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Anchored Sheet Pile Wall Analysis Using Fixed End Method Without
Estimation of Point of Contraflexure

Don C. Warrington, P.E.
Vulcanhammer.info1

Abstract
The fixed end method used for the design of anchored sheet pile walls has been used with
success since before World War II; however, computational limitations have forced designers to
use simplifications such Hermann Blum developed. The original method called for the use of an
“elastic line” solution, where the penetration of the sheet piling below the excavation line was
estimated using statically indeterminate beam theory. This paper develops the governing
equations for the “elastic line” method for a simple case and presents the solution in two ways:
parametrically using charts, and for specific cases using an online computer algorithm.
Comparison with other solution techniques is presented, and suggestions for broader applications
are made. The adjustment of the penetration for the residual toe load is also discussed, and the
limitations of current practice in this adjustment are detailed.

Introduction
When using classical sheet pile methods, anchored sheet pile walls are generally analysed by one
of two methods: free or fixed end method, the “end” referring to the pile toe. The selection of
the method used is usually unrelated to actual state of end fixity. Both of these methods have
been employed for a long time. The two methods are schematically compared in Figure 1, and
are described in detail by Warrington and Lindahl (2007).

Free end methods result in a statically determinate structure, but that structure is only stable
under certain load conditions, namely a) the sum of the distributed loads equals to the anchored
load and b) the passive earth pressure resistance below the excavation line is sufficiently large to
prevent overturning. Generally criterion (b) governs, with the resultant anchor load being a
result of the calculations.

1 Originally posted on vulcanhammer.info October 2007, in conjunction with the routine described in the paper.

1



Anchored Sheet Pile Wall Analysis Using Fixed End Method Without
Estimation of Point of Contraflexure

Figure 1 Schematic for Free and Fixed End Methods (after Lindahl (1974))

With fixed end methods, the system has two supports:

1. A simple support at the anchor.

2. A fixed support at the pile toe (Figure 1, lower figure, point “t”.)

Because of the nature of the supports, the system is statically indeterminate, forcing the designer
to consider system deflections. A quick glance at the system would lead one to conclude that the
embedment length of the sheet piling below the excavation line can be any length; however, an
additional criterion is that the moment at the pile toe is zero, irrespective of the fact that the toe is
rotationally constrained. In fact, the fixed end method can be conceived with a pinned pile toe
whose slope must be zero instead of a fixed end support, but in either case slopes and deflections
must be determined.

Free and fixed end methods are mutually independent; their results should not be mixed. Sheet
pile walls designed with free end methods tend to be shorter and have a higher moment of inertia
against bending stresses than fixed end method designed walls, while the latter tend to be longer
with a lower moment of inertia. The moment computed using the free end method can be
reduced using Rowe’s moment reduction method; this does not apply to free end analysis.
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Outline of the Fixed Earth Method
The fixed end method outlined above is formally referred to as the “elastic line” (see Figure 1,
“elastic curve” is more descriptive) method. It is the “ideal” method for solving the problem.
The basics of this method are as follows:

1. Determine the earth pressure profile from the soil data, taking into consideration the
following:

a. The distance from the pile head to the excavation line,

b. the first estimate of the optimum location of the anchor,

c. the location of the water table (and unbalanced hydrostatic forces if applicable,) and

d. a first estimate of a suitable sheet pile section, which gives a trial value of the moment of
inertia, section modulus and modulus of elasticity.

Any factor of safety or load and resistance factor should be applied to the earth pressures
first.

2. Make a first estimate of the depth. Determine if the moment at the fixed end is zero. If this is
not the case, vary the depth until this is achieved.

3. Increase the length of the sheeting below the computed penetration to account for the reaction
load at the pile toe, which is necessary since there is generally no “fixity” at the pile toe.

4. Determine the maximum bending moment in the sheeting. Check the resulting bending stress
against the failure criteria for the material of the sheeting. If this is not satisfactory (stress is
too high or low,) change the section. Transverse bending (Warrington and Lindahl, 2007) is
not considered in this paper.

