBF, XO9, IIIX15,<br>10, 15, 20, 15X,<br>20X, 15XF | Hot Stamping Dies | 97A, 98A<br>5XHM<br>5XFM<br>5XHT<br>7X3<br>30XC<br>4XC, 35XFC             |
| •               | External gauges Internal gauges                                      |                   | Hot stamping die                                                          |

Table 86 continued

Fitter's Tools

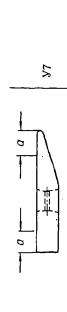
| 32-40   | 32-40                  | 32-40                  |         |
|---------|------------------------|------------------------|---------|
| 52-57   | 52-57                  | 48-54                  | 42-50   |
| 250-320 | 250-320                | 300-360                | 300-380 |
| y7, y8  | <i>y</i> 7, <i>y</i> 8 | <i>y</i> 7, <i>y</i> 8 | 45, 50  |
| Chixel  | Centre punch           | Rivet set              | Pliers  |

Table 86 continued

|                                        |             |                              |                     | manufacture of other |
|----------------------------------------|-------------|------------------------------|---------------------|----------------------|
| Type of fool                           | Recommended | Temperature<br>for tempering | Hardness number. RC | r. R <sub>C</sub>    |
| TOO TO OAK                             |             | the working section          | Working section a   | Shank b              |
| Hand vice                              | 45, 50      | 300-380                      | 42-50               |                      |
| Combination pliers and cutting nippers | y7, y8      | 200-320                      | 52-60               |                      |

| 40-45                  |                    |                                   |                 |
|------------------------|--------------------|-----------------------------------|-----------------|
| 54-58                  | 46-52              | 48-54                             | 49-56           |
| 250-300                | 280-350<br>320-370 | 320-380<br>370-420 \<br>400-450 } | 270-350         |
| <i>y</i> 7, <i>y</i> 8 | 50, 60<br>37, 3/8  | Cr. 3, 15, 20<br>40, 50<br>40X    | y7, y8          |
| Stamp                  | Screwdriver        | Spanner                           | Fitter's hammer |

Table 86 continued


| er, R <sub>C</sub>              | Shank b             |                    |               |              | 30-40               |
|---------------------------------|---------------------|--------------------|---------------|--------------|---------------------|
| Hardness number, R <sub>C</sub> | Working section a   |                    | 49-56         | 48-52        | 50-56               |
| Temperature<br>for tempering    | the working section | Toots              | 270-350       | 200-250      | 270-340             |
|                                 | steel grades        | Blacksmith's Tools | 7.7           | 50           | <i>y</i> 7          |
|                                 | Type of tool        |                    | Sledge hammer | Anvil chisel | Blacksmith's chisel |

| . 30-40            |                      |                 | 40-50                             |
|--------------------|----------------------|-----------------|-----------------------------------|
| 50-56              | 50-56                |                 | 56-59                             |
| 270-340            | 270-340              | rools           | 230-270                           |
| 27                 | 7.8                  | Pneumatic Tools | y7, y8, 4XB2C                     |
| Blacksmith's punch | Blacksmith's flatter |                 | Pneumatic chisel  Pneumatic punch |

Table 86 continued

| Table 86 continued | r, R <sub>C</sub>               | Shank b                | 40-50                  |       |
|--------------------|---------------------------------|------------------------|------------------------|-------|
| Table 8            | Hardness number, R <sub>C</sub> | Working section a      | 53-56                  |       |
| i<br>i             | Temperature<br>for tempering    | the working<br>section | 270-300                |       |
|                    | Recommended                     |                        | <i>y</i> 7, <i>y</i> 8 |       |
|                    | Type of tool                    |                        | Pneumatic rivet set    | Drift |

Coppersmith's and Tinsmith's Tools



Roofing hammer

45-50

330-380

|           |             | -                 | · ·                      |
|-----------|-------------|-------------------|--------------------------|
| 45-50     | 52-60       |                   | 40-42                    |
| 330-380   | 200-320     | Fools             | 450-500                  |
| 37        | 2.8         | Woodworking Tools | 85XΦ, 65X,<br>IIIX6, Y8A |
| Beak iron | Hand shears |                   | Circular saw             |

Table 86 continued

| mber, R <sub>C</sub>            | Shank b                |                                   |                                    |
|---------------------------------|------------------------|-----------------------------------|------------------------------------|
| Hardness number, R <sub>C</sub> | Working section a      | 56-58                             | 56-58                              |
| Temperature for tempering       | the working<br>section | 250-275<br>240-280                | 250-275                            |
| Becommended                     | steel grades           | V8-V10,<br>85XФ, 65X<br>6XB2C, XГ | y8, y10<br>85XΦ, 65X,<br>6XB2C, XΓ |
|                                 | Type of tool           | Twist drill  End milling cutter   | Gang milling cutter                |

|                                   |                         | 40-45             |
|-----------------------------------|-------------------------|-------------------|
| 56-59                             | 45-50                   | 56-58             |
| 230- <i>2</i> 75<br>220-280       | 330-375                 | 250-275           |
| У7, У8, У9<br>85ХФ, 65Х,<br>6XB2С | У7, У8, У9<br>85ХФ, 65Х | y8, y9, 65X       |
| Planing cutter                    | Scoring knife           | Solid lathe gouge |

Table 86 continued

|                                                                   |                                     | Temperature for tempering | Hardness number, $R_C$ | r, R <sub>C</sub> |
|-------------------------------------------------------------------|-------------------------------------|---------------------------|------------------------|-------------------|
| Type of tool                                                      | steel grades                        | the working section       | Working section a      | Shank b           |
| Chip axe                                                          | <i>y</i> 7, <i>y</i> 8, <i>y</i> 10 | 260-340                   | 50-56                  |                   |
| $\begin{array}{c c} & -a & -b & - & - & - & - & - & - & - & - & $ | y8, y9, 65X                         | 320-350                   | 50-52                  | 40-45             |
| Planing bit                                                       | V8, V9                              | 200-320                   | 53-60                  |                   |

|             |                        |                |                                       | 40-45        |
|-------------|------------------------|----------------|---------------------------------------|--------------|
| 53-58       | 44-48                  | 43-50          |                                       | 58-62        |
| 250-320     | 360-420                | 330-400        | tipping Tools                         | 200-250      |
| У8, У9, 65X | <i>y</i> 7. <i>y</i> 8 | 77             | Parts of Fixtures and Gripping Tools. | V8, V10, 65T |
| Chisel      | d                      | Joiner's tongs | Part                                  | Collet       |

Table 86 continued

|               |              |                              | י ממוני                | ו ממוג מם כמונונותבם |
|---------------|--------------|------------------------------|------------------------|----------------------|
| Type of tool  |              | Temperature<br>for tempering | Hardness number, $R_C$ | r, R <sub>C</sub>    |
| soot to add t | steel grades | the working<br>section       | Working section a      | Shank b              |
| Chuck jaw     | 45<br>40 X   | 300 - 350<br>350 - 400       | 45-50<br>45-50         | 35-42<br>35-42       |
| Centre        | y7-y10       | 250-300                      | 55-58                  | 55-58                |
|               | Track Tools  | <i>S1</i>                    |                        |                      |
| Spike hammer  | Cr.6, Cr.7   | 300-350                      | 45-50                  |                      |

| 35-40         | 45-50        | 47-50      | 49-56       |
|---------------|--------------|------------|-------------|
| 200-300       | 300-350      | 300-330    | 200 - 300   |
|               | Cr.6, Cr.7   | Cr.6, Cr.7 | Cr.6, Cr.7  |
| Socket wrench | Tamping pick | End pick   | Sleeper axe |

Table 86 continued

| Time of tool    | Recommended           | Temperature<br>for tempering | Hardness number, $R_C$ | r. R <sub>C</sub> |
|-----------------|-----------------------|------------------------------|------------------------|-------------------|
| ion o add       |                       | the working<br>section       | Working section a      | Shank b           |
| Pickaxe         | C <b>r.5</b>          | 200-250                      | 38-42                  |                   |
|                 | Harne somaker's Tools | Tools                        |                        |                   |
| Saddler's knife | 65, 70, 97, 98        | 320-360                      | 49-53                  |                   |
| Cutter's knife  | 65, 70, 97, 98        | 280-320                      | 53-56                  |                   |

| 33-42            | -                 |                                                                          |                                              |
|------------------|-------------------|--------------------------------------------------------------------------|----------------------------------------------|
| 40-46            |                   | 42-52<br>45-50                                                           | 43-51<br>48-52                               |
| 350-420          | ools .            | 300-400                                                                  | 350-420                                      |
| 45, 50           | Bricklaying Tools | Y7-V10<br>Cr.5                                                           | 50.70<br>  Cr.5-Cr.7                         |
| Saddler's hammer |                   | Blocking chisels, Planishing hammers, Trowels Plumbs Brick hammer, brick | axe, pickaxe<br>Pointed and flat<br>crowbars |

Notes. 1. Cylindrical shanks of drills, reamers and cutters are not subjected to hardening.

2. Pneumatic chiesls such as cape chiesls, caulking chisels and file chiesls are treated in the same manner as pneumatic chiesls, while dollies and strikers are treated in the same fashion as pneumatic rivet sets.

3. Tinner's fools such as formers, embossing dies, scrapers, etc., are treated in the same manner as beak irons.

Small-sized cylinder-shaped tools, up to 6-8 mm in diameter, are hardened by the use of a smoothing iron (employed as a chill bar)

(Fig. 25).

Thin, slender tools made from high-speed steel are hardened between plates, which, when not positively cooled on the inside, should be greated prior to the hardening procedure.

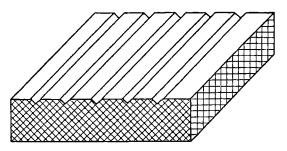



Fig. 24. Brick with grooves for heating of cylinder-shaped parts in horizontal position

Tools from grade 9XC and other silicon steels, which are not ground, should be carefully protected against decarburisation.

Tools hardened in water should be immersed therein very quickly so as to avoid cracking in that part of the tool which is dipped first.

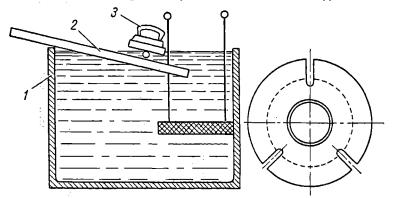



Fig. 25. Schematic view of "fron" hardening: 1 - bath; 2 - plate 3 - iron

Fig. 26. Cutter from carbon steel, slotted prior to hardening

Round cutters from carbon steel should be slotted by a 1-mm cutter to prevent cracking on hardening (Fig. 26).

Tools wish sections varying step by step should be quenched with the thick end down. Articles with blind holes should be cooled with the orifice oriented upwards or in a special installation with the aid of a water jet.

Tools with the cutting ends, when heated in salt baths, are heat treated as follows: for carbon and alloy steels—first the shank, then the cutting edge, while for high-speed steel the sequence is

reversed.

Prior to re-hardening the articles should be annealed, this being of utmost importance for high-speed steel articles in order to prevent coarse-grained flake-like fracturing.

When testing files for hardness by the use of a hardened steel plate, it may occur that the file slides on one side and sticks on the other,

i. e., one side is soft, the other hard.

In most cases, this failure occurs because of excessive hardness of

the pad on which the file is cut.

File dents when placed on the hard pad are dulled if the file is struck on the opposite side. If the pad is made of a material which takes on cold working (aluminium, etc.), it should be periodically annealed (the periodicity being set from practice). One of the Soviet research institutes recommends grade MT1 magnesium, which takes no cold working, as a pad material. An alloy consisting of 87% lead and 13% antimony is also used.

Annular cracks in welded tools. Cracks, situated at about 1 to 3 mm from the seam, can often be observed in high-speed welded tools.

These cracks are caused by rapid cooling of the tools from the welding temperatures and the subsequent air hardening of the seam area of the high-speed steel.

To prevent cracks, the blanks, after welding, should be charged into a furnace heated to 740-760°C. After charging, the furnace is cooled to 500-600°C and the blanks are then discharged.

Hot stamping dies. On hardening, small- and medium-sized dies can be charged into a furnace heated to requisite temperature, while large dies should be introduced into a furnace heated to 750-700°C.

When no spraying is available in the quenching tank, the die should be immersed with the face up. Dies from carbon steel are preliminarily normalised to increase the depth of hardening. For forging hammer dies the hardness of the shank should be by 50-100  $\,H_B$  less than that of the working section. The shanks are usually tempered through holding on the plates or at the opened furnace doors.

Dies should be tempered while still hot, immediately upon withdrawal from the quenching tank. When high tempering is applied, it is not recommended to place the dies immediately in the furnace heated

to tempering temperatures.

Pressure casting dies. The most durable material for pressure casting dies is grade 3X2B8 steel. It endures well the tempering at 600°C. Die performance shows that the higher the die surface hardness, the better is its wear resistance and the less the liquid metal sticks to

its sides. The best means of die case-hardening should be recognised

nitriding and cyaniding, as they cause minimum distortion.

Technology of casting die manufacture from grade  $3\times28$  steel, which is cyanided, is as follows: (1) preliminary machining of the blank; (2) heat-treatment—hardening from  $1075-1125^{\circ}$ C and tempering at  $700-720^{\circ}$ C to 30-34  $R_C$ ; (3) final machining; (4) gas, liquid or solid cyaniding (at  $560-580^{\circ}$ C to a depth of about 0.08-0.10 mm); washing in kerosene and wiping dry. The hardness of cyanided die is above 60  $R_C$ . Stresses appearing in the die during the operations, and casting cracks can be prevented by giving the dies periodical temperings after predetermined intervals of operation.

Cold stamping dies. Dies hardened in water should be protected against cracks at fastening apertures (Fig. 27) by 2-3-fold water dipping of the areas mentioned. To avoid warping when treating punches from

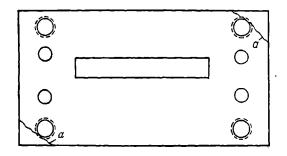



Fig. 27. Hardening cracks through auxiliar orifices of a  $die-a_0$  cracks

carbon steel, the shanks should be cooled first, and then the whole article immersed with the face oriented upwards.

The hardness of the perforating punches should gradually shade off from  $R_C$ =54-58 on the working end to  $R_C$ =40-44 on the shank.

Measuring tools. While hardening measuring tools it should be borne in mind that if correct technology is not strictly followed, this leads to greater distortion and warping. Improving of gauges after roughing, as well as hardening in hot media, yields good results and

brings down distortion.

Measuring tools are tempered twice: the first time, after hardening, to remove internal stresses, and, the second time, after grinding, to relieve post-grinding stresses and to prevent distortion during storage (artificial ageing). The ageing temperature should not exceed that for the first tempering procedure. The duration of ageing is from 2 to 5 hrs depending on the size of the tool, from the moment the latter has been heated through. Tools of long, slender form should be hooked up on heating.

The following data may be used to determine the carburising depth in relation to tool thickness:

Tool thickness, mm 3-5 5-10 10-15 Up to 20 and over Carburising depth, mm 0.3-0.5 0.5-0.8 0.6-0.9 0.8-1.0

Woodworking tools. Disk saws are oil-hardened while being placed vertically. As soon as the saw cools down to about 400-300°C, it is extracted from the tank and clamped between two plates till it cools down entirely. The saws are tempered when gripped in screw clamps. It is recommended to tighten screw clamps to arrive at an effective straightening of the saw on tempering.

The gradual transition from the thin section to the thick one in lathe gouges, as well as the sides next to the aperture in a hollow gouge should

be hardened so as to obtain minimum hardness.

Fitter's tools. Built-up tools such as flat- and round-nosed pliers, nippers and hand vice should be assembled and hardened with the jaws

open. The jointed sections should not be hardened.

To prevent cracking, cutters and combination pliers are quenched in kerosene or oil, while providing effective mixing of the bath. Large combination pliers should first be quenched in water and then transferred to oil. Hand shears are to be quenched in a disassembled state. The opening for the rivet should neither be heated nor hardened. The work is to be cooled in kerosene or oil.

When only the ends of carbon-steel tools (chisels, hammers, etc.) heated throughout are to be hardened, these ends are quenched by

the alternating method.

In this hardening method, first, the thin part is quenched, then the thick one, or vice versa. When hardening the thin part first, it should be immersed to a greater depth than that required; if the thick part is hardened first, the work should be heated up to the upper temperature range.

Spanners, according to Soviet Standard FOCT 2838-54, can also be manufactured from carburised steels, the depth of the case being 0.3-0.5 mm for spanners 2.5 to 4 mm thick and 0.6-1.0 mm for those

from 5 to 8 mm thick.

Heat-treatment of springs. When heat-treating springs, effective steps should be taken to prevent cracking, especially of those of the

smaller dimensions.

Holding in the furnace should be as short as possible. Small springs should be placed onto a heated pan. Springs from wire over 6 mm in diameter should be tempered at 670-700°C prior to hardening. Large spiral springs should be heated, on hardening and tempering, in special devices to prevent distortion. Prior to tempering, the springs are to be degreased. Best tempering results are obtained in saltpetre baths, holding time being from 10 to 12 minutes. When electric or flame furnaces are employed, tempering should take 20-40 min.

Brittleness, which develops in springs as a result of pickling or application of an anticorrosive coating (pickle brittleness), is eliminated

by heating for 1-2 hrs at 150-180°C.

When the above treatment does not remove the increased brittleness, the springs should be annealed, and then the entire heat-treat-

ment procedure repeated.

The thermo-mould method is the best means to manufacture flat springs from a heat-treated band. The spring band sheared to requisite profile is clamped in a device, shaped to finished spring, then heated for 20-30 min at 350-400°C, after which it is air-cooled together with the device. When the spring, upon discharge, is not up to the required profile, the configuration of the device must be corrected by the trial method. The said clamping devices are of the multiple-recess type.

Repairing worn plug gauges. Worn small-sized plug gauges from alloy and high-carbon steels can be repaired through tempering in an oil bath at 210-230°C. As a result of this treatment, the diameters of the gauges grow because of the disintegration of residual austenite

(Table 87).

Table 87

Heat-treatment Schedule for Repairing Thread Plug Gauges from Alloy and High-carbon Steels

| Plug diameter, mm                                      | Heating temperature, °C                                                    | Holding time, hrs |
|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------|
| Below 25<br>25-35<br>35-40<br>40-60<br>60-80<br>80-150 | 225 - 235<br>225 - 235<br>215 - 225<br>205 - 215<br>205 - 215<br>200 - 210 | } 2-5             |

Straightening of hardened articles. When hardened and tempered articles warp beyond the tolerated allowances, they are to be sub-

jected to straightening.

Tools from any grade of tool steel up to 15 mm in diameter or thickness, hardness numbers being  $R_{\rm C} = 50$  and above, are straightened through brief, but not heavy hammering over the entire length on the concave side except for the cutting edges and threads, until full straightening is achieved. The tool should be laid on a hardened plate, while straightening is carried out. The configuration of the hammer striker should not be pointed in order to avoid indentations which cannot be removed by subsequent grinding.

Tools from high-speed steel are hand-straightened while hot, immediately after hardening; those larger than 15 mm in diameter are straightened under a press, being heated to 500-550°C. When trueing a tool the latter is bent in the direction opposite to that of the detected convexity, to a degree slightly in excess of that of the true shape; after a predetermined holding (determined from practice)

and cooling, the work is discharged and inspected. If the procedure has not given satisfactory results, it is repeated. The heating temperature (500-550°C) is checked by the thermocolours.

Articles whose hardness numbers do not surpass  $R_C = 50$  are press-straightened while either cold, or preheated to tempering temperatures.

Files from high-carbon steel are effectively straightened by the use of a mallet or a special device, the hardening procedure being discontinued at 140-180°C.

Half-round files, prior to hardening, are curved in the direction

opposite to the flat face.

Flat, long articles are removed from oil at 150-200°C and inserted for straightening into special slotted plates (the slots being thicker than the articles by 0.1-0.15 mm), and re-cooled therein.

All articles without exception are re-tempered to remove stresses im-

mediately after press or mallet cold straightening.

Normalising, straightening and repeated hardening with the use of all means to prevent warpage should be carried out in the following instances:

1. When warpage is excessive, the shape of the article prohibiting trueing (cutting edges or through threads, sharp changes in section,

etc.).

2. When the article does not yield to trueing.

3. When large-sized carbon or alloy steel tools display excessive

Thermal straightening (thermo-trueing). Thermal straightening can be used whenever there is a need to straighten warped plates (Fig. 28).

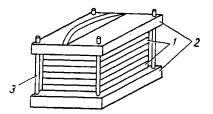



Fig. 28 Arrangement of plates in thermal straightening: 1-plates; 2-clamps: 3-bracing bolts

A packet of plates is clamped in a device and is held till heat-soaked in a furnace, the temperature being in the 240-280°C range for aluminium plates, and 400-600°C for those made of brass. The upper temperature range is used for straightening thicker plates.

A list of steel grades recommended for the manufacture of parts of lathes, automobiles and agricultural machinery, as well as tempering schedules and requisite hardness numbers, are given in Tables 88, 89 and 90.

Table 88

Steel Grades Recommended for the Manufacture of Spare Parts of Lathes and Presses, Their Tempering Temperatures and Hardness Numbers

| Hardness numbers | Brinell                              |       |                                                                                                                                                                                                |                                                                                                                                                                    | 228-260<br>200-260<br>200-260<br>228-280                                                                                                     | 228-250<br>228-250                                                                                                | 179-207                                                                                                                                   |
|------------------|--------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Hardness         | Rockwell                             |       | 56-62<br>56-62<br>56-62<br>56-62<br>56-62                                                                                                                                                      | 45-50<br>45-50                                                                                                                                                     |                                                                                                                                              |                                                                                                                   |                                                                                                                                           |
| Tempering        | recommended temperature, °C          |       | 180-200<br>180-200<br>180-200<br>180-200<br>180-200                                                                                                                                            | 320-400<br>320-400                                                                                                                                                 | 620-670<br>620-670<br>620-670<br>600-650                                                                                                     | 550-620<br>550-600                                                                                                | Subject only to normalising                                                                                                               |
| Steel            | recommended                          | Gears | 20X<br>15<br>20<br>12X H3<br>13X HBA                                                                                                                                                           | 40X<br>45X                                                                                                                                                         | 40X<br>35X<br>38XA<br>45X                                                                                                                    | 45<br>40                                                                                                          | 45<br>50                                                                                                                                  |
|                  | Name of parts and working conditions |       | Gears working at high peripheral velocities (4 m/sec and over), considerable bending and impact loads (gearbox gears of turning, furret and other lathes, as well as various other assemblies) | Gears working at medium peripheral velocities (2-4 m/sec), medium specific and light impact loads (individual gearbox gears of high-speed lathes, gearboxes, etc.) | Gears working at low peripheral velocities (up to 2 m/sec) and medium specific loads (gearbox gears, countershaft gearing, pump gears, etc.) | Gears working at low peripheral velocities (up to 1 m/sec) and medium specific loads (link and apron gears, etc.) | Non-critical gears working at low peripheral velocities (up to 0.3 m/sec) and low specific loads (changeable gears, quadrant gears, etc.) |

# Spindles

|                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                          | 228-260<br>200-260<br>200-260<br>228-280                                                          | 228-250                                                  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 56-62<br>56-62<br>56-62<br>56-62<br>56-62                                                                            | 45-50<br>45-50<br>ional                                                                                                                                                                                | 40-45<br>40-45                                                                                                                        | 35-42<br>35-42<br>35-42<br>35-42<br>35-42                                                                                                                |                                                                                                   |                                                          |
| 180-200<br>180-200<br>180-200<br>180-200<br>180-200                                                                  | 320-400<br>320-400<br>Local hardening is optional                                                                                                                                                      | 350-400<br>350-400                                                                                                                    | 450-500<br>400-450<br>420-470<br>530-600<br>450-500                                                                                                      | 620-670<br>620-670<br>620-670<br>600-650                                                          | 580-620<br>550-600                                       |
| 13XHBA<br>20X<br>15<br>20<br>12XH3                                                                                   | 40X<br>45X<br>Local                                                                                                                                                                                    | 45<br>50                                                                                                                              | 40X<br>35X<br>38XA<br>XT<br>XT<br>45X                                                                                                                    | 40X<br>35X<br>38XA<br>45X                                                                         | 45                                                       |
| Heavy-duty spindles working in rolling and sliding friction bearings (spindles of turret and automatic lathes, etc.) | Spindles requiring high hardness (working in rolling friction bearings) as well as those working at medium loads in sliding friction bearings (tapered spindles of drilling, milling and other lathes) | Spindles working under light and medium load conditions in sliding friction bearings (spindles of turning, drilling and other lathes) | Spindles (working in rolling friction bearings), requiring increased hardness and adequate fatigue endurance (spindles of turning and gang lathes, etc.) | Spindles (working in rolling friction bearings, under medium loads), requiring increased strength | Light-duty spindles working in rolling friction bearings |

