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Symbols

A. contact area between pile and soil (ft?)
Dr relative density of cohesionless soils

Eo 0.5 times rated energy of hammer (ft-Ib)

k dimensionless ratio = [2(1-v)/(1-2v)]®>
N field standard penetration number (blows/ft)
N corrected standard penetration number for overburden stress (blows/ft)

Ni1go corrected standard penetration number for field procedures and overburden stress
(blows/ft)

P, atmospheric pressure (2116 psf)

Q impedance of pile at tip = Acp,V,, (Ib-sec/ft)

Qs impedance of soil at tip of pile = AcpsVsy* (Ib-sec/ft)
R dimensionless reduction factor

Rr dimensionless correction factor accounting for soil compaction in cohesionless soils and
remolding in cohesive soils

Rs dynamic factor to account for fines content
r radial distance from source to point (ft)

Su undrained strength of cohesive soils (psf)
Vp compression wave velocity in pile (ft/sec)
Vs shear wave velocity (ft/sec)

Vs * reduced shear wave velocity of soil at the contact with the pile =RV, (ft/sec)
Vsp primary wave velocity of the second kind in soil (Biot wave) (ft/sec)

Vso*  reduced primary wave velocity in the soil at the contact with the tip of pile = RV
(ft/sec)

Z peak particle velocity (ft/sec)
Zs peak particle velocity in the soil at the pile-soil interface (ft/sec)
2 vertical component of particle velocity in the soil at pile tip (ft/sec)
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a coefficient of attenuation for vibrations (Bornitz formula) (1/ft)
Vd dry unit weight of soil (pcf)

Vs saturated unit weight of soil (pcf)

\7: shearing strain threshold

Vshaft  Shearing strain in shaft of pile

Ytip shearing strain in tip of pile

0 angle between any ray of spherical wave and vertical (radians)
v Poisson’s ratio

P mass density (Ib-sec?/ft*)

Ps mass density of the soil (Ib-sec?/ft*)

Pp mass density of the pile (Ib-sec?/ft*)

o' effective overburden stress (psf)
T shearing strength (psf)
[0) friction angle (degrees)

coefficient of attenuation for soil (1/ft)
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Executive Summary

The construction and retrofit of bridges and retaining walls often includes driving piles for
foundation support. Pile-driving is performed typically by use of impact or vibratory hammers.
This process induces vibrations into the ground which can be transmitted to nearby structures
and underground utilities and threaten their integrity and serviceability. More specifically,
these vibrations can cause ground settlements and deformations that may lead to differential
settlements of foundations, and deformations or cracking of underground utilities. This report
presents results of a research project focused on developing a simplified procedure for the
evaluation of pile-driving induced vibrations and induced shear strain thresholds and providing
guidance to MDOT on identifying potentially troublesome sites.

Pile driving-induced vibrations in the vicinity of driven H-piles were measured. The
measurements were conducted by installing vibration sensors (accelerometers and geophones)
at different horizontal distances from the driven pile and at various depths into the ground. The
sensor packages (sensor cones) were designed and manufactured to be “sacrificial” so they did
not have to be recovered after the piles were installed. Ground vibration data was collected at
5 sites (M-25 over Harbor Beach Creek, M-66 over Wanadoga Creek, M-139 over Dowagiac
River and US-131 over St. Joseph River at both bridge abutments). The collected data was
analyzed to help refine our understanding of the energy coupling from pile to ground during
impact pile driving and to develop attenuation rates for pile driving induced vibrations
propagating away from the driven pile.

