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Impact and Longitudinal Wave Transmission
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e aecessary tormulas for w numerivad metiiod ot cal- s LNV T TIPSR LS PEVCOR NS
) i are derived without the use of cale ulus or other T i v e o, .
. enced mathematics: an iltustrative problom i <olved G oviEadl i ter o
coanplete detail: eight Jdifferent tvpes of impact are Dao- tndivelund oo Cob s e = T A
nusseds methods are given l'm.' taking account of tric- Vrnber of other <usihids e ;g Pk P omes oty e
. -z.nnpin.g, cocflicient of restitution, prhastic tlow, and detsiand 1 Thoes ovvur, A
- xi branched Svstems are discussed briefly; methods B N LR S N TP R action will b opre-
dven for-checking the caleulated results. el ol el e <eprmnted By it b s
’ L R N (1R IO
Ixteen v :
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cat e espeenndiy sugn Gl e Y deurees o {revdon,
sezee et distrithution, or R IR s e invaived, - Fig.
Sosbpbving to suel e L by deties .
ot Dannell 2 i oo Che e duringe whiels  he aetion vectrs will be divided inte
S g Dotation will b et . Sttt intervads Al sy st “awe e e <jze of the ntervals
_ , i beiig chosen to suit the nature of e problem. The  jn-
S s e e nure RIS paril i e be sl v oongh s tha wirh negligible orrar i
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The numeriead caleulation will be osten=hiveatep process in
“ ) fomewing apply to woy tine funeeval - vinehs the fivy \,‘m.dnln Do O Fo Zo, and 1, ‘\\1‘1 bee e

4 o ) ) ] i L cubated Tor each Weight o <oring in pach stuecessive interval, It
o= chepteement of o weijght o mieasured from its initial

) WL erefure fecosanry (o deyelon formulas for these e variahles,
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v e evered b spring 3 Do gicns 0 0lus s merement of displiacvtaent wenuired during
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= ompression of spring m, in. Dp = i 120 S
= velseity of weight w, -

Tobgua-ion | the values of me el Alnre always known,
Beease A s the chosen e interval, wnd 7 and P 4t pither
sLo= annageitade of weight g, KIVen giianttties or they have boey codenly g Jrevionsiy.
SR constant for spring m i : '

cleen g are wsuaily eonetye .

B Sootmd foree or pesistionoe et on weight g, Ih 1
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= o eleration due towravioy (3207 fps?y v .
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' Nasmbers in parentheses refer to Bihhography at end of paper.

+utnbuted by the Rubber and Plasties Division and presented at
s, ot session with the Machine Design Division at the Annual : . .
vineng, New York, N. Y., November 28-December 3, 1954, of Tue To obtain » formula for ( = et the dotted squares in g, 2
Axi 3 ICAN SOCIETY oF ;\Il:ca,\?ugu ENGINEERS.' : } represent the initial positions of weights m and i + 1, and let the

Some: Statements and opinions advanced in papers are to he solid squares represent their bositions in interval n. Then ¢
aderstondd a8 individual expressions of their authors and not those of Al S . ;o . .
reSoiety. Manuseript received at ASME Headquarters, June o Wil be the nitial length of spring m and ¢ will be its length in
Wt Paper No. 54— A42. interval n; also D, and D, will be the displacement of weights
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wevadn, Then Cpo=1—10": bhat{ + Doy =
.U dilows at onee that

o= = Do o w2

-

et prenortinaal 1o 0 and to the spring

N
o= RN 161
P,o=¢6 K . S
wiit be noted thataweight s aeted on by
gt ) )
C i s oamd by evterndl force or resiztance R

Lerating foree Z o acting on weight meis

TR A N

e Farim = lta )

Com
. au inerement of veloeity wequired Jduring a
Thisinerement may be evaluated as
LDty WL)
« 1t change of veloeity
= force X 1ime 4+ Imuss
e far V,.‘ then becomes

o= e Al ALY o 15)

[LLUSTRATIVE PROBLEN

w g L) problem shows how the foregoing formulas
o D e ]

¢ veghing 3 1b and moving at 10 fps strikes a
o b ary weights, each with a frietionad re-
o weigntless springs, as shown in Fig, 3. Culeu-

alid e N . . L
Stons and forees using a time mterval of

o

T L
.,,,‘.1:;0. R,ei00* Ry"10*
FIXED -~
l'ig 3

of constants, Table 1, used in the five for-

o :
s ool 1 the given problem.

fugst §

TABULATION OF CONSTANTS

aglid
te i ™ Rm, 1b 124t Mg/ W
* cun 0 0.004 1/466.3
* L0 100 0.004 1/93.25

L0 10 0.004 1/186.5

g N sulstion may then be performed and tabu-
‘a T A

(2]

2l
sem sl
. “E 2
":,.b!-

.. o we v linex for making computations have heen
4 .o carrvul (or line) 3. Such apaces are convenient
*

aot # DT by slide rule.
. v ¢ values are computed for Dy, Dy, and D, first,

-, and Gy next, ete.
- 1 R, are frictional resxstances they cannot be

5 m‘y- motion at the beginning of the calculation.
Mﬁ"’ sin Table 2 as follows:

ud Z; = 0 (not —100 for Z; or —10 for Z,)
=0 (n()t —10) .

SMITH--TMPACT AND LONGITUDINAL WAVE TRANSMISSION V65

4 Similarly, K. and R; act only to oppose motiou: therefore
when 15 becames negative ontine 12, /2, heeomes pasitive starting
withline 13, Sindlar reversads of < aecur on lines 14, 20, 21, 22,

and 23,

S Spring Kyis ot designed totake tenston; therefore when
Cy beconies ewive e line 2000 eans that K has censed to act
and Wy hes bouneed o with o veloeity of - -7.3303 (ps,

5 lmpaet ends inmterval 24 therefore the duration of ume
pact i approsiately #3500 0r 0.008 sec.