Table 88 continued

| Shafts working at high peripheral velocities of gearboxes, feed gearboxes, etc.) and and plain shafts. Norking in rolling friction bearings at edgearboxes, etc.) and plain shafts working in rolling friction bearings at peratus, character, degarboxes, etc.) and gearboxes, etc.) and plain shafts working in rolling friction bearings at peratus, character, degarboxes, etc.) and working in rolling friction bearings at peradequately high strength and wear resistance shafts working in rolling friction bearings at perature, downwing in rolling friction bearings at light and wear resistance splined shafts working in rolling friction bearings at light perquiring and toughness and toughness and toughness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                 |                               |                         |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|-------------------------|--------------------|
| recommended   temperature, °C   Rockwell     Shafts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | Steel           |                               | Hardness                | numbers            |
| Shafts     180-200     56-62       20     180-200     56-62       20     180-200     56-62       20     320-400     45-50       40     45-50     45-50       45     350-400     40-45       50     350-400     40-45       50     350-400     40-45       40     45-50     35-42       38     40-45     35-42       40     45     40-45       38     420-470     35-42       45     450-500     35-42       45     620-670     35-42       45     620-670     35-42       45     550-600     56-62       40     550-600     56-62       20     180-200     56-62       20     180-200     56-62       20     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Name of parts and working conditions                                                                          | recommended     |                               | Rockwell                | Brinell            |
| 20X     180-200     56-62       15     180-200     56-62       20     180-200     56-62       40X     320-400     45-50       45 50     320-400     46-50       45 50     350-400     40-45       40X     450-500     35-42       35X     400-45     35-42       40X     450-500     35-42       45X     620-670     35-42       35X     620-670     35-42       45X     620-670     35-42       45X     620-670     35-42       45X     620-670     35-42       45     550-600     56-62       40     550-600     56-62       180-200     56-62       20     180-200     56-62       20     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               | Shafts          |                               |                         |                    |
| 15     180-200     56-62       20     180-200     56-62       40X     320-400     45-50       45     320-400     40-45       50     350-400     40-45       50     350-400     40-45       35X     400-450     35-42       35X     400-450     35-42       40X     450-500     35-42       35X     620-670     35-42       40X     620-670     35-42       35X     620-670     35-42       45X     620-670     35-42       45X     620-670     35-42       45X     600-650     56-62       40     550-600     56-62       180-200     56-62       20     180-200     56-62       20     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ifts working at high peripheral velocities                                                                    | 20X             | 180-200                       | 56-62                   |                    |
| 20         180-200         56-62           40 X         320-400         45-50           45 S         350-400         40-45           50         350-400         40-45           50         350-400         40-45           40 X         450-500         35-42           38 X A         450-500         35-42           40 X         620-670         35-42           40 X         620-670         35-42           35 X         620-670         35-42           45 X         620-670         35-42           45 X         600-650         35-42           45 X         600-650         35-42           45 Senebroom         550-600         56-62           15 Iso-200         56-62           20 Iso-200         56-62           20 Iso-200         56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 m/sec and over) and increased bending loads                                                                 | 15              | 180-200                       | 56-62                   |                    |
| 40 X     320-400     45-50       45 X     320-400     45-50       50 350-400     40-45       50 350-400     40-45       40 X     450-500     35-42       35 X     400-450     35-42       40 X     450-500     35-42       40 X     620-670     35-42       45 X     620-670     35-42       45 X     620-670     35-42       45 X     600-650     56-62       40 550-600     56-62     56-62       15 180-200     56-62     56-62       20 180-200     56-62     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gearbox shafts)                                                                                               | 20              | 180-200                       | 56-62                   |                    |
| 45 X       320-400       45-50         45 50       350-400       40-45         50 350-400       40-45         40 X       450-500       35-42         35 X       400-450       35-42         40 X       450-500       35-42         45 X       450-500       35-42         45 X       620-670       35-42         35 X       620-670       35-42         45 X       600-650       56-62         45 550-600       56-62         15 180-200       56-62         20 X       180-200       56-62         20 56-62       56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ifts working in sliding friction bearings at pe-                                                              | 40X             | 320-400                       | 45-50                   |                    |
| 45     350-400     40-45       50     350-400     40-45       40 X     450-500     35-42       35 X     400-450     35-42       45 X     420-470     35-42       45 X     620-670     35-42       35 X     620-670     35-42       35 X     620-670     35-42       35 X     620-670     35-42       45 X     620-670     35-42       45 580-600     56-62       40     550-600       180-200     56-62       20     180-200     56-62       20     180-200     56-62       20     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ipheral velocities up to 3 m/sec (feed gearbox hafts, countershafts, etc.)                                    | 45X             | 320-400                       | 45-50                   |                    |
| 50     350-400     40-45       40X     450-500     35-42       35X     400-450     35-42       38XA     420-470     35-42       45X     450-500     35-42       40X     620-670     35-42       35X     620-670     35-42       35X     620-670     35-42       45X     620-670     56-62       45     580-600     56-62       40     550-600     56-62       20X     180-200     56-62       20     180-200     56-62       20     56-62     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ifts working in sliding friction bearings at pe-                                                              | 45              | 350-400                       | 40-45                   |                    |
| 40 X     450-500     35-42       35 X     400-450     35-42       45 X     420-470     35-42       45 X     450-500     35-42       45 X     620-670     35-42       35 X     620-670     620-670       45 X     600-650     600-650       45 560-600     56-62       40 550-600     56-62       180-200     56-62       20 X     180-200     56-62       20 X     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ipheral velocities up to 2 m/sec (shafts of hange gearboxes, etc.)                                            | 20              | 350-400                       | 40-45                   |                    |
| 35.X 38.XA 400-450 38.42 45.X 450-470 35.42 40.X 620-670 35.X 620-670 45.X 600-650 45 45 560-620 45 180-200 15 180-200 56-62 20 180-200 56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | avy-duty splined and plain shafts, requiring                                                                  | 40X             | 450-500                       | 35-42                   |                    |
| 38.XA 420-470 35-42<br>45.X 450-500 35-42<br>40.X 620-670<br>35.X 620-670<br>45.X 600-650<br>45 580-620<br>40 550-600<br>1shings<br>180-200 56-62<br>15 180-200 56-62<br>20 180-200 56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dequately high strength and wear resistance                                                                   | 35X             | 400-450                       | 35-42                   |                    |
| 45 X     450 - 500     35 - 42       40 X     620 - 670     35 - 42       35 X     620 - 670     620 - 670       38 X A     620 - 670     620 - 670       45 580 - 620     620 - 670     620 - 670       45 580 - 620     620 - 620     620 - 622       180 - 200     56 - 62     62 - 62       20 180 - 200     56 - 62     62 - 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               | 38XA            | 420-470                       | 35-42                   |                    |
| 40 X     620-670       35 X     620-670       38 XA     620-670       45 580-620     550-600       40 550-600     56-62       180-200     56-62       20 X     180-200     56-62       20 X     180-200     56-62       20 X     180-200     56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               | 45 X            | 450-500                       | 35-42                   |                    |
| 38.X.A 620-670<br>45.X 600-650<br>45 580-620<br>40 550-600<br>1shings 180-200 56-62<br>20 180-200 56-62<br>20 180-200 56-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fts (working in rolling friction bearings) requir-<br>ng increased strength (shafts of tumblers, quad-        | 40 X<br>35 X    | 620-670<br>620-670            |                         | 228-260<br>200-260 |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ints, feed gearboxes, etc.), as well as multisplined                                                          | 38XA            | 620-670                       |                         | 200-260            |
| 45   580-620<br>  40   550-600<br>  18hings<br>  20X   180-200   56-62   15   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   56-62   180-200   180 | nafts working under medium-load conditions                                                                    | 45X             | 900-650                       |                         | 228-280            |
| ushings 180-200 15 180-200 15 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-200 180-2000        | ifts working in rolling friction bearings at light adds, as well as non-critical lightly loaded blined shafts | 45<br>40        | 580 - 620<br>550 - 600        |                         | 228-250<br>228-250 |
| 20X 180-200<br>15 180-200<br>20 180-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | shings          | •                             |                         |                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dium-duty bushings working at high speeds and quiring increased strength, high wear resistance nd toughness   | 20X<br>15<br>20 | 180-200<br>180-200<br>180-200 | 56-62<br>56-62<br>56-62 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                             |                 |                               |                         |                    |

| Heavily loaded bushings requiring high strength and adequate wear resistance   45x   320-400   45-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |          |                                                    | 228-260<br>200-260<br>200-260<br>200-260                          |                                                                                                         | 228-260<br>200-260<br>200-260<br>228-280 |                                                                                                                                                                               |                    |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------|
| Heavily loaded bushings requiring high strength and adequate wear resistance by such ings bushings  Worm Shafts  Worm Shafts  Worm Shafts  Worm Shafts  Heavy-duty worm shafts requiring high wear resist-life bushings  Non-critical lightly loaded worm shafts of hand-driven mechanisms  Claw clutches requiring high resistance to crushing frunning engagement) and increased tensile strength  Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchet mechanisms of immers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service  Locating rings  Engaging pins in presses  Worm Shafts  180-200  180-200  180-200  180-200  180-200  180-200  455  Cams, rollers, eccentrics, pawls of ratchet mechaning constancy of dimensions while in service  Locating rings  Engaging pins in presses  Worm Shafts  180-200  40X  620-670  620-670  620-670  88XA  630-670  88XA  6 |                                                                                           |          |                                                    |                                                                   |                                                                                                         |                                          |                                                                                                                                                                               |                    |                                          |
| Heavily loaded bushings requiring high strength and adequate wear resistance  Jig bushings  Worm Shafts  Worm Shafts  Heavy-duty worm shafts requiring high wear resist- ance  Non-critical lightly loaded worm shafts of hand- driven mechanisms  Claw clutches requiring high resistance to crushing frunning engagement) and increased tensile strength  Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchet mechanisms, formers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service  Locating rings  Engaging pins in presses  Loganians  Worm Shafts  40X  38XA  45X  ANXHMA  SOXH  45XH3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45-50<br>45-50<br>59-63                                                                   |          | 56-62<br>56-62<br>56-62                            | 3                                                                 | 56-62<br>56-62<br>56-62                                                                                 |                                          | 59-63<br>59-63                                                                                                                                                                | 40-45<br>40-45     | Above 50<br>Ditto<br>Ditto<br>Ditto      |
| Heavily loaded bushings requiring high strength and adequate wear resistance  Jig bushings  Worm Shafts  Worm Shafts  Heavy-duty worm shafts requiring high wear resist- ance  Non-critical lightly loaded worm shafts of hand- driven mechanisms  Claw clutches requiring high resistance to crushing frunning engagement) and increased tensile strength  Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchet mechanisms, formers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service  Locating rings  Engaging pins in presses  Loganians  Worm Shafts  40X  38XA  45X  ANXHMA  SOXH  45XH3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |          |                                                    |                                                                   |                                                                                                         |                                          |                                                                                                                                                                               |                    |                                          |
| Heavily loaded bushings requiring high strength and adequate wear resistance Jig bushings  Worm  Heavy-duty worm shafts requiring high wear resistance  Non-critical lightly loaded worm shafts of hand-driven mechanisms  Claw clutches requiring high resistance to crushing (running engagement) and increased tensile strength  Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchet mechanisms, formers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service  Locating rings  Engaging pins in presses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 320-400<br>320-400<br>180-250                                                             |          | 180-200<br>180-200<br>180-200                      | 620-670<br>620-670<br>620-670<br>600-650                          | 180-200<br>180-200<br>180-200                                                                           | 620-670<br>620-670<br>620-670<br>620-670 | 180-220<br>180-220                                                                                                                                                            | 350-400<br>350-400 | 180-200<br>180-200<br>180-200<br>180-200 |
| Heavily loaded bushings requiring high strength and adequate wear resistance Jig bushings  Worm  Heavy-duty worm shafts requiring high wear resistance ance Non-critical lightly loaded worm shafts of hand-driven mechanisms  Claw clutches requiring high resistance to crushing (running engagement) and increased tensile strength Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchet mechanisms, formers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service  Locating rings  Engaging pins in presses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |          |                                                    |                                                                   |                                                                                                         |                                          |                                                                                                                                                                               |                    | <del></del>                              |
| Heavily loaded bushings requiring high stren and adequate wear resistance Jig bushings Heavy-duty worm shafts requiring high wear resance Non-critical lightly loaded worm shafts of hadriven mechanisms Claw clutches requiring high resistance to crush (running engagement) and increased tenstrength Non-critical claw clutches  Cams, rollers, eccentrics, pawls of ratchef mechanisms, formers, stators of hydropumps and ot parts subject to wear and requiring constated dimensions while in service  Locating rings  Engaging pins in presses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40X<br>45X<br>XΓ                                                                          | n Shafts | 20X<br>15                                          | 40X<br>35X<br>38XA<br>58X                                         | 20X<br>15                                                                                               | 40X<br>35X<br>38X A<br>45X               | IIIX12<br>IIIX15                                                                                                                                                              | 45<br>50           | 37XH3A<br>40XHMA<br>50XH<br>45XH         |
| / _unu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heavily loaded bushings requiring high strength and adequate wear resistance Jig bushings | Worn     | Heavy-duty worm shafts requiring high wear resist- | Non-critical lightly loaded worm shafts of hand-driven mechanisms | Claw clutches requiring high resistance to crushing (running engagement) and increased tensile strength | Non-critical claw clutches               | Cams, rollers, eccentrics, pawls of ratchet mechanisms, formers, stators of hydropumps and other parts subject to wear and requiring constancy of dimensions while in service | Locating rings     | Engaging pins in presses                 |

Note. Hardening schedules for steel grades mentioned in the above table are presented in Tables 61, 64, 67.

Table 89

Steel Grades Recommended for the Manufacture of Some Automobile Parts and their Approximate Hardness Numbers

| Name of parts                      | Steel grade                  | Hardness<br>number, R <sub>C</sub> | Remarks                                                     |
|------------------------------------|------------------------------|------------------------------------|-------------------------------------------------------------|
| Bushings                           | 20, 18XFT                    | 29-95                              | Carburise to 0.7-1.0 mm                                     |
| Crankshafts                        | 45                           | 26                                 | Surface hardening of journals                               |
| Camshafts                          | 45                           | Ditto                              | Ditto                                                       |
| Injet valves                       | 40X                          | 22-28                              |                                                             |
| Exhaust valves                     | СХ8, ЭИ107                   | 45                                 | Thrust ring to be hardened                                  |
| Piston rings                       | Pearlitic                    | 98-106                             | Thermal stabilising on a mandrel in                         |
|                                    | (431 11011                   | 8                                  | 30 min                                                      |
| Standard parts, bolts, nuts, etc.  | 40X, 45                      | 28-35                              |                                                             |
| Standard parts subject to friction | 20X, 20                      | 20-60                              | Carburise to 0.6-1.0, working section to be hardened        |
| Piston pins                        | 15X, 20                      | 26                                 | Carburise to 0.7-1.2 mm                                     |
| Spherical pins                     | 18XFT,<br>12XH3A             | 56                                 | Carburise to 1.0-1.5, the head to be hardened               |
| Spring pins                        | 20, 20X                      | 56                                 | Carburise to 1.0-1.3 mm, the thread to be tempered to 35-40 |
| Pivots of rotating cam             | 12X H3A,<br>12X2H4A,<br>20X3 | 56                                 | Carburise to 0.7-1.2 mm                                     |

Steel Grades Recommended for the Manufacture of Some Agricultural Machinery Parts and

| Their                                              | Their Approximate Hardness Numbers | ardness Num                        | bers                                         |
|----------------------------------------------------|------------------------------------|------------------------------------|----------------------------------------------|
| Name of parts                                      | Steel grade                        | Hardness<br>number, R <sub>C</sub> | Remarks                                      |
| Share sidewalls and skim coverer of potato planter | 65Г                                | 38-50                              |                                              |
| Bushings of self-propelled combines                | 35                                 | 45-50                              | Carburise to 0.6-1.0 mm to a length of 20 mm |
| Medium-duty shafts and axles                       | 45-40 Cr.5                         | 30-40<br>40-45                     | Depending on loads                           |
| Heavy-duty shafts and axles                        | Ditto                              | 52-58                              | HF hardening                                 |
| Field disks for ploughs, harrows, etc.             | Cr.6,Л53<br>65Γ. 70Γ               | 35-50                              |                                              |
| Twine holder                                       | 8,6                                | 40-50                              | Local hardening                              |
| Chain links for elevators of potato diggers        | 65Γ                                | 38-45                              | Ditto                                        |
| Teeth of thrashing drums and con-<br>caves         | 45, Cr.6                           | 42-52                              | Ditto                                        |
| Teeth of traverse rakes                            | 65F, 70F                           | 37-46                              | Pin hardness number $>269~H_{B}$             |
| Chain wheel of combine drum shaft                  | 15                                 | 54-62                              | Carburise to 1.0-1.5 mm                      |
| Ridger mouldboard vanes                            | Cr.5                               | 33                                 |                                              |
| Agricultural scythes                               | Y7A, Y8A                           | 40-50                              |                                              |
| Crosspiece of Hooke's joint and cross-             | Cr.2                               | 40-55                              | Carburise to 0.8-1.2 mm                      |

| Name of parts                                    | Steel grade   | Hardness<br>number, R <sub>C</sub> | Remarks                                       |
|--------------------------------------------------|---------------|------------------------------------|-----------------------------------------------|
| Teeth of various types of cultivators            | 65F, 70F      | 38-50                              | Blade area to be quenched                     |
| Various types of plough-shares                   | Л65, 50, Ст.6 | 38-50                              | Working section to be quenched                |
| Beaters, crushers                                | Cr.2          | 56-62                              | Working section to be carburised and quenched |
| Points of harrows and seeders                    | JI53, Cr.5    | 38                                 | Working section to be quenched                |
| Knives of feed mincers                           | V9, 65F, 70F  | 46-56                              | Ditto                                         |
| Knives of beet-lifting machines                  | 98            | 45                                 |                                               |
| Knives of sheafer knotter                        | 99            | 50-58                              | Working section to be quenched                |
| Knives and combs of sheep shearing machine       | y2A, yBA      | 09                                 |                                               |
| Various types of mould-boards                    | Ст.2          | 50                                 | Carburise to 1.0-1.5 mm                       |
| Ginning and lintering saws of cotton scrapers    | 82            | 30-35                              |                                               |
| Plates and pawls of plough automatic device      | Cr.2          | 45-50                              | Carburise                                     |
| Pins of self-propelled combine                   | 40            | 35-40                              |                                               |
| Sections of harvester cutting devices            | 3.9           | 20-60                              | Working section to be quenched                |
| Spring mountings of cultivators                  | 65F, 70F      | 38-47                              |                                               |
| Slide block of self-propelled combine            | 40            | 45-50                              |                                               |
| Worm shafts of high strength and wear resistance | 40X           | 38-45                              |                                               |
| Worm shafts of high wear resistance              | 20, Cr.2      | 50-58                              | Carburise to 0.8-1.2 mm                       |
|                                                  |               |                                    |                                               |

# Chapter VII

### HEAT-TREATMENT OF CAST IRON

Cast-iron articles, depending on specifications, may be annealed, normalised, hardened, tempered or case-hardened.

Low-temperature annealing. Natural ageing, consisting of a prolonged maturing of articles in storehouses, was employed as a means of removing stresses in cast-iron articles. This was a long-term operation

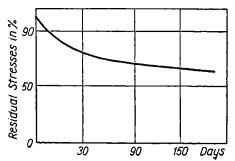



Fig. 29. Lowering of internal stresses in relation to the duration of natural ageing of cast iron

which, all things considered, did not remove all the stresses entirely

(Fig. 29).

Currently, a low-temperature annealing procedure, relieving all the stresses completely, has been successfully applied (Fig. 30); this procedure is carried out according to a schedule which is the same for all grades of cast iron: the articles are charged to a furnace heated to maximum 250-300°C, the furnace temperature is then raised and the said work is held over for a period ranging from 2 to 8 hrs, depending on its size and shape; after this, the furnace is cooled at a rate of 20-30°C per hour down to 200-150°C, and the articles are discharged in the air.

Low-temperature spheroidising annealing. This procedure is generally used for extra-tough and malleable cast irons; it greatly increases ductility, resilience and antifriction properties. This treatment is rarely applied to grey cast iron, as along with a lowering of

hardness and improvement of machinability it brings down sharply

its mechanical properties.

The annealing schedule comprises: heating (gradual for fancyshaped parts) to 670-700°C, holding from 1 to 4 hrs and cooling with the furnace.

Spheroidisation of white cast iron. This process is employed to reduce hardness and to improve machinability of white cast iron. The work is heated to 850-950°C and, after a through heat soaking, cooled with the

furnace; larger articles are air-cooled.

To remove the whitening effect in the thin sides of castings from extra-tough cast iron, the articles are annealed according to the following schedule: heating to 800-850°C, holding for 2-4 hrs, cooling to 650°C, holding for 4-6 hrs and cooling with the furnace to 200-175°C.

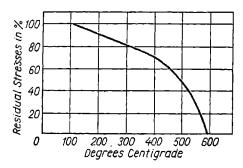



Fig. 30. Effect of heating temperature on removal of internal stresses according to published data

Normalising. It is employed to increase strength and wear resistance of grey cast iron. On normalising, the article is heated to 850-900°C and, after a through heat soaking, cooled. Intricate parts should be tempered, after normalising, at 600-650°C.

Hardening is intended to increase hardness, strength and heat re-

sistance of articles made of grey cast iron.

The hardening temperature in oil is 830-870°C, and in water 800-820°C. Odd-shaped parts, prior to hardening, are heated slowly whereas simple-shaped parts are heated rapidly by charging them into the furnace heated to the requisite temperature. When initial structure is ferritic, holding time is increased. Isothermal hardening of grey cast iron, which markedly reduces cracking and warping, is carried out at 830-900°C through immersion in a bath at 200-400°C.

Tempering. Tempering of cast-iron parts, after hardening, is imperative. The process temperature is from 200 to 500°C, depending on properties required. When maximum wear resistance is needed, the work is tempered at 200-250°C. The best combination of strength and wear resistance is attained in the 350-450°C range, the hardness averaging  $H_{\rm p} = 321-418$ .

Testing cast-iron articles for hardness. Rockwell hardness test, after quenching, fails to bring forth the exact picture of the hardening effectiveness, because of presence of graphite in the cast iron. Fig. 30 a illustrates an indentation produced by the Rockwell testing machine on the hardened surface of a tractor cylinder bushing, the load applied equalling 60 kg. To ascertain what amount of graphite is included in the indentation area of the diamond cone, a circle of equal diameter is drawn next to the indentation. The hardness number of the said bushing is 45 units  $R_{C_{150}}$ , while the hardness number of its metallic base determined by the  $\Pi MT$ -3 device equals 62  $R_{C_{150}}$ . It is evident that the  $R_C$ =45 is an average hardness number, which is a function not only of the degree of hardening but also of the amount of graphite (Brinell hardness number of only 6-10 kg/mm²) present in the cast iron.

Table 91
Causes and Correction Methods for Annealing Defects in Grey and Malleable Cast Irons

| Defect                                                                         | Detection                  | Chief cause                                                                                      | Correction<br>methods                                                                                            |
|--------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Low hardness of<br>grey cast iron<br>after stress-<br>relieving an-<br>nealing | Hardness test              | Disintegration of<br>cementite on<br>heating above<br>600°C                                      | Normalising at<br>900-950°C for<br>plain-shaped<br>parts and sub-<br>sequent stress-<br>relieving tem-<br>pering |
| High hardness<br>of white cast<br>iron after<br>annealing                      | Ditto                      | Insufficient femper-<br>ature and/or<br>holding on an-<br>nealing                                | Repeated an-<br>nealing at nor-<br>mal tempera-<br>ture and ade-<br>quate holding<br>time                        |
| Free structural cementite in malleable cast iron                               | Microstructure<br>checking | Low temperature<br>or insufficient<br>holding at the 1st<br>stage of spheroid-<br>ising          | Repeated an-<br>nealing ac-<br>cording to set<br>schedule                                                        |
| Excessive<br>amounts of la-<br>mellar pear-<br>lite in malle-<br>able iron     | Ditto                      | Non-compliance with cooling schedule or insuf- ficient holding at the 2nd stage of spheroidising | Repeated an-<br>nealing at<br>710-730°C                                                                          |
| Lamellar graphite in malleable iron                                            | Ditto                      | Presence of free<br>graphite in mal-<br>leable iron                                              | Irremediable<br>defect                                                                                           |

Improving of extra-tough cast iron is effected according to the following schedule: hardening in oil from 870-900°C and tempering at 500-600°C.

Mechanical properties: tensile strength up to 120 kg/mm<sup>2</sup>, yield point up to 100 kg/mm<sup>2</sup>, Brinell hardness number—375.

Heat-treatment of white cast iron. Malleable cast iron is obtained by annealing white-iron castings according to a number of technological flowsheets, two of which are given below.

Flowsheet No. 1. The articles are packed into boxes and covered with dry river sand. The boxes are heated to 1000-1050°C in a furnace. kept there at the said temperature for 6-10 hours and cooled with the furnace down to 680°C. The cooling in the 760-680°C range is slow (2-3°C. per hour), after which the cooling rate is immaterial. Prolonged holding at temperatures slightly below the A, point can be substituted for slow cooling.

Flowsheet No. 2. Heating of articles in an antioxidising medium up to 940-960°C, holding at the said temperature for 12 hours, cooling to 760°C, slow cooling (for 20-22 hrs) in the 760-680°C range, 10-hr cooling down to 550°C, subsequent cooling effected at any rate desired.

Table 91 lists various defects encountered in the heat-treatment of cast from and the methods required to remedy them.

# Chapter VIII

# HEAT-TREATMENT OF NON-FERROUS METALS

Copper and copper-base alloys. Copper is annealed to remove cold working effects and to reduce hardness. To this end, copper is heated to 500-700° C and then cooled after heat soaking. Any rate of cooling will suit the case, the cooling being effected with the furnace, in the air or water; when the work is water-cooled, the scale flakes off more readily than with the cooling being effected in the furnace or air.

The post-annealing mechanical properties of pure copper are tensile strength  $\sigma_b = 20 \text{ kg/mm}^2$ , relative elongation  $\delta = 50\%$ , Brinell hardness number  $H_B = 35$  (approximate data).

Conventional designations for copper alloys are given in Table 92.