5. Determine the maximum deflection of the sheeting. For ferrous sheeting, this is generally not
necessary. For non-ferrous sections, due to their lower values of moment of inertia and
modulus of elasticity, this is more important.

The critical step is (2). Since the beam described by the fixed end moment method is simply a
cantilever beam with a simple support, at first glance this would look to be a simple matter;
however, the complex nature of the soil loading, even for simple soil profiles, and the need to
iterate the solution made traditional hand calculations laborious.

This difficulty has been recognised from the beginning of fixed end analysis. One of the
advantages of the free end method is that the system, while theoretically unstable, is statically
determinate. Is it possible to reduce a fixed end model to a simpler, statically determinate
system?

One of the first attempts to solve this problem was undertaken by Hermann Blum
(Tschebotarioff, 1951). The idea behind his solution is shown in Figure 2.
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Figure 2(I) shows a simple fixed end sheet profile with the elastic line of the sheeting as it is
deflected under the load. Just under the excavation line is the point of contraflexure c’ (Figure 2
(II)), the point where the curvature of the sheet is reversed from its state below the support
(convex with respect to the active pressures) to concave with respect to the same side. If one
were to take the derivative of the slope equation, the point of contraflexure, being the point at
which the rate of change of the slope changes from positive to negative, is the zero point of that
derivative curve. Since the moment is the first derivative of the slope multiplied by the product
of the modulus of elasticity and the moment of inertia, the moment at this point should be zero,
without consideration of integration constants.

Blum reasoned that a simple support could be added at this point. His idea was to divide the
beam into two hinged, statically determinate parts, one above the point of contraflexure and one
below. Both of these beams would be simply supported, more readily soluble than the statically
indeterminate structure. In this way the fixed earth support method became possible to solve
using hand calculations, whether these be purely mathematical or graphically solved. His
method has come to be referred to as the equivalent beam method, although any sheet piling
design problem is in fact a solution to a beam problem.

Blum’s determination of the point of contraflexure was based on model tests conducted in
Germany a few years before he first presented his method in 1931. It is shown in Figure 2(V),
and is a function of the active earth pressure coefficient. The distance +x from the excavation
line to the point of contraflexure is shown as a ratio of +x to H, the distance from the pile head to
the excavation line.
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Tschebotarioff expressed reservations about the derivation of this point of contraflexure due to
the nature of the laboratory tests. He developed a method that moved the point of contraflexure
to the excavation line, using specially derived coefficients. Although this simplified Blum’s
Method, the values of the coefficients he proposed were not fully quantified.

An alternative method of determining the point of contraflexure is shown by Arbed (1986). Here
the point of contraflexure is assumed to be the point where the net earth pressure changes
direction, i.e., the point O in Figure 2(I). This method was also recommended by the British
Steel Corporation (1984).

Once the location of the point of contraflexure is determined, the reaction at the support and the
“reaction” at the point of contraflexure can be computed. The latter reaction is used for the lower
beam. Its length is determined by summing moments for this beam about the pile toe, taking into
consideration the net earth pressure of this portion of the beam (Figure 2(IV)). The location at
which the moment sum is zero is the target length of this beam.

Unfortunately, with this determined, summing forces for this beam will reveal a reaction RD at
the toe of the pile. This reaction has no real resistance in the soil; therefore, additional length
must be added to the sheet pile wall to account for this reaction. A general “rule of thumb” states
that this additional length is 20% of the computed embedment of the sheet pile wall. This
problem will be examined in more detail later.

Blum’s Method and those which follow were developed to adapt the fixed end method to
computational possibilities of their day. Is it possible to eliminate the estimate of the point of
contraflexure and thus obtain a superior (to say nothing of a more uniform) result?