T The numerical enleulation may be started at the beginning
of impact or at any other instant {or which conditions are given.
Forinstanee, Table 2 might have beea started at line 5 if the given
conditions hal boen s follows:

0, = 0 1722 1"y = 5 0156
1)y =0 10226 17 = 6 3367
Dy = 001975 I-.‘ = { Hld

S The numerieal ealeulation may start from known Jorees,
For inatunee, if the values of F; shown in T30 2 had all heen
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TRANSACTIONS

Lnawn or axsumed, the action of Wy, K. Wy, and K; could have
seent enleulited exactly asin Table 2 exeept that columns Dy, Cy,
Juond 1y eould be omitted. )

q Tt follows from items 7 and 8 that certsin problems niay be
wive | Ut involve longitudin! wave tein=mission but do not in-
volve pupiet,

i Some eleetronie digital caleulators enn be programmed to
b dte sutomatically sueh speeial conditions ax 3. 4 and 3.

11 Problems involving a karger number of weights and springs
e handled in exactly the same way, except that more lines
apprear in Table 1 and more columns (and also probably

[
wonhl
e it i Table 2, )

12 Opdinarity, Tabie T owould be prepared by an engineer or
st enniicelan, but the numerieal caleulation of Table 2 may be
;-.-,riu:'zi:-wl byoothers, .

Priotrer, Platting the re=udts of the numerieal caleulation is an
evevient tethod of checking wecuraey. The values of D, V..,
and 10, steuld plot s smooth™ or “stable” curves. Any sharp
prak. of any <harp Swiggde™ inany of the curves indicates either
it aonumerieal error has been. made or that the time interval
perd was too lurpe,

The values listed in Tanie 2 have been plotted in Fig. 1. The
curves are all reasonad 1y smooth, except for the sharp prak that is
Led £ Fig 4tho. T man be coneluided that the nimerien!

Il H - e v . l N ey !
wlation wie persotbiv e e un tooand ineludigg mtervad

‘D but that Vhereadter sotmerbing ceenred that preodiead definite

neaes X eheek or e aumetieai work has disclosed no
S0 tieretone the pestdts of the edendation up o interval 14
.... L tiaent s correet, buat the calentation should be repeated
o this poiot on ustnge wosmaller tine interval, )

okt Dostcation.” R {~ recommended that the weght of o

Conr ~tilar objeet be distribated 1o the ends ol caeh unit

g I
et ot towadad the fenter Foranstanese, o uniform rod to be
fne sy weights woulid bedhvidedmto five unnt lengths,

Ce o entioweiens B o theodistrroation would be nade as
. bo D )

[ L - | ¥ L
- [ = 5l % sl _w =
* 515 51¢ 515 g 15 ]
Fre. o .

Cppose s ot edendaren ths weaddesale e the diagram of

2 L N ™) .. e
%j' ’ (O‘ b, - ('O "L‘ v |o”\'/_“ ‘/ ‘ou Ll 'v'@

LF W Na w5 WG W7

i teme st mnnerne ot 1 seensaneneded that the

R Syt por s to e doe e of the copter
e P T TR TR LTI BT
\ . 1
T e
0® o® . et
R o 8
o ls® 5t " 5*s" 5"
cr_al_al_ el .
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it Al [ v e Do e o

OF THE ASME AUGUST, 1955

The resulting dingrum for purposes of computation is shown in
Fig. 8.

24 Y 13% Tkt VAVART- o \/\f@
W W, Wy We Wy
Fig. 8

1f the object is not continuous but consists of individual sections
of considerable weight with intermediate springs, such as a rail-
rosd train, it ordinarily may be represented with dufficient
aceurney as shown in Fig. 9 in which Wy is the weight of the

W W, VAL N VAVAVA 1" 78 VAVAVA L' 78 VoW

Fic. 9

locomotive, and W, ete, are the weights of the individual ears.
Any elasticity in the structure of the ear itself may be added to
the spring constants of the couplers at cither end using Formula
18] given later. If extreme aceuracy is required, ench weight as
noted may be divided into two or more weights with intermediate
springs by following the method of Figs. 5 and 6.

Spring Constant K. 1{ spring K represents the elusticity of a
unit length  of a rod of uniform section the formula for K, ix

Ko=dAE/ oy

If- K, consists of two or more springs in parallel its value ix
obtained by wdding the spring constants of the individual springs,
thus :

KN, =k + ko kyoeten [

I K, vonsists of two or more springs in series its vadue 15 ob-

vained by adding reciproeats, thus
VR = 4k 4+ Lks + Uksote {nl

I KL, represents e uniformly tpered squuare seetion with sides
at one end equal to @ and at the other end equal to 3. then

Ko = BBl ......... » i

It K, represents a unitormly tapered round seetion of et er
a’at ot end and 37 at the other, then

Ld . R
A, = y Fa'3' 0. .. u;

If K, represenis auniformty tapered rectangular seetion having
sidesa’ and B at one end and corresponding sides (17 and 27 at the

other end, then
IFAh =aB' K, =EdB (00 oo i

. BOK AL~ a B
i " SRR Lby {og, LA 0B

Stabdity Stability mav ha defined as freedun trosu oseillation
(or hunting 1 eaused by fault in the caleulzaion and not present
in the objects being analy ed ..

Gne wav to deteet instability is to plot the vadues of D0V and
P in Figo 4 and examine the curves for sharp penks or sharp
wigghes (1t adready has heen pointad out that the sharp pesk
At I in Fig 40k indicates instability. ) Another wayis to examine
the tabulated values of Z.. 10 any of these shows a tendeney to
fliretuate from interval to interval, instability is present. In
Table 2 the values of Zs fluctuate in this way in intervals 12, 13,

s nVani

widvEC L W
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IMPACT

ne the incbaation does not eottinie;

g SMITH
3

) o
i I'he oecurrence
i or that
) . e Instability may oceursuddeniy in the middle of o
poctally i (umpxrmwl\ large external forees ar

e iuserted suddenly,

oo cted unless grent securaey is destred,

- means thut a numerical error has been made,

or are fequired to change sign
.~ i the case of Ry of Fig. 3.