Table 92
Conventional Designations of Elements in Specifications for Copper and Nickel Alloys

| Element   | Designation | Element   | Designation |
|-----------|-------------|-----------|-------------|
| Aluminium | А           | Magnesium | Mr          |
| Beryllium | Б           | Manganese | Mu          |
| Chromium  | Х           | Nickel    | H           |
| Copper    | М           | Silicon   | K           |
| Iron      | Ж           | Tin       | O           |
| Lead      | С           | Zinc      | Ц           |

Brasses (copper-zinc alloys). The chemical composition of brasses can be identified according to the designation of the alloy, namely: the letters indicate the elements contained in the brass, while the figures specify the percentage of these elements. The letter "I" designates brass, while the subsequent letters stand for elements comprising the brass. The first figure designates the percentage of copper, the remaining figures specifying the percentage of the elements in the same sequence as these are included in the designation of the alloy. The amount of zinc is the balance to 100%.

Examples:

1. Π62—brass, copper—62%, zinc—38%.

<sup>2.</sup> ЛЖМu59·1-1—brass, copper—59%, iron—1%, manganese—1%, zinc—39%.

Brass is annealed to remove cold working effects and restore the structure. On annealing, the parts are charged to a furnace heated to the required temperature. Brasses, even when slightly distorted, tend to crack when stored in moist atmosphere; because of this, all articles and half-finished pieces should be subjected to low-temperature anneal-

ing at 300-350°C.

Intermediate annealing subsequent to the rolling of brass, as well as annealing of blanks are carried out at temperatures listed in Table 93. Brass castings which should display minimum deformation in machining and service are annealed at 300-350°C with a 2-4 hr holding. Castings from brass JK80-3J should be homogenised at 750-760°C for 1-1.5 hrs in order to eliminate microporosity. When the said defect is highly pronounced, homogenising should be repeated twice (Table 93).

Table 93

Approximate Annealing Schedules and Mechanical Properties of Brasses

|                                                                                           |                                                                                          |                                                                                                            |                                                          | imate<br>proper                                          | mechan-<br>ties                                     |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| Name of brass                                                                             | Designation                                                                              | Annealing<br>tempera-<br>ture, °C                                                                          | Tensile<br>strength,<br>kg/mm²                           | Elonga-<br>tion, %                                       | Brinell<br>hardness<br>number                       |
| Tombac. Ditto. Semi-red brass. Ditto. Brass. Ditto. Ditto. Ditto. Aluminium brass. Ditto. | Л96<br>Л90<br>Л85<br>Л80<br>Л70<br>Л68<br>Л62<br>Л59<br>ЛА85-0.5                         | 540-600<br>650-720<br>600-700<br>600-700<br>600-700<br>520-650<br>600-700<br>600-670<br>650-700<br>600-650 | 24<br>26<br>26<br>31<br>33<br>33<br>36<br>39<br>35<br>38 | 52<br>44<br>43<br>52<br>55<br>56<br>49<br>44<br>60<br>50 | 59-63<br>53<br>54<br>53<br>52<br>56                 |
| Ditto                                                                                     | ЛАН759-3-2<br>ЛАН59-3-2<br>ЛН65-5<br>ЛМц58-2<br>ЛЖМц59-1-1<br>ЛО90-1<br>ЛО70-1<br>ЛО62-1 | 600-650<br>600-650<br>600-650<br>600-650<br>650-720<br>560-580<br>550-650                                  | 38<br>50<br>38<br>44<br>47<br>28<br>35<br>38             | 50<br>42<br>65<br>36<br>40<br>62<br>37<br>37             | 50<br>117<br>65<br>85<br>80<br>57<br>48<br>85<br>85 |
| Lead brass Ditto Ditto Ditto Ditto                                                        | ЛС74-3<br>ЛС64-2<br>ЛС63-3<br>ЛС60-1<br>ЛС59-1                                           | 600-650<br>620-670<br>620-650<br>600-650<br>600-650                                                        | 35<br>34<br>35<br>35<br>42                               | 48<br>60<br>45<br>50                                     | 55<br>50<br>80<br>75                                |

Note. Cooling after annealing is effected in the air or within the furnace.

Bronzes. Depending on their chemical composition, bronzes belong to the tin or tinless varieties. Chief constituents of tin bronzes are copper and tin. Tinless bronzes are constituted by copper-bearing alloy comprising one or several additional elements: aluminium, silicon. manganese, etc. The chemical composition of bronzes is recognised by the designation of the alloy, as is the case with brasses.

On heat-treatment, the work can be charged to a furnace heated to the requisite temperature. Cooling, after annealing, can be carried out in the air or within the furnace. Annealing temperatures are adopted with relation to the thickness of the material. Temperatures lower by 10% as compared to those listed in Table 94 can be recommended for

bands and small-sized wire (up to 0.5 mm).

Table 94 Annealing Schedules and Approximate Mechanical Properties of Bronzes

|                                                                           |                                                                                                     | **                                                                | Approximate mechanical properties      |                                              |                                               |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------------|--|--|
| Name of bronze                                                            | Designation                                                                                         | Heating<br>tempera-<br>ture, °C                                   | Tensile<br>strength,<br>kg/mm²         | Elonga.<br>tion, %                           | Brinell<br>hardness<br>number                 |  |  |
| Tin-phosphor bronze                                                       | Бр.ОФ6.5-0.4<br>Бр.ОФ4-0.25<br>Бр.ОЦ4-3<br>Бр.ОЦС4-4-2.5<br>Бр.А5<br>Бр.А7<br>Бр.АЖ9-4<br>Бр.АМц9-2 | 600-650<br>600-650<br>600<br>600<br>600-700<br>650-750<br>700-750 | 34-45<br>34<br>35<br>30-35<br>38<br>42 | 60-70<br>52<br>40<br>35-45<br>65<br>70<br>40 | 70-90<br>55-70<br>60<br>60<br>60<br>70<br>110 |  |  |
| bronze                                                                    | Бр.АЖМц<br>10-3 <b>-1</b> .5                                                                        | 650-750                                                           | 60 <b>-6</b> 4                         | 27-30                                        | <b>12</b> 0                                   |  |  |
| Aluminium-iron-<br>nickel bronze<br>Beryllium bronze<br>Silicon-manganese | Бр.АЖН10-4-4<br>Any grade                                                                           | 700-750<br>6 <b>5</b> 0-750                                       | 60<br>50                               | 35<br>30                                     | 140-160<br>100                                |  |  |
| bronze                                                                    | Бр.ҚМц3-1                                                                                           | 600-680                                                           |                                        |                                              | 80                                            |  |  |
| bronze                                                                    | Бр.КН1-3<br>Бр.Мц5                                                                                  | 650-750<br>700-750                                                | 45<br>30                               | 1 <b>2</b><br>40                             | 80                                            |  |  |
| various grades                                                            |                                                                                                     | 60 <b>0</b> -650                                                  |                                        |                                              |                                               |  |  |

Castings from a number of tin bronzes, which display leakage when tested for water-tightness, are consolidated through annealing according to the following schedule: heating to 700-710°C, holding for 2 hours for each 25 mm of thickness and cooling within the furnace.

Spring bronzes which are marketed in a strain-hardened state cannot be annealed to facilitate bending. In this case tempering at 300-

320°C is sometimes permitted.

Beryllium bronzes should be quenched in water at 20°C as a maximum, while the transfer time from the furnace to the tank should be as short as possible. Slow quenching tends to impair springiness of this bronze. Dissociated ammonium is the best medium for the prehardening heating of beryllium bronze blanks.

Heating in dissociated ammonium makes it possible to detect the defects of the material prior to manufacturing of parts, as the hydrogen of the ammonium forms bulges or blisters on the blank surface by com-

bining with the oxides of the metal.

When heating in a usual chamber furnace in air atmosphere the fol-

lowing precautions should be envisaged:

1. Pans which carry the articles should be free from dirt, oil and scale.

2. The articles should be piled on the pan uniformly. Heating in bulk impairs the quality of the articles.

Holding time of heated articles should average 8-12 min at 760-

780° C.

Beryllium bronze is aged in an air furnace or saltpetre bath. Ageing

time is approximately 2-3 hrs.

It should be pointed out that sensitive elements (diaphragms, bellows, etc.) manufactured from bronze Ep.B2.5 do not show superior quality due to the fact that high beryllium content in the bronze frequently causes structural non-uniformity, increased brittleness, etc.

The Moscow Research Institute for Non-Ferrous Metal Working has recommended, for sensitive elements, a new grade of beryllium bronze, the BHT1.9 whose chemical composition is: beryllium 1.8-2.1%, nickel 0.2-0.4% and titanium 0.1-0.25%.

Diaphragms and springs from the said bronze possess high fatigue

endurance (durability) and lower hysteresis.

The heat-treatment schedule for BHT1.9 bronze is the same as for bronze Bp.B2.5. The low response of the former to heat-treatment conditions and its cost, being lower than that of the Bp.B2.5 bronze, should be of interest.

Tempering time of grade X0.5 chromium bronze is accepted to

be 6 hrs (Table 95).

Nickel is subject either to oxidising or bright annealing depending on requirements. Annealing temperature for nickel is in the 750-900°C range. Annealed nickel possesses a tensile strength  $\sigma_b$  of 50 kg/mm², elongation of 40%, Brinell hardness number  $H_B$ =70-90.

Bright annealing of nickel is carried out in the atmosphere of dried hydrogen from generator gas, of dissociated ammonium, etc. When controlled atmosphere is not available, bright annealing is effected as follows: parts or materials, subject to annealing, are placed into pots or boxes (cast-iron or steel), a small amount of charcoal is added thereto, the boxes are covered with lids, the seams are thoroughly luted with a mixture of ordinary clay and fireclay, and then charged to the furnace. After annealing the packets should not be opened until cold. When annealing coils of wire, the latter, prior to packing, are dipped

When annealing coils of wire, the latter, prior to packing, are dipped in a water solution of whiting and dried, to prevent sticking of coils.

Nickel alloys. The chemical composition of nickel and copper-nickel alloys can also be readily recognised by the alloy designation. When nickel is the basic element of the alloy, the first letter of the alloy designation is "H", while if copper is the basic element, the first letter of the alloy designation will be "M". The letters and figures that follow designate the elements and their percentage in the alloy.

Table 95

Approximate Hardening and Tempering Schedules for Bronzes

|                                                     |                           | Harden                          | ing               | Tempering                       |                               |
|-----------------------------------------------------|---------------------------|---------------------------------|-------------------|---------------------------------|-------------------------------|
| Name of bronze                                      | Designation               | Heating<br>tempera-<br>ture, °C | Cooling<br>medium | Heating<br>tempera-<br>ture, °C | Brinell<br>hardness<br>number |
|                                                     |                           |                                 |                   | 1                               |                               |
| Aluminium-iron bronze Aluminium-man-                | Бр.АЖ9-4                  | 850                             | Water             | 350                             | _                             |
| ganese bronze<br>Aluminium-iron-                    | Бр.АМц9-2                 | 800                             | Ditto             | 400                             | 150-187                       |
| manganese<br>bronze                                 | Бр.АЖМц<br>10-3-1.5       | 830-860                         | Ditto             | 300-350                         | 207-285                       |
| Aluminium-iron-<br>nickel bronze<br>Chromium bronze |                           | 980<br>950-1000                 | Ditto<br>Ditto    | 400<br>400                      | 400 max                       |
| Cunial                                              | Бр.НА14-3<br>Бр.НА6-1.5 } | 900                             | Water<br>or air   | 500                             | 260<br>210                    |
| Beryllium bronze                                    | Бр.Б2<br>ВНТ1.7<br>БНТ1.9 | 760-780                         | Water             | 310-330 *                       | 300 min                       |
| Silicon-nickel bronze                               | Бр.КН1-3                  | 850                             | Ditto             | 450                             | 150-200                       |
|                                                     | l                         | l                               | l                 | 1                               | l                             |

<sup>\*</sup> Bronzes used for diaphragms are tempered at 290-310° C.

# Examples:

Nickel allovs:

<sup>1.</sup> Alumel HMuAK2-2-1, averaging 2% manganese, 2% aluminium, 1% silicon, the balance (95%) being nickel and cobalt.

2. Chromel HX9.5, averaging 9.5% chromium, the balance being nickel and cobalt.

Copper-nickel alloys:

1. Copel MHMu43.0.5, averaging 43% nickel, 0.5% manganese, the balance being copper.

2. Cunial MHA13-3, averaging 13% nickel, 3% aluminium, the bal-

ance being copper.

Bright annealing of nickel and copper-nickel alloys is similar to

that of nickel (Table 96).

Copper-nickel alloys Cunial "A" MHA13-3 and Cunial "B" MHA 6-0.5 are toughened by means of heat-treatment according to the following schedule: hardening from 900°C in water and tempering at 500°C for two hours. Mechanical properties following this treatment are:

|                  |                       | MHA13-3 | MHA6-0.5 |
|------------------|-----------------------|---------|----------|
| Tensile strength | in kg/mm <sup>2</sup> | 90-95   | 65-75    |
| Elongation in %  |                       | 5       | 7        |
| Brinell hardness | number                | 260     | 210      |

Low-temperature annealing of nickel and its alloys, aimed at removing internal stresses, is carried out in the 250-300° C range.

Magnesium alloys. Cast as well as wrought magnesium alloys (Table 97) are subjected to a variety of heat-treatments, the set

purpose of which is indicated in Table 98.

The work is heat-treated in furnaces of the following types: shaft, vacuum, chamber and bath-type furnaces (containing a mixture of potassium and sodium bichromates).

It is recommended, in order to prevent oxidation, to heat the work in a controlled gas atmosphere composed of a mixture of air with 0.7-1% of sulphurous anhydride is not available, the protective or controlled atmosphere is obtained by charging 3-4 kg of pyrites per 0.7-1 ton of the weight of the work.

The furnace temperature should be adjusted to within  $\pm 5^{\circ}\,\text{C}$  with

the aid of an automatic regulator.

To avoid possible fusion, the heating of large articles should be a two-stage procedure: first, up to 330-340°C or 360-370°C, depending on hardening temperature, then, after a 2-4 hour holding, to the final required temperature Prolonged holdings on heating are necessary because of very slow consummation of the diffusion processes (Table 99).

To prevent cracking on hardening, it is not recommended to use cold

water.

Strict temperature control is to be ensured when heat-treating magnesium alloys, as the latter inflame readily. At no time should the requisite temperatures be surpassed. Articles to be heat-treated should be clean from magnesium dust, chips, burrs, grease and oil.

Defects possible in the heat-treatment of magnesium alloys are de-

scribed in Table 100.

Aluminium and its alloys. Heat-treatment of aluminium involves annealing at 370-400° C with subsequent air-cooling. After annealing

20482

Table 96

Brinell hardness number 120 - 130 150 - 200 130 60 - 70 70 70 82 38 50 - 60 70 85 - 90 75 - 90 120 160 Annealing Schedules and Approximate Mechanical Properties of Nickel and Copper-nickel Alloys Mechanical properties Elongation, % 50 max 18 min 35 min 35-40 23-28 35 35-45 40 36 Tensile strength, kg/mm² 75 max 45-50 60-70 38-40 40 38-45 40 25-30 39 40 40-50 40-55 40-64 64 Annealing temperature, C 800-850 800-850 850-900 900-950 780-810 600-780 700-750 750-760 800-850 800-850 700-750 850-900 750-850 750 550 500 Designation of alloys HMXKMu28-2.5-1.5 HX9.5 and HX9 HMuAK2-2-1 MHXMu30-0.8-1 MHI[15-20 MHI[Cl7-18-1.8 MH5 MHMu43-0.5 MHMu40-1.5 MHMu3-12 НМц2.5 НМц5 X20H80 X15H60 MH0.6 MH16 MH19 Manganese-bearing nickel Leaded German silver Name of alloy Copper-nickel alloy "TII" alloy Ditto . . . . . . . German silver . Ferronichrome Nickel silver Copel . . . Nichrome . Manganin . "TE" alloy Constantan Monel . . Chromel Alumel

Table 97
Chemical Composition of Commercial Magnesium Alloys

|                                        |                                   | Chemi                                         | cal composition                                                    | , %                            |           |
|----------------------------------------|-----------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------|-----------|
| Grade                                  | Aluminium                         | Zinc                                          | Manganese                                                          | Silicon                        | Magnesium |
|                                        |                                   | Foundry A                                     | llloys                                                             |                                |           |
| МЛ1<br>МЛ2<br>МЛ3<br>МЛ4<br>МЛ5<br>МЛ6 | 2.5-3.5<br>5-7<br>7.5-9.3<br>9-11 | <br>0.5-1.5<br>2-3<br>0.2-0.8<br>Up to<br>2.0 | 1-2<br>0.15-0.5<br>0.15-0.5<br>0.15-0.5<br>0.1-0.5                 | 1-1.5<br>—<br>—<br>—<br>—<br>— | balance   |
|                                        |                                   | Wrought A                                     | l <i>lloy</i> s                                                    |                                |           |
| MA1<br>MA2<br>MA3<br>MA4<br>MA5<br>MA8 | 3-4<br>5.5-7<br>6.5-8<br>7.8-9.2  | 0.2-0.8<br>0.5-1.5<br>2.5-3.5<br>0.2-0.8      | 1.3-2.5<br>0.15-0.5<br>0.15-0.5<br>0.15-0.5<br>0.15-0.5<br>1.5-2.5 |                                | The       |

Table 98

Conventional Designations, Uses and Varieties of Heat-treatment Processes Applied to Magnesium Alloys

| Designation | Purpose                                                                             | Heat-treatment applied |  |  |  |
|-------------|-------------------------------------------------------------------------------------|------------------------|--|--|--|
| T2          | Removal of internal stresses, removal of strain-hardening and increase of ductility | Annealing              |  |  |  |
| T4          | Improvement of mechanical proper-<br>ties                                           | Hardening              |  |  |  |
| Т6          | Increase in yield point                                                             | Hardening and ageing   |  |  |  |

the mechanical properties are: tensile strength  $\sigma_b$ —8-10 kg/mm<sup>2</sup>, relative elongation  $\delta$ -40-45%, Brinell hardness number  $H_B$ =20.

When only internal stresses are to be removed, aluminium is annealed at 150° C.

Two types of aluminium alloys are distinguished: the wrought alloys and the cast alloys.

The wrought aluminium alloys are divided into two groups: (1) alloys which are not toughened by heat-treatment; (2) heat-treatable allovs

(Table 101).

Aluminium alloys acquire good ductility as a result of annealing in saltpetre baths for 20-30 min or in electric furnaces in air atmosphere for 1-2 hours. The duration of heating is indicated in Table 102, while the temperatures for heat-treatment schedules are presented in Table 103.

Best ductility and minimum hardness of aluminium alloys are obtained after a 30-min annealing at 420°C with subsequent cooling, first, within the furnace at a rate of 30° C down to 280° C, and then in

the air.

Heating for the toughening of aluminium alloys is carried out in the furnaces mentioned above. Temperatures in excess of the upper range of hardening temperatures may cause burning revealed by sharp darkening of the surface, and by the presence of blisters and cracks.

Water temperature for hardening should not fall below 30° C. As machine parts grow both in size and complexity, it is recommended to increase the temperature of water, bringing it up to 70-80° C. An increasein temperature reduces the formation of cracks as well as warping.

The time interval between the removal of parts from the furnace

and their immersion in water should not exceed 20-30 seconds.

Parts heated in saltpetre baths should be thoroughly flushed and wiped with rags after hardening. Following hardening aluminium alloys toughen to a certain extent but are still as ductile as to permit distortion of the article.

After a certain lapse of time the alloy ages. The time interval between the hardening and the beginning of ageing is given in Tabl**e** 105. Ageing is speeded up through tempering at 150-170°C for

6-12 hours.

"Fresh"-hardened condition of the articles can be retained by holding them at a temperature ranging from 0 to -20° C after hardening.

Hardnened and aged duralumin can be restored to "fresh"-hardened condition through short-term heating (0.5-1 min) at 240-260° C. After the necessary working (stamping, etc.), the alloy is aged again.

Cast aluminium alloys. Cast aluminium alloys (Table 104), depending on requirements, are heat-treated; the conventional designations of the processes and their objectives are presented in Table 106.

Prolonged heatings are essential for the heat-treatment of cast alloys, because of their very coarse structure. Fancy-shaped parts are preheated in electric furnaces to 300-350° C (Table 107) prior to heating on hardening in salt baths.

When treating aluminium as well as magnesium alloys in furnaces with air atmosphere, furnaces with positive mixing of atmosphere

should be used to provide uniform heating (type  $\Pi H-31$ , etc.).

Table 99

Recommended Heat-treatment Schedule for Magnesium Alloys in Electric Furnaces with Air Atmosphere and Approximate Mechanical Properties (Undervalued for the Most)

| ies                     | ness number                             |                   |
|-------------------------|-----------------------------------------|-------------------|
| opert                   | Brinell hard-                           |                   |
| Mechanical properties   | Elongation,<br>%, minimum               |                   |
| Mechai                  | Tensile<br>strengih,<br>kg/mm²          |                   |
|                         | gnilooD<br>muibəm                       |                   |
| Ageing                  | Rolding,<br>211                         |                   |
|                         | Heating<br>temperature,<br>°C           | Allous            |
| dening                  | Gooling<br>muibəm                       | A. Foundry Alloys |
| Annealing and hardening | ,BaibloH<br>211                         |                   |
| <br>Anneali             | Heating<br>temperature,<br>oC           |                   |
|                         | Conventional designation of heat-treat- |                   |
|                         | Alloy                                   |                   |

| Alloys  |  |
|---------|--|
| Foundry |  |
| Ą.      |  |

|   | 40                 | 30      | 40      | -<br>23 | 22      | 09      | 20      | 22      | 9       |            | 20         |         | 9       | 65      |  | _ |
|---|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|------------|---------|---------|---------|--|---|
|   | 2                  | က       | 9       | က       | 4       | 2       | 7       | 4       | 2       |            |            |         | က       | -       |  |   |
|   | 6                  | 6       | 91      | 91      | 21      | 22      | 15      | 21      | 22      |            | 15         |         | 21      | 21      |  |   |
|   | 1                  | 1       | 1       | 1       | 1       | Air     | [       | 1       | Air     | Ditto      | J          |         | 1       | Air     |  |   |
|   | 1                  | ١       | I       | J       | J       | 91      | 1       | I       | 91      | ∞          | 1          |         | 1       | 4-8     |  |   |
| , | 1                  | 1       | 1       | 1       | 1       | 170-180 | 1       | ı       | 170-180 | or 195-205 | ı          |         | I       | 185-195 |  |   |
| • | Within the furnace | Ditto   | Ditto   | Ditto   | Air     | Ditto   | Ditto   | Ditto   | Ditto   |            | Within the | furnace | Air     | Ditto   |  |   |
|   | 3-5                |         |         |         |         |         |         |         |         |            | 3-5        |         | 24-32   | 24-32   |  |   |
|   | 200-250            | 200.250 | 170-250 | 170-250 | 375-385 | 375-385 | 170-250 | 410-420 | 410-420 |            | 170-250    |         | 405-415 | 405-415 |  |   |
|   | T2                 | T2      | T2      | T2      | T4      | Te      | T2      | T4      | Te      |            | T2         |         | T4      | T6      |  |   |
|   | MJII               | M.712   | M3      | MJ14    |         |         | M.715   |         |         |            | M.Л6       |         |         |         |  |   |

| pertics      | -brsd Manira<br>resonum esen                          |
|--------------|-------------------------------------------------------|
| ical pro     | Flongation, %                                         |
| Mechanica    | Tensile<br>strength,<br>kg/mm²                        |
|              | gnifooO<br>muibəm                                     |
| Ageing       | Holding,<br>hrs                                       |
| ď            | Heating<br>temperature,<br>C                          |
| dening       | SuilooD<br>muibem                                     |
| ing and hare | Holding,<br>hrs                                       |
| Annealin     | Heating<br>temperature,<br>°C                         |
|              | Conventional<br>designation<br>of heat-treat-<br>ment |
|              | Alloy                                                 |

B. Wrought Alloys

| 50<br>70<br>70                             |          | 80<br><br>64<br>55                                                       |  |
|--------------------------------------------|----------|--------------------------------------------------------------------------|--|
| 1887                                       |          | 7 15                                                                     |  |
| 348                                        |          | 35                                                                       |  |
| 1111                                       |          | Air                                                                      |  |
| 1111                                       |          | <br><br>16.24<br>                                                        |  |
| 1111                                       |          | 170-180                                                                  |  |
| Air<br>Ditto<br>Ditto<br>Ditto             | ent      | 2-3<br>4-10 Hot water<br>3-6 Air<br>4-12 Hot water<br>4 Ditto<br>2-3 Air |  |
| 2.5.4<br>2.5.4<br>6.4                      | p Treatm | 2-3<br>4-10<br>3-6<br>4-12<br>2-3                                        |  |
| 340-400<br>Up to 400<br>320-380<br>320-350 | Ste      | 330-340<br>375-385<br>350-380<br>410-420<br>410-420<br>280-320           |  |
| 72<br>72<br>72                             | Т4       | 27,42,52                                                                 |  |
| MA1<br>MA3<br>MA4                          |          | MA5<br>MA8                                                               |  |

Notes. 1. For castings from MJ5 alloy, with the side thickness above 12 mm, the hardening temperature is 415 to 425°C, the holding time being 16.24 hours.
2. Holding time is taken without the time interval necessary for the heating.
3. Holding time varies within the limits indicated, depending upon the mass of the article.

| 9 |                                                             | Defects in Heat-treatment of Magnesium Alloys and Their Prevention                                                    | ment of Magnesium                                                      | Alloys and Their Pre                                                              | vention                                                                                                                       |
|---|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|   | Defect                                                      | Symptom                                                                                                               | Detection                                                              | Cause                                                                             | Prevention                                                                                                                    |
|   | Low mechanical<br>properties                                |                                                                                                                       | 1. Testing for me-chanical properties ing or insufficient holding time | Low heating temper-<br>ature on harden-<br>ing or insufficient<br>holding time    | Control of furnace run. Correction by repeated heat-treatment with strict compliance to                                       |
|   | Local fusing                                                | 1. Strongly oxidised Visual inspection metallic prills on the                                                         | inspection<br>Visual inspection                                        | 1. Coarse cast struc-<br>ture                                                     | schedule<br>1. Heating with prelim-<br>inary preheating                                                                       |
|   |                                                             | Surface 2. Minute surface gas cavities and internal microcavities                                                     |                                                                        | Microstructure in 2. Rapid heating on spection 3. Non-uniform furnace temperature | 2. Checking of furnace pyrometers 3. Lowering of heat-treatment temperature by                                                |
|   | Oxidation on<br>heating                                     | on Surface of the metal Visual inspection covered with powder from grey to black in colour. Minute cavities uncovered |                                                                        | 1. Overheating or non-uniform furnace temperature 2. Air leakage 3. Water vapour  | 1. Overheating or Similar to those on fusing non-uniform furplus protective atmosnace temperature phere phere 3. Water vapour |
|   | Grain growth in<br>cast alloys<br>during heat-<br>treatment | Grain growth in Bright spots on ma-cast alloys chined surface before treatment                                        | Visual inspection                                                      | present in the furnace<br>During the casting process                              | Heating (prior to hardening) to 300° C for 1-2 hrs to remove internal stresses                                                |

Table 101
Chemical Composition of Aluminium Wrought Alloys

|                                 |                                              |                               | Chemical o                                    | ompositio                          | n, %                                                           | <del></del>    |
|---------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------------|------------------------------------|----------------------------------------------------------------|----------------|
| Grade                           | Copper                                       | Magnesium                     | Manganese                                     | Silicon                            | Other elements                                                 | Alumi-<br>nium |
| АМц<br>АМг<br>АМг5п<br>Д1       | <br><br><br>3.8-4.8                          | 2.0-2.8<br>4.7-5.7<br>0.4-0.8 | 0.2-0.6                                       | -<br>-<br>-                        | <br><br>                                                       |                |
| Д6<br>Д7<br>Д16<br>Д1П          | 4.6-5.2<br>3.0-4.0<br>3.8-4.9<br>3.8-4.5     | 0.25-0.5                      | 0.5-1.0<br>0.25-0.5<br>0.3-0.9<br>0.4-0.8     |                                    | <br>                                                           |                |
| ДЗП<br>Д16П<br>Д18П<br>АВ       | 2.6-3.5<br>3.8-4.5<br>2.2-3.0                | 1.2-1.6                       | 0.3-0.7<br>0.3-0.7<br>—<br>0.15-0.35          | _<br>_<br>_<br>0.5-1.2             | -<br>-<br>-                                                    | апсе ——        |
| AK<br>AK2                       | 3.5-4.5                                      | -                             | <br>                                          | 4.5-6.0<br>0.5-1.0                 | Nickel 1.8-2.3 Iron 0.5-1.0                                    | - The balance  |
| AK4-1                           | 1.9-2.5<br>1.9-2.5                           |                               | _                                             | 0.5-1.2<br>—                       | Nickel 1.0-1.5<br>Iron 1.1-1.6<br>Nickel 1-1.5<br>Iron 1.1-1.6 |                |
| АК6<br>АК8<br>АЛД<br>Д12<br>В95 | 1.8-2.6<br>3.9-4.8<br>—<br>—<br>—<br>1.4-2.0 | 0.4-0.8<br>0.5-0.9<br>0.8-1.3 | 0.4-0.8<br>0.4-1.0<br>—<br>0.9-1.4<br>0.2-0.6 | 0.7-1.2<br>0.6-1.2<br>0.8-1.0<br>— | Iron 0.2-0.5  Zinc 6.0                                         |                |
|                                 |                                              | [                             | <u>,                                     </u> |                                    | Chromium 0.2                                                   |                |

 $\it Note.$  Chromium may be substituted for manganese in the same amounts as the latter in alloy grades AMr and AB.