The object of this paper is to show that this is practical. The method employed is to use a closed
form solution for the problem for a simple yet common case: a uniform cohesionless soil with
the water table between the excavation line and the support. In the process, a dimensionless
solution to the problem is developed similar to that shown in chart form for the free end method
(Figure 3.) This in turn can be applied to academic use for solutions to simple sheet piling wall
problems.
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Figure 3 Free End Support Method Parametric Results (after Lindahl, 1974)

Development of the Method
Let us consider the system shown in Figure 4. For simplicity and ease of layout, the sheet pile
system will be drawn “ on its side. ”
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At this point, some judicious selection of coordinates and variables is necessary to simplify the
results:

1. The origin of the system is at the excavation line (x1).

2. The ratios and are also taken from the excavation line. This is different from the system
shown in Figure 3. These are expressed mathematically as

Eq. 1

and

Eq. 2

where L is the distance from the excavation line to the pile head and x2 and x3 are the distances
from the excavation line to the water table and the support respectively. It is assumed that

Eq. 3

There are five “ critical ” points, which in turn define four regions. Within each region the
loading profile is continuous. This division is important for the integration process.

The integrations and related algebraic operations were performed using Maple software running
on a Macintosh G4 PowerPC computer.

There are three separate lateral earth pressure forces assumed on the pile. The first is the active
earth pressure force on the entire length of the pile, expressed as
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Eq. 4

where

• 1 = active earth pressure without consideration of buoyant force of the water on the soil, kPa

• 1 = saturated unit weight of the soil, kN/m3

• Ka = active earth pressure coefficient

• x = coordinate of point along sheet pile wall, m

For the purpose of simplicity, we will assume, as is the case in Figure 3, that

Eq. 5

where 0 = submerged unit weight of the soil, kN/m3.

In this case, Eq. 4 can be expressed as

Eq. 6

The second force is the buoyant force of the water, which is expressed as a “ passive earth
pressure ” under the phreatic surface compensating the active pressure. This is expressed as

Eq. 7

The third is the passive earth pressure, which for this case is always submerged,

Eq. 8

Defining

Eq. 9

Eq. 8 can be stated as

Eq. 10

The use of makes it possible to apply design factors (ASD or LFRD) to the model easily.

At this point we should also define
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Eq. 11

where D1 is the distance from the excavation line to the pile toe. Determination of is obviously
the central objective of the fixed earth support method.

Now that we have defined our basic earth pressure forces, the first task is to develop expressions
for the reactions at the supports (the anchor and pile toe.) By integrating Eq. 6, Eq. 7 and Eq. 10
to determine the resultant forces, and establishing the location of those resultant forces, we can
develop two equations: the equation for the equilibrium of the forces for the system and the
moments about the pile toe. Solving these for the two reactions yields the following expressions:

Eq. 12

Eq. 13

From this point the next step is to determine the moment and deflection profile of the sheet pile
wall. Although many different schemes have been employed to do this, straight beam integration
was chosen, as it resulted in a complete profile along the length of the beam. The first step was
to integrate from Eq. 6, Eq. 7 and Eq. 10 again, but this time with a different purpose. Starting
with Region A, the pile toe reaction (R1) is a boundary condition at x0 for the shear. Integrating
the load equations results in a shear profile for Region A, which ends with a shear value at x1.
This in turn becomes the boundary condition for Region B, and the integration continues, only
this time using only Eq. 6 and Eq. 7 as the passive pressures do not act above the excavation
line. This process is repeated for the other two regions with one important addition: the support
reaction (R2) represents the change in shear between Regions C and D rather than a simple
boundary condition.

Development of the shear profile is interesting, but the most critical profiles are the moment and
deflection profile. The moment profile can be developed by repeating the process used for the
shear profile, using the zero moment condition at x0 as a boundary condition and the same
condition at x4 as a check. The equations for the moment for the four regions are as follows:

Eq. 14
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Eq. 15

Eq. 16

Eq. 17

It should be noted that, if we define

Eq. 18

and make the appropriate substitutions, Eq. 14, Eq. 15, Eq. 16 and Eq. 17 can all be written in the
form

Eq. 19

where A( , , ,x') is a dimensionless coefficient. This enables us to write the moments in
dimensionless form as a ratio of a “ nominal ” moment Ka 0 L3, and thus generalise the results.