Lo ths Land Tme Interval A0 In some problems the unit

v Jecided - more or less automatically, as in a short rail-

i yeain where exch ear and coupler normadly would he chosen

et dengthe 1 the object is continuous it may be divided

v hummber of units (pre ferably of equal length) depending

o aiegree of nevuraey desired and the computing perwmnel

wpuiprment available.

< twe ehosen 1o correspond. An unnecessarily small time in-
C 2 iavolves aogrent deal of extra work with little or no increaxe
}ﬂ o euraev. Tond Jarge o time interval produces instability and
1 Alatennecuracy.
-5 g enrvig in s diagram such as Fige Tor Fig. 3 hasa “eritical”
paerval which is the time that it would require for a sound
mes wave to Traverse this particular spring and its associated
~ent Re anembering that sound waves travel in both directions

v —_—

§.ooan sperd equal to NES /p where p equaly the mass per unit
., the following formulas may be derived for the eritical

1-;1:-r\ ! for spring K., which will be called T,

" wave mntion to right

'

FTUR
R L5 RS
e N &L
) . I W rw
/ T e e L (14]
Yizgnl T wess VK,

L wser value of 7 from either Formula [13} or [14] is the
Lane. ]
Formulas (131 and {14] are applied to Fig. 3 the results are
ClgWs!

. wave wmntion to the right, Formula 13}

Cr= 113160 Ty ="1/1030 7= =

, - wave motion to the left, Formula {14]

7, = 1,580 T, = 1/1455 = 1/1120

1 value of @ must never be less than unity; othu'wmethe re-
A vf the numerical caleulation will be mmnlnglesa because the
-.«,p.,l caleulation will not progress as fast as the actual sound
1f the value of ¢ is close to unity, instability is
v woceur.  The value of ¢ used for Tables 1 and 2 was
T s 100 = 2,06,

gt “y' Time Interval Al. The time interval may be changed

senently at any line of the numerical calculation such as
pre Ordinarily, this involves only the writing in of new
e for the constants 12A¢ and Atg/W, used in Formulas [1]
o4 181, but this change must be made simultaneously in all

mns Do 80d V.. of & calculation such as Table 2.

;pu of Impact Practical problems may involve at least

ot distinet types of impact as listed and discussed in the
Mmﬂ In this discussion the assumption iz made that all
(g are pf’rfe(tl\ elastic. Methods for taking account of

- ping snd inelasticity will be discussed later on.

q,, spring that receives the first impact, such as K; of Figs. 1

3, and K of Fig. 10, will be called the “impact spring.”
1; wme impact prohlems there is an actual impact epring or

. apas WAVE.

AND LONGITUDINAL

therefore it

. the unit lengths have been decided, the time interval |

WAV E TRANSNSSE Y67
L locomotive
inio i e of fretght edes st eneonnters couplet springs,

cushion onwviach the rao may ~rriko L For imsiadiee, a
bumpinyg
or e gears,”

first cnr

aml must compress them i order to move the

Such problems witl bee called cushioned impaet.”™ On
the other hand, if o ram steikes o steel rod or anvil direetly, there

15 no true impmt spring present. Such problems will be called
“direct impuct.” ’ ’

A ~mgle moving weight, such as g locometive without curs, or
the moving part of a forging hammer, “ram.”
A group of objeets, such as o railroud train in which each com-
paratively rigid ear is separated from the next by a spring coupler,
will be called "'a group of separate weights and springs,”’ and must
be distinguished elearly from a “long objecet” such as a long steel
rod-or a driven pile,

An Important Distinction.  In this method a long object is
represented conventionally by the same type of diagram that is
used Tor a corresponding group or separate weights and springs.
If the impaet is well cushioned by a comparatively “soft’” impact
spring, a long object and a corresponding yroup of separate
weights and springs will aet glmost exactly alike. On the other
hand, if the impaet is direct, or if the impact spring is compara-
tively stiff, surges or minor oscillations may oceur i a group of
separate weights and springs that would not be present in a
corresponding long object.  This difference calls for the ob-
servance of cortain rules as listed in the following section.

will be called a

Tyres or IMpacT

Tupe 1 Impact. Cushioned tmpact between a ram and a group
of separate weights and springs: This type of impaet presents a
dingram similar to Figs. 1 and 3. A locomotive bumping into s
number of railroad cars with spring couplers is i example.

Good acenraey iz obtnable with thistype of problem because
the disgram used i Hikely to be an aceurate representation of the
actual ohjeets involved.  The numerical ealeulation is similar to
Table 2. The accuracy may be increased by deerensing the inter-
val.  Ordinarily, o value of ¢ of 3 or 4 will give results accurate
within a few per cent if the calceulation is not carried lhrough
more than 100 intervals.

Tiupe Il Impact. Cushioned impact belween tu'o groups of
sepgrate weights and springs: A problem of this type presents a
diagram such as Fig. 10, '

Ky Kz Ks Ka Ks. Ke
W, VAW, £ AN We WV Ws VY We AN

B S ——

Fia. 10

The numerical ealculation is handled as in Table 2 except that
positive velocities appear on line O for Wy, I¥,, and W, instead of
for W, only. Accuracy obtainable is about the same as for Type T
impuaet. )

Tupe HI Impact,  (‘ushioned impact between a ram und a long
After the long object has been divided gs in Figs. 3. 6, 7,
and 8, this type of impact presents s diagram similar to Fig. 1
or Fig. 3. The driving of a steel or concrete pile into the ground
ir an example of this tvpe of impact, because ordinarily a cushion
of wol or similar material is used between the ram and the pile.
Suitable ground resistance or resistances are introduced and the
problem is handled very much like the problem of Fig. 3.