Cast aluminium alloys with high magnesium content (AJI8) are to be heated, on hardening, in air furnaces instead of saltpetre baths, because of inflammation hazard. The interval between the discharge from the furnaces and the cooling should be reduced to a minimum. The more complex the shape of the article the higher should be the temperature of the cooling medium.

Titanium and its alloys. While being low in specific gravity (4.5) titanium has great tensile strength and ductility, i.e.,  $\sigma_h = 45.60 \text{ kg/mm}^2$ . elongation  $\delta = 25\%$  (Tables 108, 109).

Commercial grade BT1 titanium and its alloys take on considerable

cold working when rolled without heating (stamping, etc.), and they should be annealed in air atmosphere or vacuum to restore ductility.

Table 102 Approximate Heating Time On Hardening of Aluminium Wrought Allovs (Minutes)

|                           |           | Thi     | ckness o | r dian | neter o | f work | , mn       | n   |     |     |
|---------------------------|-----------|---------|----------|--------|---------|--------|------------|-----|-----|-----|
| Heating<br>equipment      | Up to 0.8 | 0.8-2.5 | 2.5-5.0  | 5-12   | 12-20   | 20-50  | 60         | 70  | 80  | 90  |
| Saltpetre bath            | 8         | 10      | 12       | 15     | 30      | 40-60  | <b>6</b> 0 | 70  | 80  | 90  |
| Air electric fur-<br>nace | 12        | 20-30   | 40       | 80     | 90      | 110    | 130        | 130 | 180 | 180 |

Notes. 1. Holding time is counted off from the moment the furnace reaches

requisite temperature after charging.

2. Holding time is reckoned bearing in mind the greatest cross-sectional dimension of the part.

3. Excessive holding of plated alloys impairs the properties of the plated

4. In case of repeated hardening, the time of heating should be cut down by half.

Annealing temperature for plain titanium is 510-570° C, while that for titanium alloys is 650-750°C.

Finished articles and sheet stock are annealed at lower temperatures and reduced holding time as compared to half-finished products and bulky articles. Prolonged holding, especially at high temperatures. causes scaling and brittleness.

Zinc is annealed at 50-100°C whenever its softening is required. After annealing, the mechanical properties of zinc are: tensile strength  $\sigma b = 7-10 \text{ kg/mm}^2$ ; elongation  $\delta = 10-20\%$ .

Silver and silver-platinum alloys are annealed at 650-700° C with cooling being effected in water, preferably acidulated.

Ta ble 103

Heat-treatment Schedules and Typical Mechanical Properties of Wrought Aluminium Alloys

|       |                               |                   |                               | -                 |                               | -               | 1                              |                  |                              |
|-------|-------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|-----------------|--------------------------------|------------------|------------------------------|
|       | An                            | Annealing         | Hardening                     | ning              | Ageing                        | ing             | Mechanical                     |                  | properties                   |
| Grade | Heating<br>temperature,<br>°C | Cooling<br>muibəm | Heating<br>temperature,<br>oC | Cooling<br>mulbəm | Heating<br>temperature,<br>°C | BuibloH<br>emit | Tensile<br>strengih,<br>kg/mm² | Elongation,<br>% | Brinell<br>sandasa<br>number |
| AMn   | 350-410                       | Air or water      |                               | Not a             | -<br>Not applied              | _               | 13                             | 20               | 30                           |
| AMr   | 350-410                       | Ditto             |                               | Di                | Ditto                         | _               | 20                             | 23               | 45                           |
| AMr5n | 340-370                       | Air               |                               | D                 | Ditto                         |                 | 27                             | 23               | 20                           |
| Д1    | 340-370                       | Ditto             | 1                             | 1                 | 1                             |                 | 21                             | 18               | 45                           |
|       | l                             | ı                 | 495-510                       | Water             | 15-20                         | 4 days          | 42                             | 18               | 100                          |
| Д6    | 340-370                       | Air               | 1                             | 1                 | J                             | 1               | 22                             | 15               | 20                           |
|       | l                             | 1                 | 497-503                       | Water             | 15-20                         | 4 days          | 46                             | 15               | 105                          |
| Д16   | 340-370                       | Air               | l                             | l                 | 1                             | 1               | 21                             | 18               | 42                           |
|       |                               | 1                 | 495-505                       | Water             | 15-20                         | 4 days          | 47                             | 17               | 105                          |
| ДЗП   | 340-370                       | Air               | ı                             | i                 | -                             | Į               | 17                             | 20               | 45                           |
|       | ı                             | ı                 | 490-500                       | Water             | 15-20                         | 4 days          | 34                             | 50               | 80                           |
| Д18П  | 340-370                       | Air               | i                             | i                 | 1                             | 1               | 16                             | 24               | 38                           |
|       | 1                             | !                 | 490-505                       | Water             | 15-20                         | 4 days          | 90                             | 24               | 20                           |
|       |                               |                   | _                             |                   |                               |                 |                                |                  |                              |

Table 103 continued

|              | Anı                          | Annealing         | Hardening                     | ning              | Ag                            | Ageing                          | Mechanical                     |             | properties                    |
|--------------|------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|---------------------------------|--------------------------------|-------------|-------------------------------|
| Grade        | Heating<br>temperature,<br>C | Cooling<br>medium | Heating<br>temperature,<br>O° | gailooD<br>muibem | Heating<br>temperature,<br>Oo | gnibíoH<br>9mit                 | Tensile<br>strength,<br>kg/mm² | Elongation, | Brinell<br>hardness<br>number |
| AB ("avial") | 340-370                      | Air               | ı                             | 1                 |                               | <u> </u>                        | 13                             | 24          | 30                            |
|              | i                            | I                 | 515-530                       | Water             | 150-160                       | 6 hrs                           | 33                             | 12          | 92                            |
| AK           |                              |                   |                               | -                 | Not subjec                    | Not subject to above treatments | treatment                      | S           |                               |
| AK2          | 350-460                      | Air               | I                             | 1                 | 1                             | 1                               | -                              | i           | 1                             |
|              |                              | l                 | 510-520                       | Water             | 165-175                       | 15-18 hrs                       | 42                             | 13          | 100                           |
| AK4          | 350-460                      | Air               | ı                             | ī                 | l                             | ı                               | ı                              | ı           | 1                             |
|              | [                            | ı                 | 525-540                       | Water             | 165-175                       | 15-18 hrs                       | 44                             | 10          | 110                           |
| AK6          | 350-460                      | Air               | l                             | I                 | i                             | 1                               | ı                              | 1           | 1                             |
|              | ı                            | I                 | 505-515                       | Water             | 150-160                       | 12-15 hrs                       | 42                             | 13          | 105                           |
| AK8          | 350-460                      | Air               | 1                             | ]                 | I                             | 1                               | l                              | 1           | 1                             |
|              |                              | 1                 | 495-505                       | Water             | 175-185                       | 5-8 hrs                         | 49                             | 13          | 130                           |
| AK9          |                              |                   | 520-535                       | Water             | 130-160                       | 5 hrs                           | 39                             | 10          | 115                           |
| B95          | 420-440                      | Air               | l                             | 1                 | ı                             | i                               | 56                             | 13          | I                             |
|              | 1                            | ı                 | 465-475                       | Water             | 120-125                       | 24 hrs                          | 55                             | 16          | 150                           |
| _            |                              |                   |                               | _                 |                               | _                               | <del></del>                    |             |                               |

Chemical Composition of Aluminium Foundry Alloys

|                   |                     |          | Chemi     | Chemical composition, % | %                               |           |
|-------------------|---------------------|----------|-----------|-------------------------|---------------------------------|-----------|
| Grade of<br>alloy | Silicon             | Copper   | Magnesium | Мапданеѕе               | Other elements                  | Aluminium |
|                   |                     |          |           |                         |                                 |           |
| АЛІ               | 1                   | 3.75-4.5 | 1.25-1.75 | 1                       | Nickel 1.75-2.25                |           |
| A.712             | 10.0-13.0           | 1        | 100       | 0000                    | 1 1                             |           |
| AJ13              | #.0-0.0<br>#.0-10.5 | 0.0-0.1  | 0.12-0.30 | 0.25-0.5                | 1                               |           |
| A.115             | 4.5-5.5             | 1.0-1.5  | 0.35-0.6  | 1                       | I                               |           |
| A.716             | 4.6-6.0             | 2.0-3.0  | l         | ı                       | ŀ                               |           |
| A.117             | ]                   | 4.0-5.0  | l         | 1                       | 1                               |           |
| А.Л8              | 1                   |          |           | ]                       | ı                               | ə         |
| А.Л9              | 6.0-8.0             | 1        |           | ı                       | 1                               | ווכ       |
| A.7110B           | 4.0-6.0             | 5.0-8.0  |           | 1                       |                                 | sia       |
| AJ111             | 6.0-8.0             | 1        | 0.1-0.3   | 1                       | Zinc 10.0-14.0                  | 3 q       |
| АЛ12              | 1                   | 9.0-11.0 | l         | !                       | I                               | ə         |
| A.Л13             | 0.8-1.3             |          | 4.5-5.5   | 0.1-0.4                 | 1                               | чј        |
| АЛ14В             | 0.8-0.9             | 1.5-3.0  | 0.2-0.6   | 0.2-0.6                 | 1                               | Ľ         |
| AJ115B            | 3.0-5.0             | 3.5-5.0  | ı         | 0.2-0.6                 | 1 .                             |           |
| АЛ16В             | 3.0-5.0             | 2.0-4.0  | 1         | 0.2-0.5                 | Zinc 2.0-4.0                    |           |
| AJ117B            | 3.0-5.0             | 1.5-3.5  | Ī         | 0.2-0.6                 | Zinc 4.0-7.0                    |           |
| AJ118B            | 1.5-2.5             | 7.5-9.5  | l         | 0.3-0.8                 | Iron 1.0-1.8                    |           |
| ВИ-11-3           | 0.8-1.5             | ı        | 10.5-13.0 | İ                       | Beryllium 0.07<br>Titanium 0.07 |           |
|                   |                     |          |           |                         |                                 |           |

Note. The letter B at the end of the alloy grade designation indicates that the castings are manufactured from pig aluminium foundry alloys.

Table 105

| Time Info                       | erval During                                 | Time Interval During Which Ductility of Aluminium Wrought Alloys Is Preserved After Hardening        | Wrought Alloys Is Pr                   | eserved After Hardening                                                                                              |
|---------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Grade                           | Grade of alloy                               | Time, hrs                                                                                            | Grade of alloy                         | Time, hrs                                                                                                            |
| Д1<br>Д6<br>Д16<br>АК4<br>АК4-1 | 6<br>4.4<br>4-1                              | 2-3<br>2-3<br>2-3                                                                                    | AB<br>AK6<br>AK8<br>B95                | 6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8                                                                              |
| Convention                      | onal Designati                               | Table . Conventional Designations, Varieties and Uses of Heat-treatments of Aluminium Foundry Alloys | at-treatments of Alum                  | Table 106<br>inium Foundry Alloys                                                                                    |
| Designation                     |                                              | Heat-treatment                                                                                       |                                        | Use                                                                                                                  |
| T1<br>T2                        | Ageing at ter<br>Annealing at                | Ageing at temperatures up to 200° C<br>Annealing at temperatures up to 300° C                        | For light-duty par<br>Dimensional stab | For light-duty parts rapidly cooled when cast Dimensional stabilisation of parts and re-                             |
| T4<br>T5<br>T6                  | Hardening ar<br>Hardening ar<br>Hardening ar | Hardening<br>Hardening and partial ageing<br>Hardening and full ageing to maximum hard-              |                                        | moval of stresses Increase in ductility Increase in strength and yield point Attainment of both maximum strength and |
| 17                              | Hardening and stabilis                       | Hardening and stabilising annealing at temper-<br>atures above 200°C                                 |                                        | For parts working at elevated temperatures                                                                           |
| T8                              | Hardening and softeni<br>atures above 300° C | Hardening and softening annealing at temper-<br>atures above 300° C                                  |                                        | For small parts requiring increased ductility with high magnesium content in the alloy                               |

Table 107

Recommended Heat-treatment Schedules for Aluminium Foundry Alloys Treated in Air Atmosphere Furnaces

| meine   Machanical aconoction | ageing mechanical properties | Tensile strength, kg/mm².  Flonga- flonga- tion, % Brinell instdness | 30                 | 0.0               | se to 16 4 50  |   | 17   1 70 | 0 12 - 65 | 0 21 - 75       | 0 20 1 70      | 0   18   2   65  | 0 20 1.5 70 | 0 23 3 70       | 0 16 - 65 | 0 20 0.5 70     | 0 18 1 65      |
|-------------------------------|------------------------------|----------------------------------------------------------------------|--------------------|-------------------|----------------|---|-----------|-----------|-----------------|----------------|------------------|-------------|-----------------|-----------|-----------------|----------------|
| tomposition and               | rempering and                | Holding<br>time, hrs                                                 | 4: V P 6           |                   | 2-4 Furnace to | _ | 5 Air     | 2-4 Ditto | 5 Dit           | 5 Dit          | 3-5 Dit          | 5-15 Dit    | 15 Ditto        | 5-10 Dit  | 5 Dit           | 5 Dit          |
| Appealing                     | Ameaning,                    | Heating<br>tempera-<br>ture, °C                                      | 910 930            | 210-230           | 280-300        |   | 175-185   | 280-300   | 170-180         | 225-235        | 325-335          | 170-180     | 170-180         | 175-185   | 175-185         | 225-235        |
| A Luitace                     | nardening                    | Cooling<br>muibəm                                                    | Water 50 100° C 22 | water 50-100 C of | 1              |   | 1         | ı         | Water 50-100° C | Water 50-100°C | Water 50-100° C. | 1           | Water 50-100° C | 1         | Water 50-100° C | Water 50-100°C |
|                               | паг                          | Holding<br>and, amit                                                 | •                  | 4-7               | 1              |   | }         | 1         | 5-12            | 4-6            | 4-6              | 1           | 5-8             | 1         | 2-8             | 2-8            |
|                               |                              | Heating<br>tempera-<br>D° ,97ut                                      | 210 690            | 026-016           | 1              |   | 1         | !         | 510-520         | 510-520        | 510-520          | 1           | 530-540         | ı         | 520-530         | 520-530        |
| I                             | и                            | Convention<br>designatio<br>of heat-<br>treatment                    | E                  | c T               | T2             |   | ΙΙ        | T2        | T6              | T7             | T8               | T           | T6              | Tı        | T6              | T7             |
|                               |                              | Grade of<br>alloy                                                    | -                  | AJII              | АЛ2            |   | АЛЗ       |           |                 |                |                  | A.Л.4       |                 | АЛБ       |                 |                |

Table 107 continued

| Mechanical properties | Brinell<br>hardness<br>number                       |                                                                                                                 | 75                                                      |
|-----------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| noa '                 | -FBonga-<br>fion, %                                 | 1000 646                                                                                                        | 4                                                       |
| Mechanical propert    | Tensile<br>strengih,<br>kg/mm²                      | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                 | 25                                                      |
| and ageing            | Cooling<br>muibem                                   | Air<br>Air<br>Air                                                                                               | 1                                                       |
| tempering             | Holding<br>and ,smil                                | 33-6                                                                                                            | 1                                                       |
| Annealing,            | Healing<br>tempera-<br>Jo, enut                     | 280-300<br>145-155<br>145-155<br>175-185<br>177-180<br>280-300                                                  |                                                         |
| Hardening             | BulfooD<br>muibəm                                   | Water 50-100° C Water 50-100° C Water 50-100° C Water 50-100° C Water 50-100° C Water 50-100° C Water 50-100° C | <br>  Not applied<br>  Not applied   Not ater 20-100° C |
| Ha                    | Holding<br>time, hrs                                | 10-15<br>10-15<br>10-15<br>10-15<br>10-15<br>5-12<br>5-12<br>5-12<br>7-6<br>Not                                 | <br>  Not<br>  10-24                                    |
|                       | Heating<br>tempera-<br>ture, C                      | 520 - 530<br>520 - 530<br>520 - 530<br>430 - 440<br>530 - 540<br>530 - 545                                      | 420-430                                                 |
| Is                    | Convention<br>designation<br>of heat-<br>treatment- | 172<br>175<br>176<br>176<br>175<br>175<br>175<br>175<br>175                                                     | T4                                                      |
|                       | Grade of<br>alloy                                   | АЛ6<br>АЛ7<br>АЛ8<br>АЛ10<br>АЛ11<br>АЛ11<br>АЛ12<br>АЛ12<br>АЛ13<br>АЛ13<br>АЛ15В                              | АЛ18В<br>ВИ-11-3                                        |

Note. The mechanical properties of heat-treated alloys, with the exception of AJ3 and AJ12, refer to sand castings. Strength characteristics of chill mould castings are superior to those above.

Chemical Composition of Titanium Alloys

|                   |         |         |                   |         |         |       |     | 565  |          |                    |      |       |
|-------------------|---------|---------|-------------------|---------|---------|-------|-----|------|----------|--------------------|------|-------|
|                   |         | Ba      | Basic components, | ints, % |         |       |     |      | Addition | Additions, % (max) | lax) | !     |
| Grade of<br>alloy | Al      | ზ       | Mo                | Mn      | Λ       | Ë     | Fe  | Si   | υ        | z                  | 0    | Н     |
| ВТЗ               | 4-6.2   | 2-3     | I                 | 1       | l       |       | 0.8 | 9.0  | 0.1      | 0.05               | 0.2  | 0.015 |
| BT3-1             | 4-6.2   | 1.5-2.5 | 1-2.8             | 1       | I       |       | 8.0 | 0.4  | 0.1      | 0.05               | 0.5  | 0.015 |
| BT4               | 4-5     | l       |                   | 1-2     | I       |       | 0.3 | 0.15 | 0.02     | 0.05               | 0.15 | 0.015 |
| OT4               | 2-3.5   | l       | 1                 | 1-2     | 1       | 90    | 0.4 | 0.15 | 0.1      | 0.02               | 0.15 | 0.015 |
| OT4-1             | 1-2.5   | 1       |                   | 0.8-2.0 | l       | nslad | 0.4 | 0.15 | 0.1      | 0.05               | 0.15 | 0.015 |
| BT5               | 4-5.5   | ı       | [                 | I       | 1       | ЭцТ   | 0.3 | 0.15 | 0.05     | 0.04               | 0.15 | 0.015 |
| BT5-1             | 4-5.5   | 1       | 1                 | 2-3     | l       |       | 0.3 | 0.1  | 0.1      | 0.05               | 0.2  | 0.01  |
| BT6               | 5-6.5   | ſ       |                   | 1       | 3.5-4.5 |       | 0.3 | 0.15 | 0.05     | 0.04               | 0.15 | 0.015 |
| BT8               | 5.8-6.8 | .1 :    | 2.8-3.8           | 1.      | ı       |       | 0.4 | 0.35 | 0.1      | 0.02               | 0.5  | 0.01  |
| _                 |         |         |                   |         | _       |       |     |      |          |                    |      |       |

is at Desparties of Titanium Allove

| Properties Units BT3 BT3-1 BT4 OT4 BT5 BT6 BT8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 | Mechanical and Physical Properties of Litanium Alloys      | Physica                                                                                                         | l Proper                                                                                            | ties of Tit                                                                      | anium A                                                               | lloys                                                                                                     |                                                                                               |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Properties                                                                                                                                                                                                                                                                                      | Units                                                      | BT3                                                                                                             | BT3-1                                                                                               | BT4                                                                              | OT4                                                                   | BT5                                                                                                       | BT6                                                                                           | BT8                                                                                                           |
| Tensile strength kg/mm² kg/mm² 85-115 95-120 80-96 90-100 105-118    Yield point Limit of proportionality kg/mm² kg/mm² 85-105 80-96 55-65 70-85 80-90 95-110    Relative elongation of area kgm/cm² $^{96}$ $^{25}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ $^{26}$ | Tensile strength Yield point Limit of proportionality Relative elongation Relative reduction of area Resilience Hardness Modulus of elasticity Modulus of shear Poisson's ratio Shearing strength Specific gravity Electric resistance Coefficient of linear expansion (×10°) Heat conductivity | kg/mm² kg/mm² kg/mm² % kgm/cm² kg/mm² kg/mm² cal/cm·sec·°C | 95-115<br>85-105<br>70-80<br>10-16<br>25-40<br>3-3-6*<br>11,000<br>4,250<br>0.3<br>65-70<br>4.46<br>1.58<br>8.4 | 95-120<br>85-110<br>70-85<br>10-16<br>25-40<br>3-6*<br>11,500<br>4,300<br>0.3<br>4.5<br>1.36<br>8.6 | 80-90<br>70-80<br>50-60<br>115-22<br>20-30<br>11,000<br>4,200<br>0.31<br>4.6<br> | 70-85<br>55-65<br>15-40<br>25-55<br>60-70**<br>4,000<br>4,000<br>4.55 | 80-95<br>70-85<br>65-80<br>112-25<br>30-45<br>30-45<br>10,400<br>4,250<br>0,3<br>65<br>65<br>1.08<br>1.08 | 90-100<br>80-90<br>70-80<br>8-13<br>30-45<br>4-8<br>11,300<br>11,300<br>11,6<br>8.41<br>0.018 | 105-118<br>95-110<br>75-85<br>30-15<br>30-55<br>3-6<br>11,000<br>4,250<br>0.3<br>65-70<br>4.47<br>1.61<br>8.4 |

\* Rockwell scale C; \*\* Rockwell scale B; \*\*\* Brinell hardness number.

## Chapter IX

### FORGING OF FERROUS AND NON-FERROUS METALS

The present chapter considers heating, forging and cooling of blanks from ferrous and non-ferrous rolled stock.

#### 1. FORGING OF STEEL

Heating rate. The heating of blanks prior to forging is carried out, as a rule, at a maximum rate (induction heating included). Rapid heating increases furnace throughput and reduces scaling. Slow preforging heating is employed for steels with low heat conductivity, namely:

1. For medium- and high-alloy steels greater than 50 mm in crosssection. Steels with total content of alloying elements exceeding 2.5% are regarded as medium-alloy steels, while high-alloy steels are those which contain over 10% of alloying elements.

2 For alloy steels with increased carbon content and high-carbon

steels over 160 mm in cross-section.