To obtain the deflections, another two rounds of integration are necessary. In integrating from
moment to slope, it is necessary to additionally divide by the product of the modulus of elasticity
and the moment of inertia. Doing this and substituting the appropriate boundary conditions, the
deflections are

Eq. 20

10

M B=K a 0
1

6  
( 3 L3 2  3 L3 2 L3 − 6 2 L3 3 L3 2 − 6 L3 − L3 3

− 3 L3 − L2 3 x − 3 L2 2 x3 L2 2 x − 6 L2 x− L2 3 xL2 3 x2 L2 x6 2 L2 x
6 L x2 6 L x2 − x3 − x3 − 3 L x2 − 3 L x2 )

M c=K a 0
1

6   
( 6 L x2 − L2 3 x 3 L3 − 2 x3 3 L3 2 − 6 L3 − 6 2 L3  3 L3

3 L3 2 2 L3 − 3 L3 L2 3 x− 6 L2 x− 2 x3 2 L2 x − L2 3 x− 3 L2 2 x − 3 L2 2 x
6 L x2 6 2 L2 x )

M D=K a 0
1
3
L− x 3

M n=K a 0 L3 A , , , x ' 

d A=K a 0

 Lx 3

360   E I
(− 30 2 L2− 8 L2 320 L218 L2 2 15 L2 2− 90 L2 − 60 L2

− 10 L2 38 L2 3 − 18 L2 2 45 L2 30 L2 2 − 9 L 2 x9 L 2 x − 9 L x
− 15 L x 9 L x 30 L x − 15 L x 30 L x 3 x2 − 3 x2 − 3 x2 3 x2 )

x=x ' L



Anchored Sheet Pile Wall Analysis Using Fixed End Method Without
Estimation of Point of Contraflexure

Eq. 21

Eq. 22

Eq. 23

where dn are the deflections in the given regions in metres and E and I are the modulus of
elasticity and moment of inertia per length unit of wall in Pa and m4, respectively.

As is the case with the moments, if we substitute Eq. 18 into Eq. 20 through Eq. 23, the latter can
be written in the form

Eq. 24

where again B( , , ,x') is a dimensionless coefficient.

11

d B=K a 0
1

360   E I
(10 L2 3 x330 L x4 60 2 L2 x360 2 L4 x− 60 4 L4 x − 15 5 L4 x

30 L x4 60 L3 x2− 60 L2 x3− 3 x5 − 10 L2 3 x3120 3 L4 x90 2 L4 2 x
45 4 L4 x − 240 3 L4 x30 4 L4 x90 L3 2 x2− 180 2 L4 x

− 15 L x4 90 L3 2 x2− 15 L x4 30 L2 2 x3− 30 3 L3 x2

− 30 L2 2 x3− 180 2 L3 x2− 10 L2 3 x3− 30 L3 3 x230 3 L3 x2− 180 L3 x2

20 L2 x3− 3 x5 15 5 L4 x− 30 2 L4 3 x− 45 4 L4 x − 30 5 L5− 8 6 L5

20 3 L518 5 L5 15 5 L5 − 90 4 L5 − 60 3 L5 − 10 3 L5 3

8 6 L5 − 18 5 L5 45 4 L5 30 3 L5 2 )

dC=K a 0
1

360  E I
( 3 5 L5 3 L5 5 10 L2 3 x330 L x4 60 2 L2 x360 2 L4 x

− 60 4 L4 x− 15 5 L4 x30 L x4 60 L3 x2− 60 L2 x3− 6 x5 − 10 L2 3 x3

120 3 L4 x90 2 L4 2 x45 4 L4 x− 240 3 L4 x30 4 L4 x
90 L3 2 x2− 180 2 L4 x90 L3 2 x2− 30 3 L3 x2− 30 L2 2 x3