The accuracy obtainghle with this tvpe of problem is'ordinarily
not quite as great as with problems of Type I or Type II unless the
impact spring is comparatively soft. This leads to the follow-
ing practical rule:

Rule. The critical time interval for the impact spring as calcu-
lated by Formula {13] or [14] should be at least 1.5 times as large

ohject:
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St tospring preseat the tmpaet will fahe piace
w et eights Wiand W There are two recominended

o ' ~10 Theinstantanesus veloeitien of B and W, imme-
< e et oreurs may be caleulated from Newton's
:’ mesiaering e two weightz anlyv, and these resultant
oty Betsed to start the numericnl eadeulation such as
. s AT eonsb b orabiy heavier than W (as in a forging
" ,. the stplest and the recommended method be-
_;:W‘.,. Beogostge tdor impeet will oceur hetwesn Iy and W
o camfore W Do omitted entirely from the numerical
‘ i W i Hghiter than this there may be

1 osimptor to use Method 2,
‘ Acitraring nsort an imaginary impact spring K-
Lo e naertesd ealetintion ean be made like that for Typel
‘ To aseizt s suitabie spring constant {or this im:zgin:u'y

- g privoeced s fulinwa: ’
»pondior Do 2 A0 Miking this substitution in Formue
T tenasing mives

RN B A SN

|2 3
. = .- S 15
hon 386,040 b, At ol
ppre ettt "
W |12
i NS S 1)

B08 S A

o 124, A2 3

srarr yatie of A from either Formula {15] or [16] is the
due of @, of 1.2 is reenmmenided for the

{' RTT TR PR RTRRAe!
Q' aomapset spring mentioned.

Y

caleulation the value of ) may hesnme
en ihue bappens it means that W, and W, have

5,
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Bourese ] et thereiore £, should he given the value of zero
it Cpagaan becomes peositive,

With this tvpe of problem aceurney niey be increased by de-
creastng the time interval At
will be the imaginary inpaea spring as ealeulated 1rom Formula
5) or 161, and the Ligher will Lo the values obtuined for £,
From chiv it follows 1hett the valies for Fyand €y given by the
nutierieal ealeaiution wre 1ot cortect or frge vadues,

Romatimes an impaet spring muy be obtained less arbitrarily
by borrowing elusticity from (he weights involved as explained
eonneetion with Fia U Fyven af this is done the values given
b the nmerieal cdeaintion tor Fyoand ) will have doubtful
aeearnes, -

TErrue vaiues must o bed For thie forees ‘ut or near the point of
apaet and immeditely (dlowing the bedinning of impact, they
st e obtadned by other nwnns. A suitalle method s g
plained  conneetion with Tepe VHT impaet, Method 2. which
mvalves dividing some o all weights ingo very small unit lengths,

Type Vi Dupnet, Divec: vttt b livern g yruup‘s of separate
welghts wnd springs: This o b handied like Type V except
that the tmpact oceurs wl o different place,

Tupe VI Dmpact,  1iireeg impact hevveen a ram and o long
obiect: This tvpe of Tt ay be handied by dividing the long
objeet itto unit lengths as shown i Figs. 5, 6, 7, and 8, und then
introducing wn imuiginary uupuet spring, thus making the numeri-
eal caleulation become similar to that of Type Vimpact. Formu-
ks T15] and {161 are used to determine the spring coustant for the
imaginaey npaet spring as in Tvpe Vimpact.

Thix method has some important shortcomings as follows:
The numerical values-of Cun Py 7y, D, Gy, 'y, Zy, and 17y nre likely
to he quite ineorrect. In the numerienl ealeulation 1§ serves
merely g: 8 means of transmitting cnergy and momentum, and
its motion ax given by the culeulation is not likely to be correet,

“Numerieal values of £ and Vo starting with #5 and 1, will show

peak values that. may be ax mueh as 25 per cent above the
theoretical'y correct ones, and will tend to oscillate above and
below the theoretically correct values. 1f halving the unit lengths
{ and making a corresponding change in the interval Af and in the
stiffness of the imaginary impuct spring as per Formulas [15] and
[16] resuits in more rapid oscillations, it may be concluded thut.
these minor oseillations do not, in faet, exist, and smooth curves
may be plotted eliminating them.  Similar minor oscillations
show up clearly in the velocity curves of Fig. 4. In the case of
Fig. 1 these are true oseillations because W, and W, are separate
and distinet weights, However, if W, Ky, and W, were intended
to represent a single long object, these minor oscillations would
have to be investiguted further in the manner explained in the

‘foregoing.

In applyviug this numericsl method to Type VII impact it
should be horne in mind that from a practical standpoint its
tendency to produce false minor ostillations, and thus give peak
etresses. und velocities higher than theoretical, is not entirely a
disadvantage because of the uneven stross dietribution through-
out & emss section that is almost sure to ovenr with this type of
impact. If values closer to theoreticsl are desired for forces and
velocities, they may be obtsined at the cost of considerable extra
computation by wsing Method 2 listed under Type VIII inpact
which follows, _

Type VII impact has heen discussed by Donnell (2), and a
knowledge of his method is very helpful. =~

Type VIII Impart. Direct impact between two long objects:
Method 1. This type of impact may be handled like Type V1
except that the two long objects first must be divided into
weights and springs in accordance with Figs. 5,6, 7, and 8. The
remarks as 1o accurncy of results made in connection with Type
VII apply here also except that the subscripts must be changed to

The smadior A s nuude, the stitfer.

K
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mrespond. I Koo is the imaginary NPt =pring then the
Ctues that are dvtinitf‘ly eorreet aro s Yollows: :

Dy Crms Focy - F e

D, Ce o . o

Dy Cosy F oty VA Vs

Gther values tond t) show the same
coder Pype VI

Methad 2, If hath long ohiects are divided into unusually small
o lengths, the imaginary impuct SPring may be chosen in
weordancee with the following rule without ntrodueing any im-
Tt amount of elasticity into the system:

Rule. The value chosen for @, [or the Imaginary impaet <pring
“us in Formulas "13] and [16], should be 1.0 times ge great us
clargest value of D applving to any other spring in the system.
lis rule s the =ame us the rule piven under Type HT impaet,
s stuted in different words, )

I the foregoing rule js Illowed,
atoned under Type VI iinpact
ainated, and the forees el

sfeticea]

minor oseillatjons as noted

the false minor oscillations
will be- almost completely
velocities will b sery close ty the
sies. The smaller the i lengths used, the greater
ibe the seeuraey, :

Method 2 furnishes 8 mcans of gt ting very aecurate resulty on
§Tvpe VII prablem ale.,
-sll unit lengths that the

such
ram as well as the long object may be
sided 1nto small seetions, This reduces » Type VI problem to
Tyie VIII problem. Iy order to syye coOmpuUtation time {his
Foeess ordinarily would be used onbyv to chiek maxunum forees
{veloeitiog immediateh: afer impaet, bt 1f 140 necessary ecom-
ational eapucity js avuilable there is o reason why it should

Ui merely neecessary to choose

Y be used fur the eomplete numericey] caleulation with resulting
);h acuracy,
Method 2 also

may be used tgo determine aceurately the

ivpe VT inipuct has heen discussed by Doniel] {2), and o
§ wledge of bis method is very helpful.