3. For steels in stressed condition. Slow heating is generally ensured by charging the blanks in the lowest temperature zone, usually near the furnace door, and then by pushing it gradually towards the high temperature zone. Under all conditions heating should be uniform, excluding pronounced local overheating of the blanks. Charging in bulk is to be avoided and uniform distribution of the charge throughout the furnace ensured.

Forging temperature ranges and cooling conditions applicable to blanks are presented in Table 110. Steels attain best ductility in the

temperature ranges indicated.

Too high temperatures at the beginning of forging cause overheating and burning. Completion of forging at temperatures considerably in excess of those mentioned in the table provokes grain growth and formation of cementite lattice and embrittles the steel. When forging is concluded at temperatures below those indicated in the table, steel be-

comes strain-hardened and cracks are possible.

Cooling rates indicated in the table ensure the best structure of the forgings. The formation of cementite lattice may take place even when high-carbon steel is very slowly cooled from normal temperatures. Therefore, these steels are cooled in the air down to 700° C, heating colour being as a guide, and then at a slower rate. Practically, this method is employed for forgings with thin sides, as well as with abrupt changes in section in which air-cooling from beginning to end may result in cracking.

Table 110

Approximate Temperatures for the Beginning and Completion of Forging and Cooling Schedules for Steel Blanks

|                | Тетрега                 | ture, °C                      | Cooling     | schedules for the | Cooling schedules for the below-mentioned o | dimensions |
|----------------|-------------------------|-------------------------------|-------------|-------------------|---------------------------------------------|------------|
| Grade of steel | Beginning<br>of forging | Comple-<br>tlon of<br>forging | Up to 50 mm | 51-100 mm         | 101-200 тт                                  | 201-300 mm |

Carbon Structural Steels

| In the air<br>Ditto                                                                    | Ditto Ditto Ditto Ditto Ditto In the air   In the pile   In the pit Ditto Ditto        |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 700                                                                                    | 750<br>800<br>800<br>800<br>800<br>800                                                 |
| 1300                                                                                   | 1250<br>1250<br>1230<br>1200<br>1200                                                   |
| Cr.0, Cr.1, Cr.2, Cr.3, 10, 15<br>Cr.4, Cr.5, 20, 25, 30, 35<br>Cr.6, Cr.7, 40, 45, 50 | 55, 60<br>15F<br>20F, 30F, 10F2<br>40F, 50F, 60F, 65F<br>30F, 35F2, 40F2<br>45F2, 50F2 |

Alloy Structural Steels

| In the pit      | -                                                        |
|-----------------|----------------------------------------------------------|
| In the air      | Ditto<br>In the pile<br>In the pit                       |
| In the air      | air<br>n the pile                                        |
|                 | In the air                                               |
| 800             | 888<br>800<br>800                                        |
| 1220<br>1220    | 1200<br>1250<br>1230                                     |
|                 | X, 45X,                                                  |
| 15X, 20X<br>30X | 35X, 38XA, 40X,<br>50X, 20X3<br>15XΦ, 20XΦ<br>40XΦ, 50XΦ |

| the air In the air the air the air In the pit In the pit In the pit In the pit In the pit In the furnace the air Ditte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In the pile   In the pit   In the furnace the air   In the pit   Ditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ditto  Ditto  pile   In the pile   In the pit   In the furnace   In the pile   In the pile   In the pile   In the pit   In the air   In the pile   In the pit   In the air   In the pile   In the pit   In the air   In the pile   In the pit   air   In the pile   In the pit   In the furnace air   In the air   Ditto air   In the pit   In the pit air   In the pile   In the pit   Ditto                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In | In the air   In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In the In | In the air In the pile In the In the In the In In In In In In In In In In In In In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In the air In the air In the air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In the pit<br>In the pii                                     |
| 800<br>800<br>820<br>820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88888888<br>800 000<br>800 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800<br>220<br>220<br>8820<br>8820<br>8820<br>8820<br>8820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800<br>800<br>850<br>850<br>850<br>850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 820<br>820<br>850<br>850                                     |
| 1260<br>1180<br>1200<br>1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1150<br>1170<br>1180<br>1240<br>1240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1220<br>1180<br>1220<br>1220<br>1180<br>1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1160<br>1160<br>1160<br>1160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1200<br>1180<br>1180<br>1180                                 |
| 12M, 15M, 20M<br>330M, 30XMA<br>12XM, 15XM, 20XM<br>35XM, 35X2M<br>33XC, 37XC, 40XC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40XF, 50XF<br>35XF2<br>18XFT, 18XFM<br>40XFM, 55C2, 60C2<br>27CF<br>35CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20XFC, 25XFC<br>20XFC, 35XFC<br>30XFCHA<br>25H<br>30H<br>20XH<br>40XH, 45XH, 50XH<br>12XH2, 12XH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37X H3A<br>12X2H4<br>20X2H4<br>35X ЮA, 38X MЮA<br>35X MΦA<br>25X2MΦA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13X HBA<br>18X HBA, 18X HMA<br>25X HBA<br>12X2H3MA, 18X2H4MA |

Table 110 continued

|                                                              | Temperature,                 | ıture, °C                     | Cooling schedules for the below-mentioned dimensions                                                                                       |
|--------------------------------------------------------------|------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Grade of steel                                               | Beginning<br>of forging      | Comple-<br>tion of<br>forging | Up to 50 mm 51-100 mm 101-200 mm 201-300 mm                                                                                                |
| 33XH3MA<br>40XHM<br>30XH2MФA, 45XHMФA<br>13H2A, 13H5A, 21H5A | 1180<br>1150<br>1180<br>1180 | 850<br>850<br>850<br>800      | In the pit In the pile In the pit In the furnace In the pit In the pit In the furnace In the air   In the pile   In the pit In the furnace |
|                                                              |                              | 7                             | Ball-bearing Steel                                                                                                                         |
| шх6, шх9, шх12,<br>шх15<br>шх15СГ                            | 1110                         | 850                           | Cooling in the air<br>to 700°C, then in the pit                                                                                            |
|                                                              |                              | 21                            | Wear-resistant Steels                                                                                                                      |
| F13                                                          | 1150                         | 006                           | In the air                                                                                                                                 |
|                                                              |                              | Heat-re                       | Heat-resisting Stainless Steels                                                                                                            |
| 1X13<br>2X13<br>3X13, 4X13                                   | 1150<br>1150<br>1120         | 820<br>820<br>800             | In the furnace<br>Ditto<br>Ditto                                                                                                           |
|                                                              |                              |                               |                                                                                                                                            |

| In the air In the iurnace In the air Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto Ditto In the furnace Ditto In the air                                 | Carbon Tool Steel  In the air Ditto Cooling in the air to 700°C, then in the pit Ditto Ditto Ditto Ditto |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 820<br>820<br>820<br>820<br>820<br>820<br>820<br>820<br>820<br>820                                                                                                                                         | 800<br>800<br>820<br>820<br>820<br>820                                                                   |
| 100<br>1050<br>1050<br>1200<br>1200<br>1180<br>1150<br>1150                                                                                                                                                | 1120<br>1120<br>1100<br>1100<br>1080                                                                     |
| X17, X25, X28<br>9X18<br>0X18H10, 1X18H9,<br>2X18H9<br>X23H13<br>X23H18<br>4X9C2<br>X5M<br>3X13H7C2<br>4X18H25C2<br>1X18H25C2<br>1X18H25C2<br>1X18H115<br>1X17H2<br>X6CM, X7CM,<br>4X14H14B2M<br>X14H14B2M | V7, V7A<br>V8, V8A<br>V9, V9A<br>V10, V10A<br>V11, V11A, V12, V12A<br>V13, V13A                          |

Table 110 confinued

|                | Temperature,            | ture, °C                      | Cooling schedules for the below-mentloned dimensions | dimensions     |
|----------------|-------------------------|-------------------------------|------------------------------------------------------|----------------|
| Grade of steel | Beginning<br>of forging | Comple-<br>tion of<br>forging | Up to 50 mm 51-100 mm                                | 201-300 mm     |
|                |                         |                               | Alloy Tool Steel                                     |                |
| 7X3            | 1 1150                  | 820                           | Cooling in the air to 700°C, then in the pit         | ı the pit      |
| 8X3            | 1110                    | 820                           | Ditto                                                |                |
| 60X, X, X6     | 1120                    | 800                           | Ditto                                                |                |
| XO5            | 1120                    | 830                           | Ditto                                                |                |
| X12, X12M      | 1100                    | 860                           | In the pits or in the furnace                        | <b>6</b> )     |
| Х12Ф1          | 1120                    | 860                           | Ditto                                                |                |
| Ф              | 1120                    | 840                           | Cooling in the air to 700°C, then in the pit         | n the pit      |
| B1             | 1120                    | 800                           | Ditto                                                |                |
| ΧΓ             | 1100                    | 830                           | Ditto                                                |                |
| XFC            | 1080                    | 830                           | Ditto                                                |                |
| 4XC            | 1160                    | 800                           | In the piles   In the pits                           | In the furnace |
| 6XC            | 1160                    | 820                           | Ditto                                                |                |
| 9XC            | 1120                    | 840                           | Cooling in the air to 700°C, then in the pit         | n the pit      |
| 8ХФ            | 1100                    | 860                           | Ditto                                                |                |
|                |                         |                               |                                                      |                |

| 85XΦ                                       | 1100 | 860     |                                              |
|--------------------------------------------|------|---------|----------------------------------------------|
| 4XB2C, 5XB2C                               | 1140 | 800     | In the piles   In the pits   In the furnace  |
| 6XB2C                                      | 1150 | 820     | Ditto                                        |
| 5XBF                                       | 1160 | 800     | Ditto                                        |
| 9XBL                                       | 1120 | 820     | Cooling in the air to 700°C, then in the pit |
| XBL                                        | 1100 | 830     | Ditto                                        |
| 3X2B8                                      | 1160 | 820     | Ditto                                        |
| 4X8B2                                      | 1160 | 820     | Ditto                                        |
| XB5                                        | 1100 | 850     | Ditto                                        |
| 5XHM                                       | 1200 | 820     | In the piles   In the pits   In the furnace  |
| 5X FM                                      | 1180 | 800     | Ditto                                        |
| 5XHT, 5XHB                                 | 1180 | 820     | Ditto                                        |
| 5XHCB, 5XHC                                | 1180 | 870     | Ditto                                        |
| _                                          |      |         |                                              |
|                                            |      | 7       | High-speed Steels                            |
| P18, P9, P9Ф5,<br>P10K5Ф5, P9K10,<br>P14Ф4 | 1180 | 096-006 | In the pits or in the furnace                |
| P18K5, P18K0, P18Φ2,<br>P18K5Φ2            | 1200 | 006     | Ditto                                        |
|                                            |      |         |                                              |

Large and simple-shaped forgings from the steels mentioned above can be air-cooled to room temperature. To avoid cracks, no water is to be splashed on the hot forgings and, furthermore, the latter should never be thrown on a moist floor or metallic plates, or cooled in the draught. The higher the content of carbon and alloying elements in the steel, the greater care should be taken in dealing with the cooling schedule. Cooling pits should be filled with sand, ash or cinder. It is recommended to cool high-alloy steel forgings in pits with warmed-up sand or cinder; furthermore, each forging should be covered up separately.

Distinctive forging features of tool and high-alloy structural steels. To obtain most favourable structural characteristics and best mechanical properties, the steel should be forged from all sides, this being of great importance for high-alloy and high-speed steels larger than 50 mm in section, in order to disintegrate the carbides and to distrib-

ute them evenly over the entire forging.

The forging procedure should be started with rapid light strokes. As the work cools, the force of the strokes should be increased, the frequency remaining unchanged. Light strokes at the end of forging may cause cracks; at the same time, care should be taken to avoid overheating the steel which may result from too heavy blows. A correct forging schedule will ensure a through deformation of the forging and its slow cooling during the hot-working. Excessive feed of blanks per blow of hammer should be avoided to prevent internal cracks. No sharp angles should be allowed to appear in forging manipulations; if these angles appear they should immediately be hammered in because subsequent hammering may cause cracks at the cooled angles.

Table 111 lists forging defects of steel and their correction.

### 2. FORGING OF NON-FERROUS METALS

Table 112 presents the temperatures of hot working of copper and

copper alloys.

Table 113 lists temperature ranges for forging aluminium alloys liable to plastic working. Alloys of grades Д6 and Д16 are not subject to forging. The alloys mentioned are forged only in exceptional cases,

the utmost attention being given to the forging schedule.

All tools used for the forging of aluminium alloys, namely: strikers, dies, etc., should be preheated to 250-300°C. Forgings are to be cooled in a heated pit. It is not recommended to throw them on a cold floor. To avoid sticking of the alloys to the die, the surface of the latter is oiled with a lubricant consisting of 15-20% graphite and 85-80% oil (or fuel oil).

Table 114 presents temperatures ranges for the hot working of nickel

and its alloys.

Table 115 presents temperature ranges for the forging of magnesium

alloys subject to plastic working.

All tools used for the forging and stamping of magnesium alloys should be heated to 250-320° C. Forging and stamping should be effected by means of hydraulic and steam hydraulic presses, ensuring low deformation rates.

# Steel Forging Defects

| Cause                                                                                                                                                           | Correction and prevention                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxygen contained in fur-<br>nace gases combines<br>with iron                                                                                                    | Furnace atmosphere control. Rapid heating of the metal and normal forging temperature range. In calculations the loss of metal through oxidation and waste is assumed to equal 2%                                                                                                                                                                                                                                                                   |
| Furnace gas oxygen com-<br>bines with carbon. De-<br>carburisation is pro-<br>moted by silicon, tung-<br>sten, vanadium, mo-<br>lybdenum, contained in<br>steel | Ditto                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rapid cooling of the<br>metal during and after<br>forging                                                                                                       | Local rapid cooling of forgings is to be avoided. Hammer in sharp angles, preheat the forging in time, avoid cooling in draughts, on damp floors, etc. Fine cracks should immediately be cut out                                                                                                                                                                                                                                                    |
| Poor-qualify metal, in-<br>sufficient ductility of<br>the blank core. Weak<br>forging, excessive feed<br>per hammer blow                                        | Heat the blank through. Forge the piece quickly and vigorously. Feed- ing rate should aver- age 3/4 of the diame- ter or side of the cross- section of the forged blank                                                                                                                                                                                                                                                                             |
| Forging completed at too high a temperature. Slow cooling of hypereutectoid steels from forging temperatures                                                    | Strict compliance to forg-<br>ing temperature range.<br>Correction: normalising<br>from Ac <sub>m</sub> + 20-30°C,<br>then annealing accord-<br>ing to schedules usual<br>for the steels concerned                                                                                                                                                                                                                                                  |
|                                                                                                                                                                 | Oxygen contained in furnace gases combines with iron  Furnace gas oxygen combines with carbon. Decarburisation is promoted by silicon, tungsten, vanadium, molybdenum, contained in steel  Rapid cooling of the metal during and after forging  Poor-qualify metal, insufficient ductility of the blank core. Weak forging, excessive feed per hammer blow  Forging completed at too high a temperature. Slow cooling of hypereutectoid steels from |

| Defect                                                      | Cause                  | Correction and prevention                                   |
|-------------------------------------------------------------|------------------------|-------------------------------------------------------------|
| Flaky fracture<br>characteristic<br>of high-speed<br>steels | steel completed at too | Strict compliance to forg-<br>ing temperature sched-<br>ule |
| Cracking of the blank                                       | Burning of the metal   | Control of forging temperature and holding time             |

Table 112

Temperature Ranges for the Hot Working of Copper and Copper Alloys

| Grade                                                                                                           | Temperature range, °C                                                                                                                                             | Grade                                                                                                                                                                            | Temperature range, °C                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Copper  Brasses Л96 Л90 Л80 Л68 Л62 ЛС59 ЛА77-2 ЛАН 59-3-2 ЛЖМц 59-1-1 ЛК 80-3 ЛМц 58-2 ЛН 65-5 ЛО 90-1 ЛО 70-1 | 900-800<br>850-775<br>900-850<br>870-820<br>850-750<br>850-750<br>820-730<br>770-720<br>750-700<br>730-680<br>850-750<br>730-680<br>850-750<br>900-850<br>900-850 | ЛС 60-1<br>ЛС 59-1<br>Вronzes<br>Бр.ОФ6.5-0.4<br>Бр.ОФ4-0.25<br>Бр.ОЦ4-3<br>Бр.А5<br>Бр.А7<br>Бр.АЖ9-4<br>Бр.АЖМц10-3-1.5<br>Бр.АЖН10-4-4<br>Бр.АМц9-2<br>Бр.КМц3-1<br>Бр.КН-1-3 | 820-780<br>780-640<br>770-750<br>780-750<br>750<br>880-830<br>850-750<br>825-775<br>900-850<br>850-800<br>850-800<br>910-890 |
| ЛО 62-1                                                                                                         | 750 - 700                                                                                                                                                         | Бр.Мц5                                                                                                                                                                           | 850-800                                                                                                                      |

Forging temperatures for titanium and its alloys are in the 800-900°C range. Heating prior to forging should be carried out in two stages to reduce scaling and prevent grain growth, first up to 700-750°C, and then to 900°C. Holding time for blanks at high temperatures should be as short as possible, averaging 30 sec at the most per 1 mm of the maximum thickness of the blank.

 ${\it Table~113} \\ {\it Forging~Temperatures~for~Aluminium~Alloys}$ 

|                                                    | Temperatu                                            | re, °C                                               |
|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Grade                                              | Beginning of forging                                 | End of forging                                       |
| АК2<br>АК4<br>АК6<br>АК8<br>В95<br>Д1<br>Д6<br>Д16 | 470<br>470<br>470<br>460<br>440<br>460<br>450<br>450 | 380<br>380<br>380<br>400<br>380<br>400<br>400<br>400 |

 ${\it Table~114}$  Hot Working Temperatures for Nickel and Some of Its Alloys

| Grade                                                                                                  | Description                                                                                                            | Temperature range, °C                                                                                    |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| НТ<br>НМц2.5<br>НМц5<br>НМЖМц2.8-2.5-1.5<br>МНЖМц30-0.8-1<br>МН19<br>МН5<br>МН5<br>МНА13-3<br>МНА6-1.5 | Commercial nickel Manganese-bearing nickel Ditto Monel metal Nickel silver Ditto Copper-nickel alloy Cunial A Cunial B | 1250-1140<br>1250-1150<br>1150-1100<br>1150-975<br>960-900<br>1030-980<br>1000-950<br>980-750<br>980-750 |

Table 115
Forging Temperatures for Magnesium Alloys

|                                        | Temperatur                             | e, °C                                  |
|----------------------------------------|----------------------------------------|----------------------------------------|
| Grade -                                | Beginning of forging                   | End of forging                         |
| MA1<br>MA2<br>MA3<br>MA4<br>MA5<br>MA8 | 410<br>410<br>400<br>350<br>385<br>420 | 260<br>230<br>230<br>300<br>300<br>280 |

### Chapter X

### MANUFACTURE OF BUILT-UP CUTTING TOOLS

Built-up cutting tools are manufactured by means of butt welding of high-speed and structural steels for the shank tools, as well as by welding or brazing of cutting tips to the holders of single- or multi-point tools. Steels of grades 40, 45, 40X, 45X are usually used when manufacturing holders and shanks. Steel of grade V7 is also used for the holders of fine cutting-off tools.

Butt welding. It is effected in a butt-welding machine. The blanks should be descaled, cleaned from dirt and other deposits which prevent a perfect contact with the grips of the welding machine. Table 116 lists an approximate projection length for blanks, the melting allowance for the welding process included. Difference in the cross sections of welded blanks should not exceed 1 mm. If this difference surpasses 1 mm, then the larger blank should be machined to the diameter of the smaller one, on a length equal to approximately 3 or 4 welding allowances. The transition from the larger size to the neck should be filleted with a radius not less than 1-2 mm.

Table 116

Approximate Data on Projection Lengths and Allowances for Butt Welding

|                                                                         | Projection length, mm                                             |                                                                      | Welding all                     | owance, mm          |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|---------------------|
| Blank<br>diameter                                                       | High-speed<br>steel                                               | Structural<br>steel                                                  | High-speed<br>steel             | Structural<br>steel |
| Up to 10<br>10-20<br>21-25<br>26-30<br>31-35<br>36-40<br>41-46<br>46-50 | 6-8<br>8-10<br>10-12<br>12-14<br>14-16<br>16-18<br>18-20<br>20-22 | 10-12<br>12-15<br>15-18<br>18-22<br>22-24<br>24-28<br>28-32<br>32-38 | 3<br>4<br>4<br>4<br>4<br>5<br>5 | 2 2 2 3 3 3 3 3 3   |

Whenever it is necessary to weld blanks larger than those specified by the welding machine rating, the articles are recessed in the butts (Fig. 31) so as to reduce the cross-section, and then welded. An opening

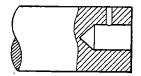



Fig. 31. Large-section blank machined in order to be welded on a machine of insufficient rating

3-5 mm in diameter should be provided in the recessed part to ensure the evacuation of gases.

Table 117
Dimensions of Shank Tools with Section
Recessed for Butt Welding

| Tool                                               | Diameter of<br>blanks, mm                                                                                | Diameter of recessed section, mm                                                                         |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| End milling cutter  Drills, reamers, counter-bores | 30-35<br>35-45<br>45-55<br>55-65<br>65-75<br>75-85<br>30-35<br>35-45<br>45-55<br>55-65<br>65-75<br>75-85 | 14-16<br>16-20<br>20-25<br>25-30<br>30-35<br>35-40<br>14-20<br>20-28<br>28-35<br>35-42<br>42-50<br>50-56 |

Table 117 presents recess diameters for various types and sizes of shank tools. In order to avoid cracks, the welded blanks are charged to a furnace at 730-760° C. Following charging the blanks are held over till the blanks charged last are heated through; after this, the blanks are removed to the air or cooled together with the furnace.

For structural steel, the quality of the welding is checked after annealing by knocking the blank twice, at a distance 5-8 mm from the welding seam, against the angle of a massive metallic plate, turning the blank 90° after the first blow. For high-speed steels, annealing is checked by means of the Rockwell hardness test at 2-4 mm from the seam. The hardness number should not exceed  $R_C = 25$ .

Tips from high-speed steel are welded by the use of welding compounds, the composition of which is presented in Table 118. Welding compounds are prepared by grinding ferromanganese and other components to fine powder, sieved through a 0.2-0.3 mm mesh. The welded faces of the holder and tip should be machined but not ground to ensure the strength of the joint. The size of the tips should approximate that of the holder seat. If the tips are well trimmed, the work can be hardened immediately following welding, use being made of the welding heat. If the size of the tip does not fit the seat (particularly, when the tip is larger than the seat), burning of the tool may occur, and, therefore, the tools concerned should be hardened after sharpening.

Table 118

Composition of Welding Compounds for Welding
High-speed Steel Tips

| Application of compound                                                                                                  | Ferroman-<br>ganese, Mn I | Borax or<br>glass | Copper |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|--------|
| <ol> <li>For tools subject to<br/>sharpening only</li> <li>For tools in which the<br/>welding seam is subject</li> </ol> | 67-80                     | 33-20             | _      |
| to various methods of machining                                                                                          | 60-65                     | 15 <b>-2</b> 0    | 15-20  |

Brazing of carbide tips. The brazing of carbide tips is effected by the use of hard solders. Table 119 presents the composition of solders, recommended by a research institute VNII, as well as their applications. In shop practice, whenever the manufacture of complex solders meets with difficulties, brass is used for brazing multi-point tools while copper is employed for various other tools. The solder is used in the form of foil, thin wire, fragments cut from sheet or band, chips or filings. Fluxes, the composition of which is given in Table 120, are employed to prevent oxidising of the welded surfaces.

Commercial borax is generally employed when being calcined at 800°C prior to use and ground to fine powder. Calcined borax is to be kept in a well-plugged recipient so as to avoid air moisture absorption. Apart from powders, aqueous water solutions of fluxes are also used. They are prepared by dissolving 1 kg of the flux in 3-5 litres of water. The tools (chiefly with the slots for the tips being coated) are boiled

for several minutes in such a solution prior to brazing.

The welded faces of the holder and tip should fit one another snugly. The clearance between the holder and the tip should not exceed 0.05 mm, while that between the sides of the slots in a multi-point tool and the tip should not exceed 0.15 mm. The tool tips are brazed in forges, furnaces, baths, resistance-welding machines and induced-heat installations. Brazing in an induced-heat installation is a highly productive operation, which is, moreover, noted for its up-to-date technical level.

# Soldering Compounds Recommended for the Manufacture of Carbide Tip Tools and Their Applications

|                                                        |                      |              |        |                | mpositio<br>conter         |           |                                  |                                                                  |
|--------------------------------------------------------|----------------------|--------------|--------|----------------|----------------------------|-----------|----------------------------------|------------------------------------------------------------------|
| -Soldering<br>compound                                 | Grade                | Соррег       | Nickel | Manga-<br>nese | Other                      | Zinc      | Melting<br>point, <sup>6</sup> C | Recommended application                                          |
| Copper<br>Brass                                        | М1<br>Л62            | 99.9<br>61.5 | _      | -              |                            |           | 1083<br>905                      | Furnace brazing Electrical brazing of light-duty tools of the BK |
| Nickel<br>brass                                        | ЛН<br>58-5           | 58.5         | 5.0    | _              | <u></u> .                  | псе       | 850                              | duty tools of the                                                |
| Manga-<br>nese<br>brass                                | ЛМц<br>58-5          | 58.5         | _      | 4.25           | Iron<br>0.75               | e balance | 850                              | duty tools of the                                                |
| Nickel-<br>manga-<br>nese<br>brass                     | ЛНМц<br>56-5-5       | 56.5         | 4.5    | 4.5            | Ditto                      | The       | 900                              | TK group Brazing of heavy- duty tools of the TK group            |
| Alumini-<br>um-<br>nickel-<br>manga-<br>nese<br>bronze | Бр.<br>АНМц<br>5-3-2 | 90.5         | 3.0    | 1.5            | Alu-<br>mini-<br>um<br>5.0 |           | 1100                             |                                                                  |

Fig. 32 shows inductors used for the brazing of cutting tools, as well as for the multi-point tools, each tip being brazed separately. This

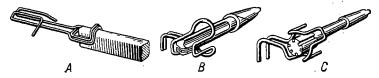



Fig. 32. Inductors for heating by induced heat: a- for brazing and welding of tips on to cutter holders; b- for brazing of drills; c- for brazing of reamers

method cannot be employed for gang milling cutters with negligible clearance between the tips, as tips, next to those soldered, will heat to

a high temperature, thus causing spoilage of the work. A method for simultaneous brazing of carbide tip gang milling cutters in induced-heat installations is described below.