− 180 2 L3 x2− 10 L2 3 x330 3 L3 x2− 180 L3 x220 L2 x3− 6 x5

15 5 L4 x − 30 2 L4 3 x − 45 4 L4 x30 3 L3 x2− 30 L2 2 x3− 15 4 L4 x
− 15 4 L4 x− 30 5 L5− 8 6 L520 3 L518 5 L5 15 5 L5 − 90 4 L5

− 60 3 L5 − 10 3 L5 38 6 L5 − 18 5 L5 45 4 L5 30 3 L5 2 )

d D=K a 0
1

360 E I
( 30 2 L5 230 3 L5 ­10 2 L5 315 4 L5 − 60 L4 x − 15 4 L4 x

− 60 L4 3 x60 L4 x − 30 3 L4 x − 180 2 L4 x − 60 L2 x310 L5 4 10 3 L5

− 10 L5 3 220 L5 2− 30 L5 2 2 20 L5 2− 30 2 L5 2 60 L5 2− 20 L5

− 10 3 L5 260 2 L5 210 3 L5 2− 30 3 L4 x90 2 L4 x − 6 x53 L5 5

30 L4 3 x30 3 L4 x− 180 L4 x90 L4 2 x − 30 L5 430 L4 3 x
15 L4 4 x − 15 L4 4 x8 L5 5 − 60 L5 2 30 L x4− 8 5 L5− 10 4 L5 − 60 3 L5

60 L3 x2 )

d n=K a 0 L5 B  , , , x ' 



Anchored Sheet Pile Wall Analysis Using Fixed End Method Without
Estimation of Point of Contraflexure

The only variable left unknown is . For the integration of both the slope and the deflection
equations, the boundary conditions for both of these at x0 is zero. However, there is no guarantee
that the deflection will be zero at the other support, x3, unless —the last unknown—has a value
such that this deflection is zero. Substituting x = x3 into either Eq. 22 or Eq. 23 and equating to
zero, the quantity is the solution of the equation

Eq. 25

The solution of this equation will be outlined as a part of the discussions of the solution of the
problem in general.

Parametric Solution
Now that the basic equations are defined, they can be applied to an actual solution. There are
two types of solutions that can be done, either a specific solution for a single case or a parametric
solution. The parametric solution will be considered first.

The existence of a parametric solution is suggested by Eq. 19 and Eq. 24. For the free end
method, Figure 3 presupposes the existence of a parametric solution. Based on the equations and
figure, let us define the following dimensionless variables:

Eq. 26

Eq. 27

Eq. 28

The Maple software was used to perform the algebra and integration to yield the equations of
shear, reactions, moment and deflection. It is possible to use the same software to perform the
numerical computations; however, it was decided to construct a php routine run on a web server
to perform these calculations, which made the iterative structure of the program simpler, along
with greater control of the output format.

This being the case, the greatest challenge became the transferral of the formulas from Maple to
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php. This process was significantly simplified by the fact that Maple is capable of generating C
code for the algebraic expressions it develops. For mathematical expressions, the syntax for C is
virtually identical to php. It was thus a matter of calling for the development of the C code,
assigning a function for each expression, copying and pasting the code for the function, an
adding a dollar sign at the start of each variable (php requires this as C does not.)

Once these functions were set up, they were applied to a range of values of = 0, 0.25, 0.5, 0.75
and 1. Values for were the same, but when matched with values of they were restricted by
Eq. 3. Values of ranged from 2 to 35 as suggested by Figure 3. To obtain dimensionless
results, the values of Ka, o and L were set to unity.