]
l IRREGULARM 11y
1

sMoUs irregularities may be introduced into the caleulation,

yuas those iHustrated in Table 2 where the resistances Raand

Changed sign whenever the corresponding weight changed its
tion of moution, and where Fi became zero and remained zero
zud of following Formuly [3] into the negative range. Sudden
pularities such as the foregoing are called “boundary coudi-
g It is possibie to devise an almost endless nuinher of irregu-
cies that can be handled successfully-by this numerical method,
wver, it will pay to introduce only
srially improve the accuracy of the caleulated results,
2 the extra work involved may be considerahle.
-us types of irregularities follow
auible Resistances, Ra.

such irregulurities as will
he-
Examples of
In some problems the externgl re-
aees Ry vary from interval to interyyl accarding to some
Ate formiuly, Far instance, R might vary linearly with the
MY re. In this case £, would be computed for each time
wval oud listed in 4 separate column, using the formuls

tyY = a ruituble constant,
wmuala [17] s merely illustrative and must he modified to pujt
sroblem in hand. For instance, R, might vary as the square

r as the displacement D, ete.
mping.  Various typea of damping can be handled success-
The simplest type is the introduction of frictional re.
ves a8 in Table 2. Formula [17] i8 also & form of damping,
steresia loop suitable for 8 spring that acts both in com-

AND LONGITUDINATL WAVE THRANSMISRION

freses at the point of impaet in Type Vangd Type VI problems, -

‘F,and C,, namely, Fo.. and Coonsx,

969

Pression and i tensiorn v e produeed by
formula instom] Forinnly '3)

A (" at-"om) L A
\m[ ™ T ( v )] RT3

where 8 = 4 suirable constant,

Hsing the following

Vo =

m

A hysteresis loap suituble for 4 spring that
pression can be produced hy using the
of Formuly 3]

4tz only ftkenn,-
following formula instend

/( 'm T Cp
( Ar
where 6’ = a sujtyble ronstant,

Coefficient of Restitution, Oceasionally muaterials, such s ryl,-
ber, which have i Jow coeflicient of restitution, are used g« SPrings
or “cushions.”  Such materials when tested staticallv in the
lnhoratory My ygive foreo-deflection carves of the type

Fig. 12,

Fo= C.K, [l + 4 NN

shown jn

Fmax,Cmax.

COMPRESSION Cp,

e, 12

The compression part of the curve may be straight enough so
that the use of Formula (3] is. justified up 1o the maximum point
Frar, Coas, Fig. 12. For restitution, an equation i8 needed whose
graph passes through the origin and the POt Frug, Coues and
whose shape is similar to the restitution part of the curve shown i,

Fig. 12. Equation [19] satifies these conditions ressotahly
well

I3 /“,mu ((v ) ol

A 2= —— — el " 1y

T (e ™ e

in which

&
[l

(2/9%) — 1 :

foree exerted by SPring m in time interval n during resti-
tution (or recoil)

= maximum valye of Fo

Conx = maximum valye of O,
7 = coefficient of restitution for spring m

During restirution only part of the energy of compressinn js re-
turned. This energy return varies ns the square of the coefficient
of restitution 5, and is represented by the shaded urea in Fig. 12,

In making the numerical calculntion the force 7, is culculated
by means of Formula [3] until the value of Co begins to decrease.
At this point in the calculation the maximum values attuined by
Fig. 12, are substituted in
Formula [19] and thia formula is then used to compute £, unti}
C. returns to zero.

A somewhat awkward problem arises as to what i# Lo be done
if C,, again begins to incrense before returning to zer,, [f only a
slight hesitation is involved it i« better to stick to Formula [1y]
until C,, does return to zero, rather than' to make additional
changes of formula,

Plastic Flow. The force F o calculated by Formula {3] may be-
come 80 great that plastic flow occurs, ax in a forging process or
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FORCE

Shensbale ds deiveninto the ground. This condition correspotds
v deflection curve of the tvpe shoao in Fig. 13,

During elastie compression, Formula 31 would be used., . Duar-
e plastie dow 17 pany remain practienily constant. A% soon ag
the sprng begins to ovpand, as indivaroed by a decrease in the
vadue of O Formulz 200 woukd be used

Fo= Ryl -0 N

= wmount of plastie low, in.
= (vmn\ _ C, .
value of C at vield point, in,

#

L the numerieal caleulation it may be convenient to list the
cwrnputed valnes of €, — P in aseparate column,

(rraphical or Tabular Ix’f-llllirrll§l(1'/)x. Sometimes it is not possi-
ole or cotvenient to express the relationship between Foand €,
asctormiubesuch as FEquation '35 11San, Ish], {19}, or {20}, but
craphs or tabular dita may be available showing the relationship,

! the numerical ealeulation is performed by hand, the values for
£ vorrespunding to euch value of € cun be read directly from
the graphs or obtdined from the tabular Jdata by interpolation.
This process may involve the complication that the curve of
restitution may bave to be wdjusted so that it will start at the
maximam point reached by the curve of compression, as wew done
with a vurve in Formula 191 Some electronic digital caleulators
can perform o sinular operition based on tabular data fed into the
machine ahead of time,

Gracdy I problems involving vertieal motion, the static
Torees durs to gravity or linarily may he neglected. If the weights
ave large, a8 in a forging hummer, the gravity forces may be in-
serted s~ negative resistances R, with consequent initial com-
pressions Co and initial forces £, which must appear on line O of
the numerical calealation.  Alternately, the static effects of
gravity may be uddel algebraically after the numerieal caleula-
tion of the dvnamic forees hag heen completed. In the latter
case the foliowing rule should he abserved in making the dynamic
caleulation:

Rule. M any’ particular spring K, is not designed to take
tenston, nevertheless if € Lecomes negative F. also must be
alluwed to become negative, but its negative value must not be
aliowed to exceed the positive static force F, caused by gravity
alone.