Table 120
Fluxing Compounds Recommended for Brazing Carbide
Tools and Their Applications

| Flux compos                            | ition                                  | Molting              | Recommended application  Copper brazing of group BK tips                                                             |  |  |
|----------------------------------------|----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Component                              | Amount in °, <sub>e</sub><br>by weight | Melting<br>point, °C |                                                                                                                      |  |  |
| Commercial borax                       | 100                                    | 741                  |                                                                                                                      |  |  |
| Commercial borax<br>Boric acid         | 90<br>10                               | €00-€50              | Brazing of group BK tips<br>with low-meltingsolders                                                                  |  |  |
| Commercial borax<br>Potassium fluoride | 70<br>30                               | 800 - 850            | Brazing of group TK tips<br>with all solders, as<br>well as brazing of car-<br>bide alloys onto chro-<br>mium steels |  |  |

A groove is made in a refractory brick, to the dimensions of the bottom inductor, with the aid of a cape chisel (Fig. 33). The brick 4, with the inductor 1 inserted in the groove, is placed on the table, fixed in a tapered bushing of the bottom part of the hydro-hoist of the  $\Gamma$ 3-46 apparatus (or on any other similar table mounted on any other type of apparatus).

The brick is covered with sheet asbestos 3, the milling cutter (which is "boiled" in a flux solution prior to the operation) is placed atop and the inductor is seated over the latter; after this the two inductors are

clamped in the holder.

While clamping the upper inductor 2 should be slightly lifted, so as to avoid contact with the cutter. The bottom coil of the inductor 2 should clear the cutter by 2-3 mm. It is intended to heat the body of the milling cutter directly at the cutting tips. At the same time the latter are also heated through heat conduction.

The upper coil of the inductor 2 is situated 8-12 mm above the tips. Its destination is to ensure, in conjunction with the inductor 1, the initial heating of the body of the milling cutter and the tips and to melt

the solder.

The rate of heating can be controlled by varying the spacing between the cutter and the inductor coils. For the bottom inductor, the said distance is adjusted by varying the thickness of the asbestos pad. The brazing technique for multi-point cutter is simple enough:

1. The cutter is placed between the clamped inductors on the asbestos pad. To facilitate the operation, the upper inductor is forced slightly upwards.

2. The flux is spread additionally around the tips with the aid of

a spatula.

3. Current is switched on and the cutter is heated through to approximately 800-900° C, after which heating is cut out and solder is added by means of tweezers. The hard solder is in the form of two half-rings fashioned to the diameter of the cutter (Fig. 33).

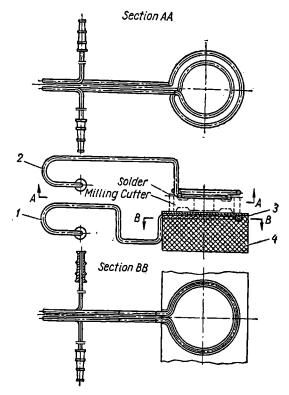



Fig. 33. Device for simultaneous brazing of multi-blade milling cutters with carbide tips on induced heat apparatus

4. Heating is switched on again and the cutter is brazed. The brazing of a 150 mm dia and 15-mm thick milling cutter with 16 tips takes 2-2.5 minutes. The solder fills the gaps entirely. Table 121 describes tool brazing defects and measures which should be taken to prevent them,

# Defects in the Brazing of Built-up Tools and Their Prevention

| Defects                                    | Cause                                                                                                                                  | Prevention                                                                                                                                                                                 |  |  |  |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Manufacture of Brazed and Welded Tools     |                                                                                                                                        |                                                                                                                                                                                            |  |  |  |  |  |  |  |
| The solder does<br>not flow in the<br>gaps | sides of the groove and                                                                                                                | When assembling the tools the gaps should be limited to 0.05-0.15 mm. No continuity of calking is necessary     Normal heating temperatures and sufficient holding time should be ensured. |  |  |  |  |  |  |  |
| The solder forms balls on melting          | Presence of oxides on<br>the brazed surfaces     Soldered surfaces have<br>been ground or lapped                                       | Sufficient amounts of flux should be fed     The soldered faces should not be ground or lapped                                                                                             |  |  |  |  |  |  |  |
| Voids under the tips                       | 1. Maladjustment of tips and holders  2. Switching on and off of current after the melting of solder  3. Premature pressing of the tip | tures should be up to the recommended values 2. After the hard solder has started melting, the current should not be switched off till the termination of brazing                          |  |  |  |  |  |  |  |
| Blackening of<br>the seam                  | Insufficient feed of flux     Insufficient heating                                                                                     | Sufficient amounts of flux should be fed     Normal heating temperatures and sufficient holding time should be ensured                                                                     |  |  |  |  |  |  |  |

| Defect                                                                         | Cause                                                                                                                               | Prevention                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burning of the<br>holder at the<br>point of con-<br>tact with the<br>electrode | Contact surface is too small     Weak contact     High degree of heating and prolonged holding                                      | Contact area should be equal to the product of the holder width at the point of contact by the thickness of the tip     Contact pressure on the holder should be increased     Heating temperature and holding time should be decreased |
| Cracks in carbide tips                                                         | Rapid cooling after brazing     Contact between the electrode and the tip     Non-uniform heating of tip because of great thickness | Slow cooling after brazing should be ensured     Electrode should be lowered to prevent contact with the tip     Reduce the thickness of the tip                                                                                        |
|                                                                                | Manufacture of Butt-weld                                                                                                            | ded Tools                                                                                                                                                                                                                               |
| Incomplete pen-<br>etration                                                    | Too low heating temperature     Insufficient upsetting strength                                                                     | heated till the butts melt                                                                                                                                                                                                              |
| Voids                                                                          | Insufficient upsetting be-<br>cause of too low ma-<br>chine power rating                                                            | The work is to be welded<br>in a machine of ade-<br>quate rating or the<br>blanks should be re-<br>cessed according to Ta-<br>ble 115                                                                                                   |
| Annular cracks<br>in high-speed<br>blanks at 1-3<br>mm from the<br>welded seam | Local welding stresses are caused by too rapid cooling of the welded blank                                                          | After welding the blank should be immediately charged to a furnace and then, after holding, cooled with the furnace                                                                                                                     |

Table 121 continued

| Defect      | Cause                    |        | Prevention                                                                                                  |
|-------------|--------------------------|--------|-------------------------------------------------------------------------------------------------------------|
| Overheating | Excessive heating blanks | of the | 1. Keep strictly to the projection lengths recommended in Table 114 2. Follow strictly the heating schedule |

### Chapter XI

# EQUIPMENT, FUEL AND ACCESSORY MATERIALS FOR HEAT-TREATMENT SHOPS

#### I. FURNACES

According to the fuel used, furnaces can be of the solid-fired, liquid-fired, gas-fired or electrically heated type.

Solid-fuel furnaces are used only when other types of furnaces are

not available.

Table 122 presents technical data on electric furnaces.

Metallic resistors (Table 123) are used for furnaces with working temperatures up to  $1100^{\circ}$  C, while carborundum resistors (Table 124) are

used for those with higher temperatures.

In three-electrode  $\overline{\text{CII-2}}$  and  $\overline{\text{CII-3}}$  bath-type, salt furnaces, the electrodes are set on the walls of the working space at approximately  $120^\circ$  to each other. On heating, the current passes through the heated work and, as the resistance of the metal is lower than that of the salt, overheating of the article can occur, especially if the latter is nearer than 25-30 mm to the electrodes.

Bath-type C-20, C-25 and C-45 furnaces with submerged electrodes are provided with one pair of electrodes each, the latter being situated near the wall at 12 to 25 mm from each other. With this arrangement of electrodes, the current does not flow through the work and there is no danger that the latter would be overheated. The fact that the electrodes are spaced at a short distance from each other gives rise to powerful electromagnetic fluxes, which mix the salt and equalise its temperature. Large C-50 and C-100 bath-type furnaces are provided with

three pairs of electrodes each situated near the back wall.

Another advantage of the bath-type furnaces with submerged electrodes is the possibility of changing the electrodes during the run of the furnace (hot reconditioning). After relining, bath-type furnaces can best be dried with the aid of electric heaters. The working space, where the heater is placed, should be covered with asbestos. Drying is continued till the furnace shell heats to approximately 50-60°C; drying time for the CII-2 furnace averages 30-40 hours. When drying by wood or coal, air should be fed to the bottom part of the working space to ensure adequate combustion; otherwise, the fuel will smoulder with ensuing poor drying of the furnace and possible eruption of the salt on its initial melting. Steels of the heat-resisting grade X23H13.

TO RATINGS OF ELECTRIC FURNACES USED FOR HEAT-TREATMENT OF METALS

|                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ٠,             | Maximum<br>throughpu<br>Kgjhr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| work-          | Maximum<br>ing tempe<br>C° taruf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 14 th          | Total weignot to to the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total single for the total |  |  |  |
| slons,         | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Il dimen<br>mm | dignal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Overa          | 41P!M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| асе            | JdgisH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| king sp.       | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Wor            | Width<br>or diame-<br>ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| <b>.</b> 3u    | Power rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                | type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                | Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

Chamber Furnaces with Metallic Heating Elements

|                                    | Furnace with spherical hearth and carriage                                                                                 |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                    | 50<br>125<br>200<br>275<br>350<br>300                                                                                      |
| phere                              | 950<br>950<br>950<br>950<br>860                                                                                            |
| t m o s                            | 96.2.8                                                                                                                     |
| a) For Operation in Air Atmosphere | 1,400 1,600 1,440<br>1,400 1.790 2,020<br>2,050 2,250 2,000<br>2,200 2,560 2,450<br>2,360 2,860 2,500<br>2,280 5,030 2,440 |
| in A                               | 1,600<br>1,790<br>2,250<br>2,560<br>5,030                                                                                  |
| ation                              | 1,100<br>1,400<br>2,050<br>2,200<br>2,360<br>2,280                                                                         |
| Oper                               | 250<br>450<br>500<br>550<br>600<br>600                                                                                     |
| For                                | 650<br>1,200<br>1,800<br>1,820                                                                                             |
| a)                                 | 300<br>450<br>600<br>750<br>900<br>970                                                                                     |
|                                    | 15<br>30<br>45<br>60<br>75<br>100                                                                                          |
|                                    | H15<br>H30<br>H45<br>H60<br>H75<br>HIII-100A                                                                               |

|                                           | Heating elements<br>  situated on roof,<br>  sidewalls and hearth |
|-------------------------------------------|-------------------------------------------------------------------|
| b) For Operation in Controlled Atmosphere | 30                                                                |
| nı o s p                                  | 950                                                               |
| ed At                                     | 0.29                                                              |
| 1011                                      | 760                                                               |
| Cont                                      | 820   1,245   1,245                                               |
| n in                                      | 820                                                               |
| ratio                                     | 140                                                               |
| . Оре                                     | 400<br>500                                                        |
| b) For                                    | 250                                                               |
|                                           | 12.8                                                              |
|                                           |                                                                   |
|                                           | H25X50                                                            |

| Heating elements situated on roof, sidewalls and hearth  Heating elements situated on roof, sidewalls, hearth, doors  Furnace with spherical hearth and push-type carriage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A two-chamber furnace. Data in the numerators refer to the bottom chamber, those in the denominators—to the upper chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50<br>25-35<br>80<br>50-70<br>150<br>90-120<br>220<br>130-140<br>400-450<br>230-280<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ents<br>50<br>120<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1000<br>1000<br>1000<br>860<br>860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g Elem<br>1300<br>1300<br>1300<br>1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00 - 1.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heating 0.75 2.1 3.6 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 790<br>790<br>790<br>790<br>790<br>790<br>790<br>790<br>790<br>790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carborundum Heating Elements 1,140 1,400   0.75   1300   1,600 1,770   2.1   1300   1,2,100 2,000   3.6   850   1,325   1,800   1.5   1300   1,325   1,800   1.5   1300   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,500   1,50 |
| 1, 195<br>1, | Sarborundum 1,140 1,400 1,600 1,770 2,100 2,000 1,325 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 870<br>870<br>870<br>1,550<br>1,650<br>1,650<br>1,800<br>1,900<br>1,900<br>1,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | with (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 200<br>200<br>200<br>320<br>320<br>400<br>500<br>615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | naces<br>200<br>250<br>400<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 650<br>450<br>800<br>1,000<br>1,300<br>1,300<br>1,700<br>1,100<br>1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cham ber Furnaces 250 360 200 300 400 250 325 410 180 255 360 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 300<br>300<br>400<br>400<br>400<br>500<br>500<br>650<br>650<br>850<br>910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cham<br>250<br>300<br>520<br>325<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 112<br>112<br>113<br>118<br>118<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>30<br>50<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H30X65<br>H30X45<br>H40X80A<br>H40X80A<br>H50X100<br>H50X100<br>H65X130<br>H65X130<br>H65X110<br>H85X110<br>H85X110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OKB-333C<br>OK5-210<br>OK5-194A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 122 continued

|                     | 11,                                       | Maximum<br>throughpu<br>kgiht<br>Onnn<br>e ents |                               | 140   | 125        | 330   | 225  <br>265   |                               | 1001                       | 280<br>550                                      |                                            | 50   Single charges in kg<br>100<br>150<br>220<br>400<br>500 |
|---------------------|-------------------------------------------|-------------------------------------------------|-------------------------------|-------|------------|-------|----------------|-------------------------------|----------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| - <b>ਮ</b> -        | Maximum work-<br>ing tempera-<br>ture, °C |                                                 |                               | 950   | 320        | 950   | 1300           |                               | 029                        | 650                                             | naces                                      | 950<br>950<br>950<br>950                                     |
|                     | Total weight,<br>metric tons              |                                                 | naces                         | 2.1   | 0.8<br>0.0 | 6.4   | 5.8            | naces                         | 1.5                        | 1.8                                             | ng Fur                                     | 2.3<br>3.6<br>5.0<br>7.7                                     |
| sions,              |                                           | Helght                                          | ng Fui                        | 1,900 | 3,290      | 4,120 | 2,820<br>3,550 | ng Fur                        | 1,900                      | 2,090<br>3,040                                  | rburisi                                    | 1,980<br>2,320<br>2,390<br>2,760<br>2,880<br>3,220           |
| Overall dimensions, | E                                         | Length                                          | lardenı                       |       | 2,50       | 2,780 | 1,500          | emperi                        | 1,430                      | 1,540<br>3,260                                  | type Ca                                    | 1,790<br>1,790<br>1,970<br>1,970<br>2,170<br>2,170           |
| Overal              |                                           | Width                                           | Shaft-type Hardening Furnaces | _     | 1,550      | . 07  | 1,500          | Shaft-type Tempering Furnaces | 500  1,460   1,430   1,900 | 650 1,540 1,540 2,090<br>,220 2,530 3,260 3,040 | Muffle-                                    | 1,420<br>1,420<br>1,590<br>1,590<br>1,770                    |
| ace                 | E                                         | Height                                          | Shaft                         | 800   | 9,200      | 2,500 | 1,470          | Shaft                         | 200                        | 650<br>1,220                                    | Shaft-and Muffle-type Carburising Furnaces | 450<br>600<br>600<br>900<br>900<br>1,200                     |
| rking st            | dimensions, mm                            | րերը                                            | <br>                          | 1     | 000        | 3     | 300            |                               | 1                          | 11                                              | Shaft                                      | 111111                                                       |
| Mo                  | dime                                      | Width<br>or diame-<br>ter                       |                               | 450   | 86         | 000   | 88             |                               | 400                        | 500<br>950                                      |                                            | 300<br>300<br>450<br>600<br>600                              |
|                     | 'Bul                                      | Power rat                                       |                               | 30    | 8          | 38    | 88             |                               | 24                         | 36                                              |                                            | 25<br>35<br>60<br>75<br>105                                  |
|                     |                                           | Furnace (ype                                    |                               | III30 | 11135      | 0211  | Г65<br>Г95     |                               | пн-31                      | (11H-31D)<br>ПН-32<br>ПН-34                     |                                            | 11.25<br>11.35<br>11.60<br>11.75<br>11.105                   |

| Furnaces        |
|-----------------|
| Gas-carburising |
| Muffleless      |
| Shaft-type      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270<br>380       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 50   Single charges<br>220   500   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270<br>380       |
| 2225<br>5225<br>5225<br>520<br>520<br>520<br>520<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270<br>380       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270<br>380       |
| 1050<br>1050<br>1050<br>1050<br>1050<br>1050<br>650<br>650<br>650<br>650<br>650<br>850<br>850<br>850<br>1300<br>1300<br>1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 875              |
| 1.8<br>3.7<br>4.0<br>5.2<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.43            |
| 2,295<br>3,325<br>3,325<br>3,325<br>1,000<br>1,000<br>1,635<br>3,795<br>2,220<br>2,200<br>2,200<br>2,200<br>2,200<br>2,200<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320<br>1,320 | 2,090            |
| 11,865<br>2,120<br>2,120<br>2,270<br>3 and C<br>1,900<br>1,900<br>1,900<br>1,900<br>1,600<br>1,650<br>1,650<br>1,650<br>1,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,285<br>8,245   |
| 450   1,370   1,865   2,295   3,900   2,010   2,120   3,315   3,325   4,200   2,160   2,270   3,870   5,200   2,010   2,120   3,325   4,200   2,160   2,270   3,870   5,200   3,870   1,900   1,900   1,900   1,900   1,900   1,900   1,900   2,220   3,000   1,970   2,200   3,795   1,970   2,200   3,795   1,970   2,200   3,795   1,380   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160   1,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,850 7,285      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200              |
| Shaft-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4, 180<br>5, 140 |
| 300<br>  450<br>  450<br>  450<br>  320<br>  300<br>  200<br>  300<br>  340<br>  375<br>  375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 375<br>575       |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130              |
| ШЦН5А<br>ШЦН5А<br>ШЦН65А<br>ШЦН95А<br>ШЦН95А<br>ОКБ-3016<br>ОКБ-3018<br>ОКБ-3018<br>ОКБ-3019<br>ОКБ-3019<br>ОКБ-3019<br>ОКБ-3019<br>СС-20<br>СС-25<br>СС-25<br>СС-25<br>СС-45<br>СС-20<br>СС-25<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-35<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36<br>СС-36             |                  |

Table 122 continued

|                                                                                                                                                                                     | re.                                                          |                                                                                        |                 |                      |               |                                                                  |           | Capacity 21 litres | capacity 40 miles | Temperature contr  | through a rheosta<br>Automatic temperatu | control<br>Automatic temperatu | control<br>Automatic temperatu<br>control |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|----------------------|---------------|------------------------------------------------------------------|-----------|--------------------|-------------------|--------------------|------------------------------------------|--------------------------------|-------------------------------------------|
| 06<br>06<br>06                                                                                                                                                                      | nosphe                                                       | 111                                                                                    |                 |                      |               | 11                                                               |           |                    | _ saoy            | . 1                | 1                                        | !                              | 1                                         |
| <i>rnaces</i><br>180<br>830<br>920                                                                                                                                                  | Pusher-type Furnaces for Heating Work in Hydrogen Atmosphere | 1500<br>1750<br>1400                                                                   |                 |                      |               | 900                                                              |           | 3000               | _ ~               | 1000               | 1000                                     | 1000                           | 250                                       |
| ling Fu<br>  2.1<br>  5.2<br>  9.0                                                                                                                                                  | Hydro                                                        | 2.7<br>0.9<br>1.6                                                                      |                 |                      |               | 7.5                                                              |           | 0.1                | U.1<br>t-treat    | 485   0.042   1000 | 485 0.04                                 | 566 0.06                       | 700 0.55                                  |
| Annea<br>1,750<br>3,040<br>3,735                                                                                                                                                    | ork in                                                       | 1,920<br>1,800<br>1,800                                                                | naces           | 2,500                | 1,900         | $\begin{vmatrix} 5,940 \\ 6,100 \end{vmatrix}$                   | SI        | 620                | ı usu<br>in Hea   | 485                | 485                                      | 999                            | 700                                       |
| ng and<br>4,850<br>4,785<br>5,700                                                                                                                                                   | ting W                                                       | 5,800<br>2,540<br>3,370                                                                | Vacuum Furnaces | 1,700 2,250          | 2,26)         | $\frac{4,500}{4,670} \begin{vmatrix} 3,740\\4,670 \end{vmatrix}$ | Oil Baths | 380                | basn s            | 430                | 492                                      | 603                            | 220                                       |
| Barrel-type Hardening and Annealing Furnaces  - 2,750   1,330   4,850   1,750   2.1   180  - 1,200   2,300   4,785   3,040   5.2   830  - 2,000   1,350   5,700   3,735   9.0   920 | for Hea                                                      | 98   1,390   5,800   1,920   620   1,000   2,540   1,800   750   1,250   3,370   1,800 | Vacui           | 1,700                | 1,750 2,260 1 | $ \frac{4,500}{4,670} $                                          | 0         | 280                | urnace            | 445                | 445                                      | 525                            | 585                                       |
| type H<br>2,750<br>1,200<br>2,000                                                                                                                                                   | rnaces                                                       |                                                                                        |                 | 350<br>450           | 370           | 1-1                                                              |           | 300 280            | tupe F            | 8                  | 82                                       | 95                             | 1                                         |
| Barrel                                                                                                                                                                              | уре Fu                                                       | 1,000                                                                                  |                 | 1.1                  | 18            | 1,090                                                            |           |                    | oratoru           | 210                | 210                                      | 263                            | 390                                       |
| 400<br>200<br>310                                                                                                                                                                   | usher-t                                                      | 250<br>100                                                                             |                 | 300                  | 250           | 1,100                                                            |           | 350                | Lab               | 137                | 137                                      | 175                            | 410                                       |
| 19 30 70                                                                                                                                                                            |                                                              | 22 22 29                                                                               |                 | 35 35                | 20.           | <u> </u>                                                         |           | 6/3                | * /o<br>-         | 11.75              | 1.75                                     | 2.6                            | 1:1                                       |
| OKB-130C<br>OKB-128C<br>B-70                                                                                                                                                        |                                                              | ЦЭП-214 ·<br>ЦЭП-219А<br>ЦЭП-220А                                                      | ± *             | OKB-704<br>11311-245 | 10E-11E)I     | OK5-744<br>OK5-745                                               |           | MB-21<br>MB-40     | 01-01-            | 0-ЦW               | MΠ-1                                     | MI1-2                          | III-0.05                                  |
| 9 -969                                                                                                                                                                              |                                                              |                                                                                        |                 |                      |               |                                                                  |           |                    |                   |                    |                                          |                                |                                           |

249

Notes. 1. Furnaces equipped with metallic heating elements are fed directly from the 220 or 380 V mains. Electode-equipped furnaces, as well as those with carborundum heating elements, necessitate step-down transformers. 2. Pusher-type T-240B and T-165B furnaces admit two pans each on the width of the working space. 3. Crucibles for alkall baths as well as mixers should be manufactured rather from carbon than stainless steel.

perature perature

perature control 1eostat

etc., as well as of low-carbon grade 10, 15, 20, Cr.2, etc., are used for

the manufacture of the electrodes of bath-type furnaces.

Table 125 shows comparative data presented by the "Frezer" Works and relating to electrode durability in three- and two-electrode bath-type furnaces. The author considers these data as somewhat undervalued. Thus, a C-20 furnace in the plant, the author is connected with, has shown a run of 16 days (a total of 106 hours) at 1220-1260°C between replacements of electrodes.

Of great importance, when consumption of electrodes in two-electrode furnaces is considered, is the furnace start-up method. The elec-

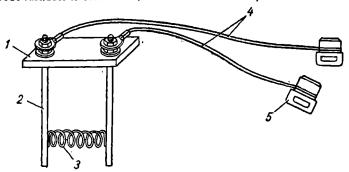



Fig. 34. Coil for melting of salt in salt baths: 1-asbestos-cement; 2-pin; 3-coil from Ø 4 mm, 1-1.6 m wire; 4-MPF wire; 5-contact blade

trodes crumble generally during the start-up of the furnace, the trouble spot being the line of contact of graphite powder with the electrodes. The furnace is heated up at the highest voltage, and if contact between the graphite powder and the electrode is lost, an arc strikes up and destroys the electrode. To reduce electrode wear, the heating-up operation should be carried out at the highest voltage only to the moment when the salt melts between the electrodes, after which graphite should be immediately removed and the voltage lowered. The most efficient method for initial, as well as repeated starting up of a submerged-electrode furnace is with an electric heating coil. After the melting of the salt, the coil is removed and subsequent heating is effected through electrodes. At the end of operation, after the furnace has been switched off, the coil is immersed in the molten salt to a 10-30 mm depth, and the salt solidifies. Repeated starting of the furnace necessitates only the switching-on of the coil current.

Motor generators as well as vacuum-tube oscillators are used to heat up articles by means of high-frequency current.

Tables 126 and 127 present technical data on motor generators and vacuum-tube oscillators manufactured in the Soviet Union.