For each case considered, once the data was input the first task of the program was to compute
the unadjusted value of . “Unadjusted” means that the penetration of the sheeting is not
extended to compensate for the reaction at the toe, which will be discussed in the next section.
This is to allow comparison with the values from the free end method as shown in Figure 3. The
unadjusted value of is computed using Eq. 25, which is only a function of , and . This
equation is solved using the method of bisection (Chapra and Canale, 1984), bracketed by values
of = 0 and = 5. Applying this method to cases of = 0 and = 0.25 resulted in a lack of
proper convergence, so these cases were not considered further. (As a practical matter, it is
unlikely that the support would be placed more than halfway down to the excavation line from
the pile head.)

Turning to the remaining cases, these were analysed to establish proper value of , which was
consistently established within twenty iterations. Once this was done, the next step was to
determine the maximum dimensionless moments and deflections for each case, along with the
dimensionless support reaction. The obvious method to do this is to take the derivative of the
moment and deflection equations and determine the zero values. This method was employed in
Maple to check the results of the php code for specific cases; however, the weakness to this
method is that it is necessary to do this for each zone and then determine the maximum from the
resulting zone values.

A more sensible solution was to select many evenly-spaced points (200 were chosen for this
study,) compute the moments and deflections at each point, and then select the maximum
absolute value of moment and deflection from the database. Although the absolute maximum
may be missed, errors in solving for the maxima and minima are not without difficulties of their
own given the complexity of the equations.

Results of the Parametric Study

The results are presented in graphical form in Figure 5 through Figure 10. All of the plots are
log-log scaled.
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Figure 5 Unadjusted or Deflection, = 0.5
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Figure 6 Maximum Moment or Support Load, = 0.5
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Figure 8 Maximum Moment or Support Load, = 0.75
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Figure 7 Unadjusted or Deflection, = 0.75
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Figure 9 Unadjusted or Deflection, = 1
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Figure 10 Maximum Moment or Support Load, = 1
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Some general observations about the results are as follows:

1. All of the quantities (load, moment, deflection and penetration of the sheeting) tended to
decrease with either or . This is because both of these reflect either a relative increase in
the active pressure or decrease in the passive pressure.

2. All of the quantities also tend to increase with , but not at the same rate. The increase in
moment and deflection are very marked, probably because of the longer unsupported length of
the beam below the support. The increase in support load is not as marked, and the increase in

is the least of all.

The use of the parametric method is good to obtain an overview of the general results of the
method. As was shown in Figure 3, it is possible to use the charts (or tables with the same data)
to determine the results of the method. However, a more practical solution exists, and that is to
use the same base computer code to obtain results for specific cases. But before the parametric
solution is left, there is one more important issue to consider.

Computation of the Adjustment Factor for

Once the value of (and thus the theoretical penetration of the pile below the excavation line) is
computed, it is necessary to adjust this value upward. There is a good deal of confusion
concerning the nature of this adjustment. Many engineers look at this adjustment and consider it
a “factor of safety” but this is not the case. For the fixed end method, it is a necessary by-product
of the method itself.

The fixed end method requires that the toe of the pile have neither slope nor moment, but permits
a reaction at the toe. Since soil at the toe is unable to support the reaction, some type of
provision for this reaction must be made. If the penetration is continued past the unadjusted
point, the net pressure on the extension is driven by the higher passive pressure away from the
excavation side of the sheet pile wall. When the net value of the soil force, which increases with
depth, reaches the value of the toe reaction, same reaction is balanced. The adjusted value for
when this takes place is

Eq. 29

where adj is the ratio of the length of the sheet pile above the excavation line to the length of the
sheet pile below the excavation line after adjustment for the toe reaction. Tschebotarioff (1951)
states that, for Blum’s Method,

Eq. 30
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This amounts to a 20% increase in the penetration of the wall from its “theoretical” (better
unadjusted) value. This factor is very common in fixed earth analyses. But what values would
result if the additional penetration were actually computed based on the additional wall length
needed to balance the toe reaction?

The answer to this question is suggested in Figure 11.