When, as a final step, the statie-gravity forces are added alge-
braically to the dynamic forces, the negative and positive valuea
of ¥, may cancel each other having a net value of F . equal to zero.

Branched Systems. A simple branched system is shown in Fig.
14. Such systems may be handled readily by this numerical
method. Values for D, C,, F,, Z, and V.. may be calculated
for all weights and springs of Fig. 14 by Formulas (1] to [5], with
the exception of values for Z;. There are four springs acting on
“v.; thercfore Zy = Fx - Fy F;A -—_ F;g. Sumla.r wdaptwona
of the method may be made for more complicated systems.
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CHECKING THE NUMERICAL CALCULATIOX

Plotting computed values, as in Fig. 4, is an excellent way of
cheeking aceuracy.  An error will show up a8 4 sudden irregularity
in the curves. The speed with which the actual stress or sound
wive progresses also will be observable, and in some problems this
may be used as a check. '

Repeating the numerieal culeulation with o smaller time inter-
val or wsmaller unit fength is another method of checking,

The siniplest numerieal check is based on the “law of conserva-
tion of momentum,” which states that the total . momentum as
given by the following expression always must remain constant

Total momentum = EW.V./g + IR ... .. [121)

In using this check, R, must be interpreted to mean all external
forces such as R,, R;, and ¥, of Fig. 3. The total momentum may
be computed for any line of the numerical calculation such as
Table 2.

A more complete numerical check is based on the “law of con-
servation of energy,” which states that the total energy uas given
by the following expression must always remain constant

Total energy = z Z;‘ (V! + Z (_f_;_ % 1;.)

+ Z energy lost externally or ag heat . . .(22]

The necessary values for substitution in this formula will be
found in a tabulation such as Table 2, but some of them may not
be at once obvious. This energy check is not as sccurate ay the
monientum check, especially for the first four or five intervals,
Usually a check of this kind is made only at the end of the caleu-
lation.
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Appendix

The following notes will be of interest to those who wish to in-
vestigate fundamentals:

I Formudas {1} to {3 wre estrapolation formulas.  Other
fornicies, a8 well a8 iterative procedures, may be devised, but
Fortaulas (1] to (3] are stmple, surprizingly accurate, and have an
inherent snd important tendency to produce stability even when
comparatively large time intervals are used. )

2 A single weight and spring will obey the laws of harmonic
mation,  Any values may be ascuied, but the simplest cuse for
purbuses of caleulation is arrived at ne follows:

Omitting subseripte as unnecessary, let D, (", and K be ex-
pressedin the =ame units ax FoZ0and P, thus eliminasting the
constent 12 from Formualas 1], TS 14, (157, 716], and (22
Let W = ¢vandlet A = 1. Then Formulas [1] and {5} become

¢

D=d+edro. o {la}
Vosv-—DAC oo {Hu])

Ircin these formulas we readily may calculate values for sin ¢
and cos ¢ hy letting Vo= LOOO at # = 0, and considering that
Cis measured in radisns. | Formula [14] then gives T = 1. If
o = 5, then Al = 0.2, und it will be found that the caleulated
Cveores o Dupprovimate the tabular values of sin & lowever, the
Ccadeulated vidues of 17owill not closely approximate the tubular

values o cos ¢after the first interval unless the angles used in
ookine up the tabular values of cos £ are taken as 11/,5¢8, 20,00

VA, otes This indicates that the values of Votend to be out
of phase” by about half an interval.

30X elassieal” impact problem is that of an infinite weight or
sin striking direetly on the end of a.uniform rod of infinite
fength,. If this probiem s represented as io Fig, 1, with all
spriyes and all weights exaetly equal, excepting the ram Wy, then
wvabiee of @ = 1 will give rexults that agree exactly with theory,
Forees 1 and velocities 1V Lor each weight and spring will jump
instantaareously to their maxitnum and theoretical values, and this
action witl progress down the lengtheof the rod with exactly the
Thi= result will be obtained no matter what

If, however, a larger vidue is used-for ¢, the
vines of Fooaad Vlwall esetllate above and below the values ob-

Apeed ol sound.
vidue of D usen
tatieed with @ = 1) but, nevertheless, the peak values of F | and
Foowdd! teavel down the rod with a speed elozely approximating
v e of sowedl I @ iR iven avalne of about 3 or more, the

deulved results will correspond closelv to the action of a group
ol er arnde, vl equed, weights and spreings

Discussion-

Wb Hersiva, ¢
Vit artons i A continuous bar is

mDy — (KD, =0

The equation of ot o for free longitudina!