The Bornitz form of equation was determined to be the best way to most accurately
represent attenuation. However, the conventional way of including material damping through
the coefficient of attenuation, a, was determined to be too simple for driven piles as a source
of energy, so a different symbol for coefficient of attenuation, s, has been chosen. Based on: (1)
the limited pile type, (2) pile driver type and (3) site conditions encountered in this research,
refined characterization of a could not be made but a simplified range was chosen: 0.1<q<0.15.
Coefficient of attenuation, a, for typical ground material should not be used for attenuation of
pile driving vibrations. Based on these mechanisms of energy coupling and vibration
attenuation, a spreadsheet based template was developed for estimating the distance from the
pile to which threshold shear strain vibrations would propagate. This spreadsheet has been
calibrated based on measurements in each sandy stratum of the simplified soil profiles. This
template can be used to estimate recommended standoff distances from sensitive structures or
facilities to prevent likelihood of settlement due to impact pile driving of H-piles through
cohesionless, loose to medium dense sandy soils.
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1 INTRODUCTION

1.1 Organization of report

Section 1 presents the objectives of this research report and an extensive literature review.
Section 2 provides details on the equipment that was used to measure ground motion
vibrations and information about the sites that were tested. Sections 3 and 4 present the
ground motions measured at the selected sites and analysis of these results. Section 5 discusses
how these results were used to formulate a spreadsheet tool for the evaluation of the potential
for a soil to undergo shakedown settlement from pile driving. Section 6 compares predicted and
measured values from the sites that were tested. Section 7 lists research conclusions and
recommendations for future research. Finally, Section 8 provides a reccomended
implementation plan as a product of this research.



1.2 Objectives

The main research objective was the development of a simplified procedure for estimating
pile-driving induced ground settlement. The three objectives as listed in the original research
proposal are itemized below.

a) Improvement and calibration of existing analytical models for estimating shear wave
attenuation and man-made ground vibration induced settlements.
An extensive literature review of the available methods, guidelines and regulations at
the national and international level was performed in order to accumulate information
on the transfer of energy from pile to soil, the dissipation of energy through soil and
vibration levels causing ground settlement.

b) Characterization of typical vibration sources for MDOT projects.
A database with the vibration characteristics and hammer-pile combinations commonly
used by MDOT contractors was developed. This database is important because it was
included as an input parameter in the software tool.

c) Development of screening criteria for identifying potentially troublesome sites.
After testing different sites with pile-driving operations selected by available MDOT
projects, the research team was able to evaluate the results and propose a settlement
software tool for identifying potentially troublesome sites.

It is also anticipated that the mechanisms of energy transfer to the ground from driven piles,
postulated in the FHWA Synthesis # 253 by Woods (1997) as shown in Figure 1-1, would be
confirmed or modified. This idealized schematic assumes a half-space consisting of a
homogeneous, isotropic, elastic material with a Poisson’s ratio, . Primary waves (P-waves)
radiate from the pile tip and cylindrical waves (S-waves) radiate from the pile shaft and form
the developing Rayleigh waves on the surface. However, this hypothesis has not been proven
with physical ground motion measurements. Likewise, vibration attenuation in three general
soil behavior zones, plastic, non-linear, and nearly elastic, shown in Figure 1-2, is
unsubstantiated. Shearing strain, vy, is suggested for defining boundaries of these zones. To
verify these assumed soil behaviors, measurements of ground motion in the vicinity of a driven
pile are required and such measurements were not documented in available literature. The
work described here represents a first attempt to make ground motion measurements in close
proximity to driven H-piles.
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1.3 Literature review

Research in soil dynamics has followed two principle paths, one directed at earthquake
problems and the other directed at design of machine and sensitive instrument foundations
and vibration damage from construction operations like blasting and pile driving. With respect
to the second path, much of the published research has dealt with the potential for surface
waves to cause direct damage to structures. A smaller number of studies dealt with damage
caused by settlement due to pile driving vibrations. One characteristic of pile driving vibrations
that separates them from earthquake events is the number of cycles of vibrations. Earthquake
events seldom produce more that 10 to 12 cycles of high amplitude vibrations while driving
piles for a large foundation can require thousands of pile hammer blows and even more cycles
of vibration.

Pile installation is a complicated, energy intensive process where codes and regulatory
standards provide some guidance, but little is understood about coupling and transmission of
pile driving energy into and through the ground in the form of vibrations.