Motor generators are used for heating up articles larger than 16 mm in diameter, the depth of the hardened layer being not less than 2 mm. Vacuum-tube oscillators are generally employed for heating up minute

## Properties of Metallic Resistors

| Grade of alloy | Maximum working temperature, °C | Specific resistance in ohm-mm²/m |  |  |
|----------------|---------------------------------|----------------------------------|--|--|
| X15H60         | 1000                            | 1.10                             |  |  |
| X20H80         | 1100                            | 1.15                             |  |  |
| X20H89T3       | 1150                            | 1.27                             |  |  |
| Х13Ю4          | 1000                            | 1.26                             |  |  |
| 0X23Ю5A        | 1200                            | 1.35                             |  |  |
| 0Х23Ю5         | 1200                            | 1.35                             |  |  |
| 0Х25Ю5         | 1200                            | 1.40                             |  |  |

Table 124
Chemical Composition and Properties of Carborundum Resistors

|                  |              | Chen       | ical ( | ompo | ositio |      | Specific        |                               |                                      |  |
|------------------|--------------|------------|--------|------|--------|------|-----------------|-------------------------------|--------------------------------------|--|
| Туре             | SiC          | SiO        | С      | Al   | Fe     | · Si | CaO<br>+<br>MgO | Maximum<br>temperature,<br>°C | resistance in<br>ohm mm²m<br>at 20°C |  |
| Si lit<br>Globar | 94.4<br>96.0 | 3.6<br>1.5 | 0.3    | 0.2  | 0.6    | 0.3  | 0.6             | 1500<br>1500                  | 1,000-2,000<br>930-1,950             |  |

Table 125
Comparative Data on Durability of Electrodes
in Bath-type Furnaces

|                                                    | Electrode durability in days |                                         |  |  |  |  |  |
|----------------------------------------------------|------------------------------|-----------------------------------------|--|--|--|--|--|
| Working<br>temperature, °C                         | Three-electrode furnaces     | Furnaces with sub-<br>merged electrodes |  |  |  |  |  |
| Up to 600<br>From 600 to 1000<br>From 1000 to 1300 | 90-110<br>10-13              | 40-50<br>18-24<br>1.5-2                 |  |  |  |  |  |

and odd-shaped parts, the depth of the hardened skin averaging from a fraction of a millimetre to 2-3 mm.

Tubular-type T9H heaters are most efficient for the heating of saltpetre, alkalis, oil and other materials used in heat-treatment technology. Tubular-type electric heaters are curved tubes from carbon or stainless steels, which house insulated electric heating coils. The length and the power rating of the heating unit, as well as the tube material are selected in accordance with the bath volume, heating temperature and the composition of the material to be heated. Table 128 lists approximate data which may be used as a guide for the choice of tubular-type heaters.

The feeding of protective atmosphere to furnaces can be effected by an endothermic gas generator, type OKB-724, having the following rating:

Output 30 m3/hr 30 kW Power rating 220/380 volts Voltage Phases 3/1 Connection of resistors Star/Series Working temperature 1050 - 1100°C Composition of protective atmosphere: 36-40% hydrogen 18-20% carbon dioxide The balance nitrogen Natural gas, town gas, reduced Raw materials propane-butane compounds 6 m³/hr Raw gas consumption Overall dimensions: 1,440 mm width length -2,350 mm 2,500 mm height 2.750 kg Weight

The dimensions of bath-type furnaces working on liquid or gas fuels are standardised (Table 129).

Tables 130 and 131 indicate types of burners which have found widest industrial use.

Approximate furnace throughput rates are presented in Table 132.

# 2. REFRACTORIES

Firebrick is chiefly used for the building and re-lining of heat-treatment furnaces.

Electric furnace lining is patched with special-shaped refractory brick or with plain firebrick shaped to the configuration desired.

Lutes composed of 25% fireclay and 75% crushed firebrick are used for overhauls.

Data on thermal insulating materials and refractories are given in tables 133 and 134.

#### 3. FUELS

Fuel oil with approximate calorific power of 9,600 kcal/kg is used as liquid fuel.

Various gases are used as gas fuels, the composition and calorific power of which are presented in Table 135.

Technical Data on MI3-type High-frequency Hardening Installations

|                      | מווסושווס מוויים מיולה יויפון היויה מיוים מיוים מיוים מיוים וויים | Jpc mgn-meduci                               |            |           | BIGHT S |                     |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|-----------|---------|---------------------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , i , E              | Installation equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>.</b>                                     | .ga/       | sdo '     | Overal  | Overall dimensions. | sions.   | suc             | tete<br>no,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Type of installation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Designation                                  | Power rati | Frequency | Width W | Length              | t flgleH | :<br>Weight, to | Cooling was onsumption in the consumption of the consumption of the consumption of the cooling was a second of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of |
| MF3-52               | High-frequency generator:     High-frequency converter     Driving motor etartor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FC-50X1/2.5<br>TIB-50/2500<br>EH5191, 35 A 9 | 20         | 2500      | 1040    | 1120                | 1040     | 2.1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 2. Induced-heat hardening in-<br>stallation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.5075                                      | 50         | 2500      | 1325    | 2280                | 2135     | 2.0             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MF3-102              | 1. High-frequency generator: a) High-frequency converter b) Auto transforms doubter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FC-100X1/2.5<br>FC-100/2500                  | 100        | 2500      | 1040    | 1495                | 1040     | 2.5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| y 1                  | 2. Induced-heat hardening installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3C-100/2.5                                   | 100        | 2500      | 1325    | 2280                | 2135     | 2.0             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MI 3-108             | High-frequency generator:     Aligh-frequency converter     Alifo-frequency converter     Alifo-frequency converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FC-100X1/8<br>IIBB-100/8000                  | 001        | 8000      | 1150    | 1685                | 1110     | 16.5            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 2, Induced-heat hardening installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3C-100/8                                     | 100        | 8000      | 1325    | 2280                | 2135     | 2.0             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Notes. 1. Type 3C induced heat installation is composed of the following units: hardening, hardening control and pouring and high-frequency contactor.

2. Type C generator comprises (save the converter and the starter): measuring instruments desk, control unit and confactor board.

3. All three installations are supplied either as a complete unit (MF3-52AK, etc.) or in separate racks (MF3-52AB, etc.). The latter difficer from the complete installation in that the high-frequency transformer TBM-2 and the condenser battery are situated in separate racks, which widens the possibility of incorporating the installation in hardening machines and automated productlo lines.

Table 127
Technical Data on Vacuum-tube Oscillator

|                                                                              |                                               | ė.,                                                                           | Overall | ldimensi                                                             | ons, mm                                                              | ټـ ا                                                   | Cooling water                                                   |
|------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| Type of oscillator                                                           | Power<br>rating,<br>kW                        | Frequen-<br>cy, cps                                                           | Width   | Length                                                               | Height                                                               | Weight,<br>tons                                        | Cooling water<br>consumption,<br>m <sup>9</sup> /hr             |
| ЛГ3-10 A<br>ЛЗ-13<br>ЛЗ-37<br>ЛП3-37<br>ЛЗ-67<br>ЛП3-67<br>ЛП3-107<br>ЛЗ-207 | 8<br>10<br>30<br>30<br>60<br>60<br>100<br>200 | 300 - 450<br>300 - 450<br>60 - 74<br>60 - 74<br>60 - 74<br>60 - 74<br>60 - 74 |         | 1,170<br>1,120<br>2,200<br>8,550<br>2,200<br>3,400<br>2,200<br>2,800 | 2,150<br>2,050<br>2,250<br>2,250<br>2,250<br>2,250<br>2,250<br>2,500 | 0.75<br>0.85<br>2.7<br>3.2<br>3.1<br>3.4<br>3.8<br>6.0 | 0.54<br>1.2<br>1.75<br>2.0<br>2.25<br>2.5<br>2.5<br>2.25<br>7.0 |

Table 128.
Technical Data on Tubular-type Electric Heater

| Designation         | Overall length of the tube, metres                                    | Power<br>rating,<br>kW | Tube<br>material   | Application                                   |
|---------------------|-----------------------------------------------------------------------|------------------------|--------------------|-----------------------------------------------|
| НММ, НВ,<br>НП      | From 0.5 through<br>6 m, (1! sizes<br>with gradations<br>every 0.5 m) | From 0.5<br>to 7       | Carbon<br>steel    | Heating of air, water and oil                 |
| нвг                 | From 2 through 6 m<br>(8 sizes with<br>gradations every<br>0.5 m)     | From 2<br>to 7         | Carbon<br>steel    | Heating of<br>alkalis<br>and salt<br>solution |
| HCЖ,<br>HMЖ,<br>HBЖ | From 2 through 6 m<br>(8 sizes with gra-<br>dations every<br>0.5 m)   | From 2<br>to 7         | Stainless<br>steel | Heating of saltpetre and salt                 |

# 4. TEMPERATURE CONTROL INSTRUMENTS

Manometric thermometers are used to measure, record and control temperatures in low-annealing bath-type furnaces and isothermal hardening tanks.

hardening tanks.

A manometric thermometer comprises essentially a thermal bulb, a capillary, a tubular spring and indicating or recording devices.

Table 129
Technical Data on Fuel-oil and Gas Bath-type Furnaces

| Designa<br>bath-type | tion of<br>furnaces | Crucible di |                   | e<br>, kg              | Average throughput. |
|----------------------|---------------------|-------------|-------------------|------------------------|---------------------|
| Gas-fired            | Fuel-oil-<br>fired  | Diameter    | Depth             | Crucible<br>weight, kg | kg;hr               |
| птвг-1               | птвм-1              | 200<br>200  | 350<br>535        | 49<br>73               | 20<br>35            |
| ПТВГ-2               | птвм-2              |             | 350<br>535<br>610 | 62<br>86<br>95         | 35<br>50<br>60      |
| птвг-з               | птвм-з              |             | 535<br>610        | 130<br>146             | 70<br>80            |
| ПТВГ-4               | ПТВМ-4              |             | 535<br>610        | 160<br>210             | 100<br>125          |

Manometric thermometers are classified as gas thermometers (filled with nitrogen), liquid thermometers (filled with xylene, mercury or methyl alcohol) or steam thermometers (filled with a liquid turning to steam at a definite temperature).

Table 138 lists data on manometric thermometers used in heat-

treatment departments.

Temperatures from  $-200^\circ$  to  $+500^\circ\text{C}$  are also measured with resistance thermometers known for their very accurate readings. These thermometers are manufactured either from platinum resistance wire, the  $9T\Pi$  type, with 11-a and 12-a scales and measurement range from  $-200^\circ$  to  $+500^\circ\text{C}$ , or from copper resistance wire, the 9TM type, with 2-a scale and measurement range from  $-50^\circ$  to  $+15^\circ\text{C}$ . The many types of resistance thermometers available are classified according to design, application and temperature ranges. Thermometers are manufactured with protective sheaths from low-carbon or heat-resistant steels, from 0.5 to 2 m in length. Indications provided by resistance thermometers are read with the aid of measuring instruments (Table 137).

Thermocouples are the most widely used means for measuring temperatures (Table 138). Table 139 lists and describes briefly pyrometer millivoltmeters (galvanometers) operating in conjunction with thermocouples and telescope of radiation pyrometers. Care should be taken that the graduation of thermocouples and galvanometers be similar. Thermocouples are to be connected to measuring instruments by means of compensating leads, or, when the latter are not available, with plain insulated copper conductors.

Compensating leads are manufactured in impregnated cotton sheath—the ΚΠΟ brand, in lead sheath—the ΚΠC brand, in steel wire

Technical Data on Burners

| ••                        |                                  | lecurical Data on Duriers | 419  |                                                       | 613                  |                      |                        |                      |                      | *                      |
|---------------------------|----------------------------------|---------------------------|------|-------------------------------------------------------|----------------------|----------------------|------------------------|----------------------|----------------------|------------------------|
|                           |                                  | Nozzle                    |      | Capacity in kg'hr at air pressure of, min water gauge | hrata!               | r pressu             | re of. m               | ш wate               | r gauge              | Diameter               |
| Type of burners           |                                  | diameter,<br>mm           | 150  | 300                                                   | 400                  | 450                  | 9009                   | 009                  | 700                  | main, mm               |
| One-stage, large-capacity | ФОБ-1                            | 16<br>20                  | 3.5  | 3.7                                                   | 4                    | 11                   | 4.2                    | 11                   | 1 !                  | 38                     |
|                           | ФОБ-2                            | 20<br>26                  | 473  | 8.5                                                   | 7                    | 11                   | 8 12                   |                      | 11                   | 50                     |
|                           | ФОБ-3                            | 45<br>50                  | 14   | 21<br>25                                              | 30                   | 1.1                  | 33                     | 11                   | 11                   | 75                     |
|                           | ФОБ-4                            | , 20<br>80                | 32   | 25<br>45                                              | 41                   | 11                   | 45                     | 11                   |                      | 100                    |
| Two-stage, large-capacity | ФДБ-1<br>ФДБ-2<br>ФДБ-3<br>ФДБ-4 | 50<br>70<br>90<br>90      | 1111 | []]]                                                  | 1111                 | 20<br>30<br>48<br>76 | 22<br>34<br>52<br>82   | 24<br>37<br>56<br>89 | 25<br>40<br>60<br>95 | 50<br>75<br>100<br>125 |
| Low-pressure              | A-40<br>A-30<br>A-60<br>A-52     | 30 40 25 25               | 1111 | 11<br>11<br>32<br>32                                  | 18<br>13<br>44<br>36 | 1111                 | 20<br>14.5<br>50<br>41 | 22<br>16<br>55<br>46 | 24<br>17<br>58<br>49 | 100                    |
|                           | A-75<br>A-95<br>A-125            | 75<br>95<br>125           | 111  | 54<br>80<br>135                                       | 62<br>95<br>148      |                      | 69<br>105<br>170       | 76<br>115<br>185     | 81<br>120<br>205     | 125<br>150<br>200      |

Thermal Characteristics of Low-pressure Long Flame Gas Burners

| Type of burner                     |                                     | Capacity,                                                      | Diameter<br>air mai                  | Diameter of gas and<br>air mains, mm  | Pressure in r<br>and veloc                                                              | Pressure in mm water gauge<br>and velocity in m/sec                      | Size of gas-air                          |
|------------------------------------|-------------------------------------|----------------------------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
|                                    |                                     |                                                                | gas main                             | air main                              | gas                                                                                     | aîr                                                                      |                                          |
| With separate gas<br>and air feeds | ГЩ-1<br>ГЩ-1½<br>ГЩ-2<br>ГЩ-2%      | 5-15<br>10-30<br>20-60<br>40-100                               | 25<br>37<br>50<br>63                 | 25<br>37<br>50<br>63                  | 50-100<br>10-15                                                                         | 100-200                                                                  | 22.5×50<br>21×75<br>24.5×118<br>24.5×118 |
| Slot type                          | ГЩ-3<br>ГЩ-4<br>ГЩ-5                | 60-140<br>100-200<br>150-300                                   | 75<br>100<br>125                     | 75<br>100<br>125                      | \$ 50-100<br>10-15                                                                      | 100-200                                                                  | 53×120<br>58×150<br>68×183               |
| Tangential with<br>turbulent flame |                                     | 50-100<br>100-200<br>150-300<br>200-400<br>300-600<br>500-1000 | 50<br>65<br>85<br>100<br>125<br>150  | 65<br>80<br>100<br>125<br>150<br>170  | Not less than Not less<br>80-100 100-1<br>10-15 15-2<br>Mixture velocity<br>10-12 m/sec | than Not less than 0 100-150 15-20 xture velocity 10-12 m/sec            | 870<br>890<br>8115<br>8140<br>8170       |
| With turbulent<br>flame            | 17.2<br>17.2<br>17.3<br>17.5<br>1.6 | 100<br>160<br>250<br>400<br>630<br>1000                        | 67<br>85<br>106<br>132<br>170<br>212 | 80<br>100<br>125<br>200<br>250<br>250 | Not less than 80-100 10-15 Mixture 10-12 10-12                                          | ss than Not less than 100 100-150 150 15-20 Mixture velocity 10-12 m/sec | ø80<br>ø100<br>ø125<br>ø200<br>ø250      |

Table 132

Approximate Furnace Throughput Rates (in kg/m²hr)
for Various Heat-treatment Operations

|                                                                                            |                                     | He                               | at-treatmen                                             | t furnaces            |                                   |
|--------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------------|-----------------------|-----------------------------------|
| Heat-treatment operation                                                                   | Chamber                             | Car-type                         | Pusher-<br>type,<br>continuous                          | Conveyor,<br>electric | Rotary-<br>hearth                 |
| Normalising Annealing Hardening Carburising: solid carburiser gas carburiser Gas cyaniding | 120-150<br>40-60<br>120-160<br>8-12 | 60-100<br>35-50<br>60-80<br>8-12 | 150-200<br>50-70<br>150-200<br>15-20<br>40-50<br>80-100 | 120-220<br>           | 160 - 200<br>150 - 200<br>15 - 18 |
| Tempering                                                                                  | 90-110                              | 60-80                            | 100-150                                                 | 100-150               | _                                 |

Table 133

Data on Thermal Insulating Materials

| Material                                                                                                                                                                                               | Maximum<br>temperature<br>of use, °C                                                  | Volume weight,<br>kg/dm³                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Unburnt diatomite in lumps Unburnt diatomite powder Burnt diatomite powder Diatomite brick Foamy diatomite brick Fluffed asbestos Asbestos milboard Glass wool Glass fibre Foam concrete Boiler cinder | 800<br>900<br>1000<br>950<br>900<br>500<br>500<br>300<br>600<br>600<br>300<br>800-950 | 0.68<br>0.3<br>0.55<br>0.55-0.75<br>0.40-0.55<br>0.8<br>0.90-1.2<br>0.80<br>0.25-0.30<br>0.10-0.20<br>0.40-0.50<br>0.7-1.0 |

sheathing—the KIII brand, in flexible sheaths—the KIIIO type, and

also in special-purpose sheaths.

When choosing thermal control instruments, it is recommended to bear in mind the following points. Type ЭПП, ЭПД and СП potentiometers are the most precise instruments, with permissible error not exceeding  $\pm 0.5\%$  of the upper temperature range; for the type MПП-054 potentiometer the error does not exceed  $\pm 1\%$ , while for the rest of the instruments described in Table 138 the accuracy of measurement is within  $\pm 1.5\%$ . The upshot of this is that preference should be given

Table 134
Refractoriness and Allowable Working Temperatures
of Refractories

| Refractory         | Refractoriness.<br>°C            | Allowable tem-<br>perature range. °C                                                                        |
|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| Firebrick, grade A | 1690 ∤<br>1900-1950<br>1850-2000 | 1300 - 1400<br>1250 - 1300<br>1200 - 1250<br>1600 - 1650<br>1600 - 1700<br>1400 - 1500<br>2000<br>700 - 750 |

 ${\it Table~135}$  Mean Chemical Composition and Calorific Power of Gases

|                                                                                                                                                        |                                              |                                         | cal composi                                                        | tion, pe                                                                         | r cent                                  |                                                          | po-                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|
| Gas                                                                                                                                                    | Carbon<br>dioxide                            | Сагьоп<br>топохіde                      | Methane                                                            | Heavy<br>hydrocar-<br>bons                                                       | Hydrogen                                | Nitrogen                                                 | Calorific  <br>  wer, kcal/n                                        |
| Blast-furnace gas Coke gas Lighting gas Generator gas (from coal) . Generator gas (from shale, Estonia) Natural gases: Saratov Dashava Kuibyshev Ukhta | 11<br>2<br>6<br>4.5<br>18<br>—<br>0.8<br>0.2 | 27<br>7<br>16<br>25<br>11<br>0.7<br>0.2 | Up to 1<br>23<br>20<br>2<br>2<br>24<br>94.3<br>97.8<br>75.80<br>93 | $ \begin{array}{c c} -\\ 2\\ 10\\ 0.2\\ 6\\ 2.7\\ 0.5\\ 8-10\\ 1.2 \end{array} $ | 3<br>58<br>25<br>13<br>39<br>1.8<br>0.2 | 58<br>8<br>23<br>55.3<br>2<br>1.2<br>1.3<br>11-13<br>1.2 | 900<br>3900<br>4500<br>1350<br>4760<br>8800<br>8500<br>8500<br>8150 |

to potentiometers when treating aluminium and magnesium alloys, beryllium bronze, as well as when tempering steel or performing various other heat-treating operations within narrow temperature ranges; in heat-treatments requiring wider temperature ranges, indicating, controlling or recording millivoltmeters (which are considerably cheaper than the potentiometers, yet are as reliable) are to be preferred. The same considerations apply to ratiometers and balanced bridges operating with errors up to  $\pm 1.5\%$  and  $\pm 0.5\%$  respectively.

List of Manometric Thermometers and Their Brief Characteristics

| Instrument                                        | Туре           | Purpose                                                         | Measuring<br>range, °C | Length of capillary, min |
|---------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------|--------------------------|
| Manometric remote control thermometer, gas-filled | TF-970         | Indicating                                                      | 0-300                  | 20.40 and 60             |
| Ditto ,                                           |                | Indicating, with                                                | [ ·                    | •                        |
|                                                   | TΓ-410         | signalling device<br>Recording, with clock                      |                        | 20.40 and 60             |
| Ditto                                             | TΓ-610         | drive<br>Recording, with syn-                                   | 0-300                  | 20.40 and 60             |
| -                                                 |                | chronous motor                                                  | 0-300                  | 20.40 and 60             |
| Regulating and recording                          | TF-618         | Recording, with syn-<br>chronous drive and<br>signalling device | 0-300                  | 20.40 and 60             |
| thermometer                                       | 04-TΓ <b>-</b> |                                                                 |                        |                          |
|                                                   | -410           | Regulating and record-<br>ing, with clock drive                 | 0-200                  | _                        |
|                                                   | 04-TΓ-<br>-610 | Regulating and re-                                              |                        |                          |
|                                                   |                | cording, with syn-<br>chronous drive                            | 0-200                  | _                        |

Note. Specifications indicate extreme ranges of temperatures measured. Practical ranges are: 0-120, 0-160, 0-200 and 0-300°C

High temperatures can be measured with optical or radiation pyrometers, data on which are listed in Tables 140 and 141.

The radiation pyrometer of type PAΠUP designed to measure surface temperature of heated bodies, 35 to 200 mm in diameter, consists of: (1) type TEPA-50 focussing telescope; (2) type ΠΥΘC-54 resistance panel (not required for the 400-1000°C and 600-1200°C temperature ranges); (3) type 3APT-53 protective fixtures, as well as auxiliary instruments (millivoltmeter MΠΙЩΡ-53, MCЩΡ-54, electronic potentiometers ЭΠΠ16 and ЭΠД02).

The telescope should be spaced at approximately 350-1500 mm from the radiation source.

The surface temperature of a body can also be measured with thermocolours, made from substances which change their colour when subjected to temperature variations.

| Name                                                                                    | T       | Brief characteristics                                                                           |
|-----------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------|
| Name                                                                                    | Type    | Brief characteristics                                                                           |
| Indicating ratiometer with profile scale Electromechanical balanced                     | ЛПр-53  | For measuring temperatures                                                                      |
| bridge with automatic re-<br>cording on a tape chart .<br>Same with electric regulat-   | АУМ     | For measuring temperatures in one, three or six points                                          |
| ing device                                                                              | АУМР    | For measuring and regulating temperatures in one or three points                                |
| Same with pneumatic regulating device                                                   | АУМРП   | Same for liquid- or gas-fuel furnaces                                                           |
| Self-recording alternating-<br>current automatic electron-<br>ic bridge with disk chart | ЭМД-202 | For measuring temperatures in one point without regulation                                      |
| Same with electric three-po-<br>sition regulating device                                | ЭМД-212 | For measuring and regulating temperatures in one                                                |
| Same with pneumatic iso-<br>dromic regulating device                                    | ЭМД-232 | For measuring and regulating temperatures in liquid- and gas-fuel furnaces                      |
| Electronic automatic bal-<br>anced bridge with position-<br>al regulating device and    |         | ard-and gas ract rathaces                                                                       |
| tape chart                                                                              | ЭМП-209 | For measuring, recording<br>and regulating tempera-<br>tures in one, three, six or<br>12 points |
| Same with pneumatic iso-<br>dromic regulator                                            | ЭМП-209 | For measuring, recording and regulating temperatures in liquid- or gas-fuel furnaces            |
|                                                                                         |         | rumaces                                                                                         |

Note. It is not recommended to use alternating-current instruments ЭМД type wherever there is a possibility of inducing stray currents in the measuring circuits. Direct-current bridges, marked ЭМД-102, ЭМД-112 and ЭМД-132, should be preferred.

Thermocouple Characteristics

| .                  | uo                     | Designatio              | Ľ                    | X                                      | ΧK                              |                        | ΧX               | MK             |   |
|--------------------|------------------------|-------------------------|----------------------|----------------------------------------|---------------------------------|------------------------|------------------|----------------|---|
| Compensating leads | Material and colouring | Electronegative         | Alloy "ΤΠ" (green)   | Constantan (brown),<br>alumel (black)  | Copel (yellow)                  |                        | Copel (yellow)   | Copel (yellow) | _ |
| CO                 | Material               | Electropositive         | Copper (red)         | Copper (red),<br>chromel (vio-<br>let) | Chromel (violet) Copel (yellow) | Plain electric<br>cord | 3.2 Iron (white) | Copper (red)   |   |
| ш                  | eter<br>d, m           | Wire dlam<br>mostly use | 0.5                  | 3.2                                    | 3.2                             |                        | 3.2              | 3.2            |   |
| Jge, °C            | per                    | Short-<br>turn use      | 1600                 | 1300                                   | 800                             | 1                      | 800              | 200            | _ |
| ture rar           | Upper                  | Prolonged<br>use        | 1300                 | 1000                                   | 009                             | 1000                   | 009              | 350            | _ |
| Temperature range, |                        | Lower                   | <br>0                | 0                                      | 0                               | 300                    | 0                | 0              | _ |
|                    |                        | Negative                | Platinum             | Alumel                                 | Copel                           | CA                     | Copel            | Copel          | _ |
| Material           |                        | Positive                | Platinum-<br>rhodium | Chromel                                | Chromel                         | НК                     | Iron             | Copper         | _ |
|                    |                        | Туре                    | 1111                 | XA                                     | XK                              | HK-CA                  | ЖК               | MK             |   |

Note. Thermocouples of the HK-CA type are operated without correction for the cold junction.