Casaistant Manager, Flectrome Duta Processing Servicee, Inter-

.t -tal Dusiness Machines Corporation, New York, N. Y.
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where

D = longitudinal displacement of a thin disk from ita reference
point

m = niass per unit length

K = “spring constant” or Young's modulus times cross-sec-
tional area .

z,t are independent variables for position and time, respec-

tively, with subscripts denoting partisl differentiation

This partisl differential equation is approximated by the dif-
ference equation

m(A!) “D(z, t + At) — 2D(x, 1) + D(x, { — At1)] .
= (Az) | K(z + 0.580) Xz + Az, 1) — IXz, 1))
— K(z — 0.5A0)[D(x, 13Dz, t — Ao)}}

If the D are known for two successive time steps (equivalent to
known initial positions and velocities) the foregoing differential
equation can be integrated one time step at a tine into the future,
It is instructive to consider the simple case of » uniform bar with
¢ = (K/m)*5, The solution of the partial differentisl equation is

D = fi(x — ) + fi(x + ct)

In this example with fixed ends the solution of the difference equa-
tions with N spuce intervals vields the correct characteristic
modes of sineé waves traveling at a velocity V. We find, however,
that instead of the velocity being independent of the mode {fre-
quency), that

are sin {@ ! sin (nw /2N )

¢~ '(nw/2N)

v o=

where

¢ = Ar/(cAt); n=1,2,.....N —1

We have thus the surprising resitlt that if ¢ = 1 (j.e,, ¢ = Ar "A),
the solution of the difference cquation i< an absolutely exuact solu-
tion of the partial differentiad cquation with ¢ = ¢ for all modes.
If At > Ar/c, v beeomes imaginary for some lurge n, indicating
exponential behavior in time of the high-frequency modes, These
cause the amplitude 1o increase without liniit; thus the numerical
method is unstable,

At < Ar/e gives a less aecurate solution to the ease of the
uniform  bar. the highest frequencies. truveing neir 2.1 or
64 per cent of the true senic velovity, Thiz lewds to dispersion,
If A7 — 0, the solution approsches the behavior of NV diserete
identical springs. In all the stable <olutions encrgy and momen-
tans are conserved,

T the actual physead problems, the wuthor considers nonuni-
foruy bars and friction. The signiticieee of @ 1- quashitatively -
plainable in terms of the el ovior foasd for the untform bar.,
Where there s ormm stihing o continuons bur, so effvetive <peing
is inserted between them.  In order that the solution of the dif-
ference equations behave properly, we wish @eva vae 231 and @or
approxtmately equal to, hui not less than unitv Where the tne-
pact i enshioned o =0l these comlitions can be made 1o hold
for A oand At
to the e of alternative
The application of the anthor's
formulas 1o the case of o bodvn simpde harmonie motion gives

readily with gquite practical values

Some consideration his oen sy

numerieal integration formuls,

an apparent frequeney higher than the true fredileney by o wetor

ol

Investigainion shows that 17 A e chosen sothat s than 30 i
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rer el are used, better e comparable aceuraey is obtained Ly

Loectenmnt e for the sume cliort when one econsiders that each -

) -t step s Awiee as Bdorions i more elaborate methods,
done elaborate ditferenee approsimations are adopted for D
1t would appear desirsbie to do the same for (R

r oz

"

i most of the problemis considered in the paper, the necessary
plasleal assumptions for friction and eushionml impact wre suf-
ficicntly crude, that refinements in the difference approximations
do ot eem justifiod,

W. 1L Minse® The problem considered in the paper deals with
the transmission of waves along a linear body. either continuous or
made up of discrete parts elastically connected. The motion is
subjected to a force of resistance. The continuous case leads to a
partial differential equation of the type

oD > [ oD
p o= T2 V\Lp
Pon T ar < >z ) d

. where D is displacement at time £ at distance r from one end, pis
mass per unit length, & depends on the spring constant, and R is
the resisting force. In the sperial cuse where B = 0 and pand k
are constant this reduces to the familiar wave equation, which is

readily sulved.  However, the author deals with variable pand k

and nonzero resistance. a case for which an snalytic solution is not
obtainable.

He resorts therefore to an approximate solution by considering
the body as o train of diserete parts, for ench of which he sets up
the equation of motien, in this case an ordinary second-order (if-
ferential cquation in terms of time. This is a standand procedure
in the numerical treatment of partial differential equations,

The following comments deal entirely with various wavs of
)rying out the numerical integration of this svstem of ordinary
Aations. Since time did not permit working out the five differ-
et methods of the illustrative example which the author solved

' Head, Departient of Mathematies, Oregon  State College,
e athe Oregon. :
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in his paper, the writor has selected a simpler problem which ia
easier to handle. and ulso for which the correct solution can be
found so that the swpproximate results can be checked, The
problemis thiss A unit muass is drawn toward the origin by a foree
equnltofour times the distance from the origin and subject to a re-
gisting foree of unit magnitude. The equations of motion for.this
problemn are

in
d
av
2="" o _4p .
at

(4 if V' is negative; — if V ia positive). We take Al = 0.1 and

start withD =0,V = lat¢{ = 0.
Method 1. This is the method used by the author and is based
on the equations (ef. Equations [1) and [5] of the paper)

D =d + vAt
V =0+ ZAt

The solution using these equations is shown under Method 1 on
the accompanying computation sheet. Comparison with the
true values shows fair agreement for D, but poor agreement for 17,

Method 2. This is similar in spirit to Method 1, but uses the
equations

D=d+ VA
F=0v4 27 AL

Here the error in D is about the éume as for Method I, but V is

somewhat better, mainly because the effect of the sign change in
the resistance is taken into account one step earlier.

Method 3:  This is not a practical computstional method hut
is given for illustration. The values are obtained by using both
Method 1 and Method 2, and then taking the average.

Method 4. This is the practical way of carryingout Method 3

C'OMPUTATION SHEET

MeTunp 1

D V z

0 0 1.0000 -~ 1.000
0.1 0. 10000 0. 8600 -1 404
0.2 0.18600 0.6856 —1.741
0.3 0.25456 0.4838 ~2.01
0.4 0.30204 0.2026 -2.212
0.5 0.32920 0.0309 -2.317
0.6 0.33229 -0.2020 —2.329
0.7 0.31209 —~Q.2268 ~0.248
0.8 0.28941 -~0.2426 —-0.158
0.9 0.28515 —0.2487 - 0.061
1.0 0.24027 —0.2448 -0.039

Meriop 3
0 0 1. 0000
0.1 0.09500 0.8800
0.2 0.17620 0.7248
0.3 0.24035 0
0.4 0.25480 0 3348
0.5 0 30803 0.1156
0.8 0.30855 -0.1083
0.7 . .0.20731 -0.1277
6.8 0.28388 —-0.1422
g.9 0.269011 ~0.1508
1.0 0. 25356 ~0.15335