The figure shows that, as increases, the need to adjust the penetration of the sheet pile below
the excavation line likewise increases. Figure 3 suggests that this ratio can vary between 1.2 and
1.4 for the free end method, and a similar variation exists for the fixed end method as well.

These results indicate that this factor should be computed based on the actual conditions of the
case in question, although the method requires that the unadjusted be computed first. This will
be included in the solution algorithm for the specific cases.

Case Specific Solution
The case specific solution uses the same basic algorithm as the parametric solution, but instead
of iterating for a range of cases, it takes input data for one specific case and returns the results.
This solution is also solved using a php program on a web server, which can than be made
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Figure 11 Ratio of adj to , = 0.75

1 10 100
1.14
1.15
1.16

1.17
1.18

1.19
1.2

1.21
1.22

1.23
1.24
1.25

1.26
1.27

1.28

Unadjusted/Adjusted
Ratio, Beta = 0

Unadjusted/Adjusted
Ratio, Beta = 0.25

Unadjusted/Adjusted
Ratio, Beta = 0.5

Unadjusted/Adjusted
Ratio, Beta = 0.75

Kappa

R
at

io
of

A
dj

us
te

d
to

U
na

dj
us

te
d

R
ho



Anchored Sheet Pile Wall Analysis Using Fixed End Method Without
Estimation of Point of Contraflexure

widely available for academic use.

The input form, which can accept data in either SI or US units, is shown in Figure 12.

To test the specific solution, two cases were developed, one in US units and the other in SI units.
The parameters of the solution, as they actually appear in the input variables table, are shown in
Figure 13 and Figure 14 respectively.

19

Figure 12 Input Variables for Fixed Earth Method

Figure 13 Input Variables for Fixed End Analysis, US Units
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The program then returns the following data for every point analysed along the sheet pile wall:

1. Location of point along sheet pile wall.

2. Shear per unit length of wall

3. Moment per unit length of wall

4. Slope

5. Deflection

Since the data is in tabular form, it can be easily inserted into a spreadsheet and subsequently
graphed. The tabular data also show the locations of the various maxima. Plotting the tabular
data yields the results shown in Figure 15 and Figure 16. The slope and deflection results are
plotted on the right y-axis.

20

Figure 14 Input Variables for Fixed End Analysis, SI Units
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Figure 15 Plotted Results for US Units Case
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Figure 16 Plotted Results for SI Units Case
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The final summary data for the two test cases is shown in Figure 17 and Figure 18 .

Both of these were also analysed with the Maple V worksheets where the equations were
originally derived, and the results generally agree within three significant figures.

Comparison with Other Solutions

The results of the case-specific solution were compared with two other solution techniques.

The first was the CFRAME program, which is a finite-element program developed by the U.S.
Army Corps of Engineers. The program was run for both cases, although it was not used to
estimate the length of the pile below the excavation line (that was an input variable from Figure
18 and Figure 17.) The simplest way to present the results of this analysis is to compare them

22

Figure 18 Summary of Results, SI Units

Figure 17 Summary of Results, US Units
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using Table 1 and Table 2.

The results in both cases show general agreement, although some round-off error (due to the
transference of the data) is evident. For locations 1, 2, and 3, the results reported from the closed
form solution are arrived at by linear interpolation, since the division of the sheet pile into
increments virtually guarantees that the locations will not be directly analysed. One difficulty
this comparison shows in the closed form solution’s results for the support point (Location 3.)
The discontinuity of moment and the limitations of linear interpolation are both apparent in the
results at this point.

Another comparison is made with SPW911, a commercial sheet pile design program distributed
by Pile Buck International. The results for the US and SI units cases can be seen from the
program’s graphical output in Figure 19 and Figure 20, respectively.
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Table 1 Comparison of Results Between Closed Form Solution and CFRAME, US Units Case

Location Moment using
closed form
solution, ft-lbs

Moment using
CFRAME, ft-lbs

Deflection using
closed form
solution, in.