Table 139

Brief Characteristics of Temperature Control Instruments Coupled to Thermocouples or Radiation Pyrometer Telescope

| Туре                 | Brief characteristics                                                               | Substitut-<br>ed for<br>types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| МПП-054<br>МПЩпл-54  | For measuring temperatures For measuring temperatures. Not to be coupled to thermo- | ГНКП,<br>МП-08<br>ГНЗС,<br>МС-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| МПЩпр-54             | telescope type PII For measuring temperatures                                       | ПГУ,<br>МПБ-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| МСЩпр-154            | For measuring and recording temperatures in one point                               | Cr-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Same in six points For measuring and regulating tempera-                            | СГ-3<br>СГ-6<br>КГ,<br>ЭРМ-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| СП-1<br>СП-3<br>СП-6 | For measuring and recording temperatures in one, three                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| СПР                  | For measuring and rec-<br>ording tempera-<br>tures in one or three<br>points        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| СПРП                 | For measuring and recording temperatures in liquid- or                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ЭПД-02               | For measuring temperatures in one point                                             | эпд-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ЭПД-12               | For measuring, recording and regulating temperature in one point                    | ЭПД-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | МПП-054 МПЩпл-54 МПЩпр-54 МСЩпр-154 МСЩпр-654 МРЩпр-654 СП-1 СП-3 СП-6 СПР          | МПП-054 МПШпл-54  МПШпл-54  МПШпр-54  МСШпр-154  МСШпр-154  МСШпр-154  МСШпр-154  МСШпр-154  МСШпр-354  МСШпр-354  МСШпр-654  МСШпр-654  МРШпр-54  СП-1  СП-3  СП-6  СП-6  СПРП  Помазитіпд  Темазитіпд  Темазитіп  Темазитіп  Темазитіп  Темазитіп  Темазитіп  Темазитіп  Темазитіп  Темазитіп  Тема |

| Instrument                                                                                                   | Type    | Brief characteristics                                                                       | Substitu-<br>ted for<br>types |
|--------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------|-------------------------------|
| Same with pneumatic isodromic controlling device                                                             | ЭПД-32  | For measuring, recording and regulating temperatures in liquid or gas-fuel furnaces         | эпд-37                        |
| Electronic potentio-<br>meter with rotating<br>scale and stationary<br>temperature indica-<br>tor            | ЭПВ-01  | For measuring tem-<br>peratures                                                             | ЭПУ-18<br>and<br>ЭПУ-28       |
| Automatic electronic potentiometer with electric positional controlling device and recording on a tape chart | ЭПП-09  | For measuring, recording and regulating temperatures in one or three, six and twelve points |                               |
| Same with pneumatic<br>isodromic control-<br>ling device                                                     | ′ЭПП-09 | For measuring, recording and regulating temperatures in liquid- or gas-fuel furnaces        |                               |

Table 140
Radiation Pyrometer Characteristics

| Conventional designation               | Name                          | Scale, °C                                                                                  | Tolerated<br>error       |  |  |
|----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|--------------------------|--|--|
| ОППИР-09<br>ОППИР-20-55<br>ОППИР-30-55 | Optical pyrometer Ditto Ditto | 1. 800-1400<br>2. 1200-2000<br>1. 800-1400<br>2. 1200-2000<br>1. 1200-2000<br>2. 2001-3000 | ±21<br>±30<br>±30<br>±50 |  |  |

Note: The pyrometers are to be spaced at 0.7 m and over from the heat source to be measured.

| Telescope                            | Measurement                                                | Tolerated erro                                                                    | )r                                                                   | Gradua.                          |
|--------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|
| optics                               | ranges, °C                                                 | Temperature range                                                                 | Error                                                                | tion                             |
| Quartz<br>glass<br>Glass K-8<br>Same | 400-1000 * 600-1200 700-1400  900-1800 1100-2000 1200-2200 | 400-699<br>700-899<br>900-1099<br>1100-1400<br>900-1099<br>1100-2000<br>1200-2000 | $\pm 12 \\ \pm 14 \\ \pm 18 \\ \pm 22 \\ \pm 18 \\ \pm 22 \\ \pm 22$ | Гр.Р1<br>Гр.Р1<br>Гр.Р2<br>Гр.Р3 |
| <u> </u>                             | 1400-2550                                                  | 2001-2200<br>2201-2500                                                            | ±24<br>±28                                                           | rp.P4                            |

<sup>\*</sup> Temperature ranges not specified by Soviet Standards.

Each thermocolour changes its colour at a definite temperature which is a function of its chemical composition. Thermocolours are intended to measure surface temperatures from 40° to 580°C on open heating.

As practice shows, temperatures can also be determined by heat colours. It should be borne in mind that a change in shop lighting may be the cause of considerable errors when this method is applied (Table 142).

Table 142
Approximate Measurement of Temperatures by Heat Colours

| Heat colour |  |    |                                       |  |  |  |  |  |  | Approximate<br>temperature, °C |   |   |   |                                                |
|-------------|--|----|---------------------------------------|--|--|--|--|--|--|--------------------------------|---|---|---|------------------------------------------------|
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   |                                                |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   | 530-580                                        |
|             |  |    |                                       |  |  |  |  |  |  | ÷                              | : |   |   | 580-650                                        |
|             |  | ٠, |                                       |  |  |  |  |  |  |                                | i |   |   | 650-730                                        |
|             |  |    |                                       |  |  |  |  |  |  |                                | • |   |   | 730-770                                        |
|             |  |    | ٠.                                    |  |  |  |  |  |  |                                |   | : |   | 770-800                                        |
| ١.          |  |    |                                       |  |  |  |  |  |  |                                |   |   |   | 800-830                                        |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   | 830-900                                        |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   | 900-1050                                       |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   | , | - 1050-1150                                    |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   | - 1150-1250                                    |
|             |  |    |                                       |  |  |  |  |  |  |                                |   |   |   |                                                |
|             |  |    | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |  |                                |   |   |   | _ <b>, , , , , , , , , , , , , , , , , , ,</b> |

Table 143
Ink Composition for Recording Instruments

| Material                                                                                                | Quantity, %                          |
|---------------------------------------------------------------------------------------------------------|--------------------------------------|
| Pure glycerine (spec. gr. from 1.21 to 1.26) Pure alcohol (spec. gr. from 0.79 to 0.81) Distilled water | 22.9<br>7.15<br>68.70<br>0.1<br>1.15 |

Note. The following chemicals are used as dyes: methyl violet, methylene blue or light blue, eosin, orcein, etc.

Method of preparation: the colouring agent is dissolved in alcohol with gradual addition of water by portions. Glycerine and glue are heated till they mix perfectly. The cooled mixture is added by portions to the dissolved colouring agent while mixing continuously. After complete mixing of glycerine, glue and colouring agent, the mixture is allowed to stand for 4-5 hours, after which it is filtrated.

Accessory materials, used in heat-treatment, are given in Table 144,

Table 144
Approximate Consumption of Some Auxiliary Materials
Used in Heat-treatment

| Material                    | Consumption in grams per 1 kg of treated articles | Remarks                                         |
|-----------------------------|---------------------------------------------------|-------------------------------------------------|
| Hardening Common salt, etc  | 10                                                | Heating in the 800-1000° C                      |
| Barium chloride             | . 20                                              | range<br>Same for temperatures<br>above 1000° C |
| Spindle oil                 | 20-30<br>1                                        | Cooling medium Cooling medium                   |
| Tempering                   |                                                   |                                                 |
| Potassium or sodium nitrate | 30-40<br>10<br>20<br>10                           | For heating                                     |

Table 144 continued

| Material                                                                        | Consumption in grams per 1 kg of treated articles | Remarks                                                               |
|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|
| Carburising Solid carburiser                                                    | 60, 100                                           |                                                                       |
| Kerosene                                                                        | 60-100<br>20-30<br>20-30<br>20-30                 | For shaft furnace<br>Same<br>Production of pyrolisis                  |
| Solar oil                                                                       | 8                                                 | gas<br>Purification of pyrolisis<br>gas                               |
| Nitriding                                                                       |                                                   |                                                                       |
| Ammonia                                                                         | 5-50                                              | The smaller the size of articles treated, the greater the consumption |
| Cyaniding                                                                       |                                                   |                                                                       |
| Cyanide compound "ГИПХ" Sodium cyanide Calcium chloride Sodium chloride (common | 20<br>20<br>50                                    |                                                                       |
| salt)                                                                           | 30<br>20                                          | Neutralising                                                          |
| Cleaning                                                                        | [                                                 |                                                                       |
| Sand, size of particles from 1 to 1.5 mm Shot ø 0.8-1.0 mm                      | 50-80<br>Up to 1                                  |                                                                       |
| Pickling                                                                        | ,                                                 |                                                                       |
| Sulphuric or hydrochloric acid                                                  | 30-40                                             |                                                                       |
| Crack checking                                                                  |                                                   |                                                                       |
| Crocus                                                                          | 20                                                |                                                                       |

# · Chapter XII

# SAFETY ENGINEERING

#### SAFETY REGULATIONS FOR FUEL-OIL FURNACES

The following procedure is to be adhered to when starting up a fuel oil furnace: (1) scavenge the furnace with air to evacuate accumulated explosive gases; (2) introduce an electric-ignition device or a lighted torch on a long, slim rod into the firing chamber, then open, first, the air valve, then the fuel valve; (3) after the stable flame has been obtained, remove the device and increase gradually fuel and air feed.

The lid of the charging door should be kept open during the lighting

operation.

Do not peer into the firing chamber. Avoid drips and pools of fuel oil underneath the burner and keep the latter in perfect condition.

In case of an abrupt cut in fuel oil or air feed, as well as after the termination of operations, first shut off the fuel valve, then the air valve.

#### SAFETY REGULATIONS FOR GAS FURNACES

Industrial gases are dangerous because of toxicity. When mixed with air they present explosion hazards.

| Methane content in the mixture   | Behaviour of the mixture<br>on ignition                                             |
|----------------------------------|-------------------------------------------------------------------------------------|
| Up to 4% From 4 to 15% Above 15% | Neither burns nor explodes  Does not burn, but explodes  Rurns but does not explode |

Explosive range of an air-gas mixture may vary depending on composition, moisture and temperature. Leaks should not be searched for with the aid of a torch. An aqueous solution of soap should be employed for this purpose.

The following procedure is to be performed when firing a gas fur-

пасе:

l Open the slide valve and the lid of the charging door, switch on air supply, and scavenge the furnace with air for 5 minutes, after which cut the air supply off.

2. Open the main gas valve, and scavenge the gas main for 5 minutes, discharging the gas through a riser.

3. Ignite the gas primer and gradually switch on the gas supply.
4. Adjust the combustion of the fuel in the gas burner by varying

air supply.

5. When igniting one should stand on one side of the burner; glass goggles are to be on to protect the eyes. When laying off a furnace, cut the air supply, first, then turn off the gas.

It should be borne in mind that 0.1% of hydrogen sulphide and

over 0.002% of carbon dioxide cause serious poisoning.

#### FIRST AID IN GAS POISONING

When a person has been gas-poisoned it is imperative to take the injured person out of premises to the fresh air, unbutton his clothes and not let him sleep until medical personnel arrives. If the person does not breathe, artificial respiration should immediately be applied.

# RULES FOR SAFE OPERATION OF SALT BATHS

Operation of salt baths using melted salts, alkalis or lead requires strict keeping to all safety regulations.

1. Ventilation systems should be inspected prior to starting-up op-

eration.

- Goggles and gloves are obligatory when operating the salt baths.
   It is strictly forbidden to put one's head under the draught hood.
- 4. Lead or salt should be added to the bath in small portions; the added salt should be well dried, while lead should be thoroughly preheated.
- 5. Parts and hardening devices should be dipped into crucibles filled with salt or lead only after being completely dried and preheated to 100-150°C. Cold parts may cause eruptions of salt or lead from crucibles, which may burn the operator.

6. Spilled salt or lead should be covered with dry sand. Flooding

with water is prohibited.

7. Saltpetre ignites on heating above 550°C. A combination of saltpetre, charcoal, soot and grease leads to explosions. The use of saltpetre should be avoided. When the use of above components is unavoidable, controlling apparatus with sonic signalling devices are imperative.

8. Special attention should be given to the drying of a salt electrode furnace after relining. Inadequately dried furnace may explode after

a few hours' operation, splashing all salt out.

# RULES FOR SAFE OPERATION OF CYANIDE BATHS

Cyanide salts are most violent poisons. The combination of cyanide salts with acids produces a very poisonous gas—the prussic acid. Only well-trained operators should be permitted to operate cyanide baths.

One should adhere strictly to the following safety rules when working with the cyanide bath-type furnaces:

1. Check the ventilation prior to operation. The operator should not

start working if ventilation defects are detected.

2. Furnace shell doors should be opened only when charging or discharging parts and adding salts.

3. It is forbidden to handle cyanide salts with bare hands.

- 4. Salt should be added to the melted bath by small portions, with the furnace doors closed, and only when well dried. Goggles, gloves and respirators should be used.
- 5. Hardened parts should be thoroughly water-flushed to remove traces of cyanide salts.

6. All tools stained with cyanide salts should be stored under

draught.

- 7. No saltpetre or potassium bichromate should be admitted to the melted bath, as this unavoidably causes explosions.
- 8. It is strictly forbidden to smoke or eat in the shop, as this presents mortal danger.
- 9. Prior to eating and smoking it is necessary to thoroughly wash hands and rinse the mouth.
  - 10. It is forbidden to wash hands in hardening and washing tanks.
- 11 In case the ventilation fails, shut the furnace off immediately, leave the shop and inform the managing personnel.

12. All scratches or wounds, however small, should be bandaged pri-

or to work.

13. If one is suffering from a cold or some other indisposition, medical care should be sought immediately.

# RULES FOR DECONTAMINATING WATER FROM CYANIDE HARDENING AND WASHING SHOPS

Decontamination of 1 litre of water necessitates 3 grams of iron vitriol and 1 gram of soda ash (assuming sodium cyanide content averages up to 0.1%).

The operation should be carried out as follows:

1. Prepare the necessary amount of iron vitriol and soda, in conformity with the tank capacity.

2. Dissolve iron vitriol in water and add soda.

- 3. Pour the prepared mixture into the hardening or washing tank and mix it thoroughly.
- 4. Drain decontaminated water, simultaneously opening the water tap to bring the concentration still further down.

# SAFETY RULES FOR OPERATION OF EQUIPMENT

1. Fuel oil or grease spilled on the floor should be covered with generous amounts of sand and swept away.

2. Prior to work sleeve cuffs should be tied up and dangling bits tucked away,

3. No moist blanks should be charged as this may cause violent flame eruptions.

4. When quenching slim articles with through holes, orient the latter away from shop personnel to avoid burns from vapour or oil.

- 5. Do not switch on bath-heating appliances when aqueous solutions are thick or frozen (blueing solution, etc.), as eruptions of solutions and burns would be unavoidable.
- 6. When quenching articles with compressed air the operator should put the goggles on and interpose a wire screen protecting him from the rebounding scale.

7. Water should be poured first into sulphuric acid pickling tanks;

sulphuric acid is added then in a thin jet.

8. Undried parts, tongs, hooks should not be dipped into a tempering oil bath while the latter is hot.

#### SAFETY REGULATIONS FOR HANDLING ELECTRICAL EQUIPMENT

1. Moist clothes or foot-wear, damp floor or mats, etc. increase electric' shock hazard.

2. Only well-grounded electrical equipment is authorised for opera-

tion.

3. Switches and starting buttons should not be switched on by means of pokers, tongs and similar metallic objects.

Rubber mats are imperative when operating electric furnaces.

# FIRE PROTECTION

1. Pans with sand should be available underneath the burners when liquid fuel is being used.

2. Sand and spade from the fire-extinguishing box should never be

used for operation needs.

3. Fuel-oil storage tanks should be situated far from fire.

4. It is strictly forbidden to heat up the fuel-oil mains with a torch or a blow torch, or to heat fuel oil, stocked in storage tanks, by dipping hot pieces of metal.

5. All quenching and tempering oil baths should be provided with

lids to prevent air access, if the oil ignites.

6. On hardening it is forbidden to heat kerosene above 38°C.

# INDEX

| A                                                                  | Brittleness 7                                         |
|--------------------------------------------------------------------|-------------------------------------------------------|
| 11-1-4 0                                                           | Bronzes 203, 205                                      |
| Absolute zero 9 Accessory materials, heat treat-                   | Burners 256, 257<br>Butt welding 234                  |
| ment 266                                                           | Dutt welding 254                                      |
| Agricultural machinery parts,                                      |                                                       |
| steel grades for 195                                               | $\mathbf{c}$                                          |
| Alkalis, bright hardening 85                                       | Calorie 8                                             |
| Alloy tool steels 154                                              | Calorific power 9                                     |
| heat-treatment schedules                                           | of gases 259                                          |
| for 154                                                            | Calorising 122                                        |
| Alloying elements, symbols of 31 effect on properties of steels 31 | Carbon tool steels 55, 145, 152<br>Case-hardening 104 |
| Aluminium 206                                                      | Carburising 104                                       |
| alloys 206, 213, 214                                               | defects in 124                                        |
| cast alloys 209                                                    | depth of 112                                          |
| foundry alloys 217, 219                                            | gas 107                                               |
| wrought alloys 213, 215                                            | high-temperature 111                                  |
| Annealing 78, 79<br>schedules of 149, 153                          | liquid 110<br>pack 104                                |
| Annular cracks in welded tools                                     | pack 104<br>paste 106                                 |
| 185                                                                | Cementite 27                                          |
| Anticorrosion protection 129                                       | Chemical composition 34, 37,                          |
| Austenite 27                                                       | 41, 44                                                |
| Automobile parts, steel grades                                     | Cleaning of articles, after heat                      |
| for 194                                                            | treatment 128                                         |
| В                                                                  | Coefficient of linear expansion 9                     |
| ь                                                                  | Colour tempering 93<br>Constituents of steel 26       |
| Bainite 28                                                         | Controlled atmosphere, in heat                        |
| Ball-indentation test 22                                           | treatment 76                                          |
| Blacking-in, in crack detection                                    | Convection 9                                          |
| 24                                                                 | Cooling media 78                                      |
| Brasses 201                                                        | on hardening 81                                       |
| Brazing of carbide tips 236                                        | Copper 201                                            |
| Brinell hardness test 13<br>Brinell number 13, 15, 55              | alloys 201                                            |
| Difficit Hamper 19, 10, 00                                         | hot working of 232                                    |

| Copper-nickel ailoys 207 Corrosion-resistant steels 45, 149, 150 Crack detection 22 Critical points 59, 60 Creep 7 Creep limit 8 Crystalline forms of pure iron 29 Current, electric 9 Cutting tools 161, 234 Cyaniding 116 bath composition 117, 118 defects in 127 high-temperature, gas 117 low-temperature, gas 119 liquid 118 solid 122                                                                                                                                                                     | Filing hardness test 22 Fitter's tools 187 Flame hardening 87 Fluoroscopic crack detection 23 Fluxing compounds for brazing 238 Forging, defects in 231 of ferrous and non-ferrous metals 223, 230 Full annealing 79 Furnaces for heat-treatment 213 throughput rates of 259  G Grades of steels and alloys, uses of 61 Grinding wheels for spark testing 24                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decarburisation 76 Defects in heat treatment 96-103 Diamond pyramid hardness test 20 Dies, cold stamping 186 hot stamping 185 pressure casting 185 Deep etching, in crack detection 23 Deformation 7 elastic 7 permanent 7 Ductility 7, 32  E Elasticity 7 Electric current 9 Electrical characteristics 9 Electrode durability 250, 251 Elongation 8 Endurance 7 Endurance 1imit 8 Equilibrium diagram 26, 29 Etchants for deep etching of steel 23 Expansion, linear, coefficient of 9  F Fatigue 7 Ferrite 27 | Hardenability 32 Hardened articles, straightening of 188 Hardening 81 bright 85 combined with tempering 84 flame 87 high-frequency 89 in one medium 83 in two media 84 isothermal 84 jet 84 of cast iron 198 step 84 sub-zero 86 surface 87 through air-cooling 85 Hardness 7 number 15, 18, 20, 54, 55, 141 tests 13 Heat colours 265 Heat capacity 8 Heat conductivity 9 Heat radiation 9 Heaters, tubular-type 252 Heating by induced heat 89 Heat-treatment, defects in 96 alloy tool steels 145, 154 alloy structural steels 133 |

aluminium alloys 209, 214, 217, 233 ball-bearing steels 142 brasses 202 bronzes 203 carbon tool steels 145, 152 cast iron 197 cast magnets 148 copper and its alloys 201 electric steels and alloys 143 high-speed steels 161 magnetic steels 143, 148 nickel 204 non-ferrous metals 201 spring steels 133, 141 structural carbon steels 130 Homogenising 80

#### t

Improving in heat-treatment 95 Induction heating 89 Inductors for hardening 88, 90 Ink for recording instruments 266 Instruments for temperature control 254 Insulating materials, thermal 258 Iron-carbon equilibrium diagram 29 Iron, lattices of 26, 29 Iron-carbon alloys, phase transformations in 30 Iron-nickel alloys 50 Isoperm 43

J

Jet hardening 84

K

Kerosene crack detection 24 Kilocalorie 8

L

Lattice of iron 26, 29 Ledeburite 28 Limit, elastic 8 Limit of proportionality 8 Lutes 77 M

Magnesium alloys 206, 208, 210
Magnetic steels 143, 148
Magnetic-particle crack detection 22
Magnets, cast 44
Malleable cast iron 199
Market steels, composition of 31
Martensite 27
Mechanical characteristics 7
Melting points of elements 10
Metals, quality control of 13
Microhardness scale 19, 20
Motor generators 250

## N

Nickel 204, 207
alloys 51, 205
Nitriding 113
anticorrosive 116
defects in 126
protection against 114
strength 114
schedules of 115
Non-scaling steels, hardening of 150
Normalising 81
of cast iron 198

0

Oils for cooling 82 Oscillators, vacuum-tube 254 Oxidation on heating 76 Oxy-gas flame hardening 87

Р

Pastes for carburising 107
Pearlite 27
Permalloys, annealing schedules for 146
Permanent deformation 7
Permendur 43
Perminvar 43
Physical characteristics 7

Physical properties of elements 10
Pickling 128
Potentiometers, electronic 258, 260
Power, calorific 9
Power, electric 9
Pressure casting dies 185
Protective atmosphere 76
Pure iron, crystalline forms 29
Pyrometer, radiation 260, 264

#### Q

Quality control of metals 13 Quality steels 35 Quenching media 82

#### R

Radiation, heat 9
Reduction in area, relative 8
Recrystallisation annealing,
cold-worked steels 78
Refractories 252, 259
Resilience 7
Resistance 9
Resistivity, electrical 9
Resistors, carborundum 251
electric heating 54
metallic 251
Rockwell hardness test 17
Rockwell number 17

#### S

Safety engineering 268
Salts for hardening and tempering 83
Salt mixtures on hardening 75
Self-tempering 94
Silver 214
Sonic inspection 24
Sorbite 28
Shore scleroscope hardness test 21
Spare parts of lathes and presses, steel grades for 190
gears 190
spindles 191
shafts 192
worm shafts 193

Spark testing of steels 25 Specific heat capacity 8 Specific resilience 8 Specific gravity of elements 10 Spheroidising annealing 197 Springs, heat-treatment of 187 Steam heat-treatment 153 Steel, alloy structural 37 alloy tool 55, 145, 154 austenitic 47 Steel, austeno-ferritic 47 austeno-martensitic 47 ball-bearing 42, 63, 142, 143 carbon 34, 35, 36 carbon tool 55, 145, 152 corrosion-resistant 45-53. 149, 150 electric 42, 143, 146 ferritic 46 free-cutting 34 grade F13 45 heat-resisting 45, 69 high-speed 58, 153, 161 magnetic 44, 148 manganese 145 martensitic 45 martensito-ferritic 46 non-scaling 45, 69, 149, 150 plough-share 34 spring 41, 142 stainless 143 Steel grades, uses of 61 Steeloscope inspection 24 Straightening, of articles, thermal 188, 189 Strain-hardening 8 Strength 7 Strength nitriding 114 Structure of iron and steel 26 Sulphiding 122 Synthol for gas carburising 108

#### Т

Telescope, radiation pyrometer 260, 265 Temperature 9 Tempering 93 colour 93, 94 holding time in 94 of cast iron 198

| Tensile strength 8 Thermal characteristics 8                                                                      | Voltage 9                                                               |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Thermocolours 265 Thermocouples 255, 262 Thermo-trueing 189 Thermometers, electric, resistance 261 manometric 255 | Wear 7 Wear resistance 8 White cast iron 198, 200 Woodworking tools 186 |  |
| Tips, brazing of 236<br>from high-speed steels 236<br>Titanium 213                                                | Y<br>Yield point 8                                                      |  |
| alloys 213, 221<br>Tools, steel grades for 162<br>Troostite 28                                                    | <b>Z</b><br>Zero, absolute 9                                            |  |

# TO THE READER

Peace Publishers would be glad to have your opinion of the translation and the design of this book.

Please send all your suggestions to 2, Pervy Rizhsky Pereulok, Moscow, U.S.S.R.

# ${f u}$ . ${f K}$ А ${f M}$ Е ${f H}$ И ${f H}$ Н ${f B}$ ${f M}$ КРАТКИЙ СПРАВОЧНИК ТЕРМИС**ТА**

На английском языке

Printed in the Union of Soviet Socialist Republics