MxTHOD 5
0 0! 1.0000 ~]
0.1 0.09406 0.8812 ~1.376
02 0.17450 0.7278 —1.698
0.3 0.23814 0.5451 -1.853
0.4 0.28245 0.3410 -2.130
0.5 0.30566 0.1234 -2.223
0.6 0.30889 —0.0143 —0.236
0.7 0.30630 —0.0374 ~0.225
0.8 0.30162 ~0.0562 -0.206
0.9 ' 0.29504 ~0.0755 —0.180
1.0 0.288687 —0.0919 —0.148

MeTnoo 2

t D v 4
0 0 1.0000 - 1,000
0.1 0.08000 0. %000 ~1.360
0.2 0.16640 0.7640 —1.666
0.3 0.22614 0.5974 —1.905
0.4 0.26683 0.4049 —2.067
0.5 0.28685 0.2002 —2.147
0.8 0.28540 —0.0145 -0.142
0.7 0.28253 -0.0287 —-0.130
0.8 0.27836 ~0.0417 —-0.113
0.9 0.27304 —0.0530 -0.092
1.0 0.26684 —0.0622 -0.077
MreTHop 4
U 0 1.0000 ~ —1.000
0.1 0.09500 U.8500 -1 380
02 0. 17620 -1.703
03 0.24035 . —1.961
0.4 0.28489 —2.140
05 0.30803 —-2.232
086 0.30885 —1.235
0.7 0.29732 —0.189
0.8 0.28300 —0.136
09 0.26912 -0.074
1.0 0.25358
Truz SoLvrion .
3 0 1.0000 —=1.000
0.1 0.09433 0.8807 -1.377
0.2 0.17407 0.7264 -1.7
03 0.23866 0.5430 —1.955
0.4 0.28286 Q.3380 -2.131
0.5 0.30581 0.1196 -2.223
0.8 0.30877 ~0.0110 ~0.235
0.7 0.30651 =~ 0.0341 ~-0.226
0.8 0.30200 ~0.0550 —0.208
0.9 0.20541 —0.0754 -0.182
. 1.0 0.28701 ~0.0919 —0.148

-
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i+ 1 actually easier than elther Method 1 or Method 2, and gen-
,,,ﬂx gives better results than either. The first step is computed

« Methud 1 and by Method 2 and the average is taken. From
oben on the computation proceeds by the formula

D = 2d —d* + z(Al)?

Jhere d* is the value precedingd. Thus tocompute D fort = 0.5
e have

= 2(0.28489) — (0.24035) + (—2.140) (0.01)

1n computing Z for the line where the sign of the resistance
changey, the value of R was replaced by zero, the average of +1
and — 1.

Method 5. This is the one explained for first-order equations

JRT—,

‘ ina previous work by the writer.t Because each line is rechecked

it takes more work than the other methods but it 1s much more
sccurate.

Comparison with the true solution shows thut Method 5 gives
decidedly better results than ‘any of the other methods, and this is

. especially true for the values of V.

Effect of sign change in R. At a point where . changes sign, R
also changes sign and produces a discontinuity in Z. The ap-

: pmmu.ne formulas used in the foregoing methods are liable to be

highly inaccurate when discontinuities occur, and this .rror is
propagated, sometimes with cumulative effect, far past the point
where this sign changes. Instead of using formulas for this step it
is better to perform the integrations graphically. By plotting V
sgainst ¢ we can tell approximately where in the next interval the
value of ¥ will be zero. At this point the magnitude of Z changes
by the amount 2R. Even a very rough graph will give a better
estimate for the next V and D than use of the formulas. This was
done in Method 5.

. The easiest method is probably Method 4, and it is urually also
')gomewhat more accurate than 1 or 2. The most accurate method

of those mentioned here is Method 5. This method has two other
virtues: (a) It contains in itself a check by which one can estimate
how big the error probably is. The other methods do not tell how

t Author's reference (7). articles 8, 9, 10,.and 11, pp. 24-30.
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{ar off the result may be.” () In using Method 5 we do not need
to worry about the stability of our numerical solution. For the
other methods an improper choice of the interval At may cause
the process to diverge. In Method 5 it ig eusy to see whether the
process converges.  Finally, Method 3 gives much more accurate
values of 17, and, although we are uot interested in V itself, the
place where V7 changes =ign is very important, @s we see by com-
paring Methods 1 and 2. Hence we need to have reasonably
accurate values of V.
- AUTHOR's CLOSURE

The discussions by Dr. Milne and Mr. Heising are important
cuntributious to our knowledge of this subject. Mr. Heising gives
mathematical background that is not included st all in my paper,
and which should prove valuable to anyvone who wishes to investi-
gate the problem thoroughly. Dr. Milne proposes certain'alterna-

tive methods for the purpose of increasing accuracy.
Dr. Milne's Methods 2, 3, and 4 are basically identical vuth my

method (which he calls Method 1) except in the handling of the

frictional force. The formula he wwes for D in Method 4 is a
combination of the two formulas he uses for my method. This
combination can easily he made if it is remcmbered that in Dr,
Milne's notation v = v* 4 2A¢, and v*At = d — d*, whered, v, and
z indicate values in time interval n — 1, and d* and v* indicate-
values in time interval n — 2. Dr. Milne's problem involves
rapid frictional damping applied directly to the ram. Accurate
results on this problem can bhe obtained by my method by using a
smaller time interval.

Dr. Milue's Method 5 uses a correction formula to check or
correct each step in the calculation, and is designed to give
accuracy specifically on problems involving the idealized condi-
tion of springs entirely without weight and weights entirely with-
out elasticity. My method is suitable for such problems if com-
paratively high values of ¢ are used, and for problems involving
partially or completely distributed weight and elasticity if lower
values of ¢ are used. '

In closing it may: be well to point out that torsional problems
can be handled in a very similar manner.

7 Author's reference (7), articles 10 and 1. Py
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