Deflection using
CFRAME, in.

0 1 0 0.000 0.000

1 -1901 -1907 0.022 0.022

2 -1882 -1886 0.016 0.016

3 83 104 0.000 0.000

4 0 0 -0.017 -0.017

Table 2 Comparison of Results Between Closed Form Solution and CFRAME, SI Units Case

Location Moment using
closed form
solution, kN-m

Moment using
CFRAME, kN-m

Deflection using
closed form
solution, mm

Deflection using
CFRAME, mm

0 0.0 0.6 0.0 0.0

1 80.8 80.8 30.2 30.6

2 152.4 152.4 39.4 40.0

3 0.5 1.0 0.1 0.0

4 0.0 0.0 15.3 15.2
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The results show that the SPW 911 are in general agreement with the closed form solution,
although comparison of the deflection with the US units case is impossible because of excessive
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Figure 19 SPW 911 Results for US Units Case

Figure 20 SPW 911 Results for SI Units Case
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rounding in the SPW 911 results. The maximum shear returned by SPW 911 is lower than that
of the closed form solution because the latter reports the shear at the unadjusted penetration of
the sheeting, not further up as is done in SPW 911. It should also be noted that the adjusted
penetrations recommended by the closed form solution are higher in both cases than SPW 911.
SPW 911 consistently uses an adjustment factor of 1.2; if the unadjusted penetration from SPW
911 is back computed from the results, they are consistently higher than those of the closed form
solution.

Discussion
The results from the analysis are in reasonable agreement both with a finite element solution
(which one would expect) and with SPW 911. However, it should be noted that a) the number of
test cases is very small and not statistically significant, and b) the scenario modelled by the
closed form solution is very simple.

The “elastic line” solution shown here is shown to be practical, even with the limited computer
power allocated to it. At one time such a solution was either too computationally intense or
required some kind of graphical solution, but this is no longer the case. For fixed end sheet pile
analysis, it is no longer necessary to assume a point of contraflexure using Blum’s or any other
type of analysis. Even with layered soils, it is reasonable to assume that an iterative solution
could be developed to determine the unadjusted penetration of the sheeting, although care needs
to be taken with the range of solutions for which this is practical. This limitation may be present
in the presently used solutions but not apparent to someone who is not completely familiar with
the background of the method being employed.

The one item that deserves the most attention for both the “elastic line” solution developed here
and those solutions which assume a point of contraflexure concerns the adjustment applied to the
penetration of the sheeting to compensate for the residual reaction at the toe. The fixed end
method tends to be conservative to start with, and whatever factors of safety, load or resistance
used need to take this into consideration versus those used in free end analysis. However, the
fact that, for a wide variety of cases, strict application of Eq. 29 (or its equivalent for layered or
cohesive soils) would result in differing results should give pause to the blind application of Eq.
30. Again the computation power available obviates the need to continue this assumption. In
Figure 3, for the free end method is is recommended to increase the penetration by 20-40%
(erroneously designated as a “factor of safety.”) As this can be readily computed, this is further
reason to abandon the use of a fixed extension of the sheet piling below the excavation line.

One thing that should be noted about the solutions described in this paper is that they are only
performed for a very simple pile-soil system. More complex soil profiles will give different
results. In the case of methods such as Blum’s and that used by SPW 911 which divide the beam
at an estimated point of contraflexure, complex soil profiles may also violate either the
assumptions or the laboratory conditions under which the simplified methods were developed in
the first place.
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Conclusion
The fixed end method of anchored wall sheet pile analysis has been a viable method for a long
time. The “elastic line” solution shown in this paper—albeit for a simple case—demonstrates
that this method can be applied with the computational power available. The solution given in
this paper results in both a series of charts (or tables) and a simple online routine that makes it
ideal for academic use. Additionally, it was shown that using a fixed ratio of the unadjusted to
the adjusted penetration could have unconservative results, but that this ratio as well can be
computed without difficulty.
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