The mechanism of the energy transfer process includes the following steps:

e energy is generated by the pile hammer

e energy is transmitted through the pile

e interaction between the pile and the soil

e propagation of the waves in the surrounding soil

e soil to structure interaction

The capability of the pile to transmit the longitudinal force caused by the hammer is measured
by the impedance of the pile, which varies significantly with pile type. The energy transmitted
from pile to soil depends on the type of hammer and the impedance of the pile.

There is an increased need for a better understanding of several aspects that are involved in
the pile installation process because reconstruction of parts of the aging infrastructure must
take place while infrastructure elements are functioning. This may require pile driving in close
proximity to functioning components of a facility under reconstruction. Some of the aspects
that need to be studied are the attenuation rate with distance from vibrating source, the effect
of the number of cycles of vibration, the strain threshold to cause settlement, and the presence
of fines in the soil through which the vibrations travel from the pile.

Technical literature contains some guidance to the components of the pile
driving/neighboring structure damage as described in the following.



1.3.1 Vibration Criteria

Sources of Construction Vibration include:

e Transient or Impact Vibration (e.g. blasting, impact pile driving, demolition).
e Steady-state or Continuous (e.g. vibratory pile drivers, compressors, large pumps).
e Pseudo-steady-state vibrations (e.g. jackhammers, trucks, cranes, scrapers).

Vibration intensities reported from the operation of construction equipment are usually
recorded on the surface of the earth. Peak particle velocity is most often used as the measure
of vibration intensity and in the United States, 4 in/sec for commercial buildings and 2 in/sec for
residential structures, were for many years considered to be thresholds of possible damage
(Wiss, 1981). These criteria ignored the influence of frequency and have been supplanted with
more correct criteria that include frequency described later.

A simple relationship has been proposed by Massarsch and Broms (1991) for determining
the critical peak vertical particle velocity that would cause damage by ground vibration. This
relationship takes into account the rate of loading, the number of vibration cycles, building type
and type of damage.

Woods (1997) related the amount of energy coupled into the ground to the vibration
induced from pile driving. Approaches for estimating the input energy as a percentage of the
hammer rated energy were recently seen as too crude for reliable analysis of ground vibrations
as it omits the importance of soil properties and soil resistance.

Massarsch and Fellenius (2008) devised a transmission efficacy approach between different
components of the pile driving system using their relative impedances. It also includes effects of
strain-softening on wave velocities in soil which allows for determining attenuation
characteristics of waves generated during soil-pile interaction. This approach is promising and
allows for proper estimation of energy transmission from the hammer to the soil, and thus
allows for more accurate estimation of vibrations induced and their attenuation characteristics.

A prediction model of vibration induced settlement for small to intermediate vibration
levels (0.1 to 0.7 in/sec) was presented by Kim et al. (1994). They included other factors apart
from peak particle velocity, namely vibration amplitude, stress, confining pressure, grain size
distribution, duration of vibration, moisture content and relative density.

Jackson (2007) indicated that 2 in/sec is the vibration limit criteria used for construction
projects by Florida Department of Transportation. This limit is based on criteria proposed by
federal, state and foreign agencies to mitigate direct damage to structures.



The U.S Bureau of Mines, which developed criteria for blasting activities, recommended a
“safe blasting limit” of 2 in/sec peak particle velocity. This value seems to be adopted
nationwide with some additional criteria for special historical and ancient ruins and for
recognition of influence of frequency (Siskind and Stagg, 2000).

Hendriks (2002) indicated that Caltrans set an architectural damage risk level of 0.2 in/sec
for continuous vibrations and a much lower level for ancient monuments and historical
buildings (0.08 in/sec). Internationally, the British standard 7385 reported a similar limit 2
in/sec while Australian standard 2187.2 was more conservative adopting a limit of (0.39 in/sec
to 1 in/sec) depending on the type of building in vicinity of the source of vibration. For pile
driving in confined areas with sustained pile driving activities, damage was seen with a lower
level of vibrations (0.3 in/sec) in areas within 25 ft. of the source. Caltrans technical advisory for
vibrations indicated that the 2 in/sec criterion is still being used and could be seen as a safe
criterion for well-engineered and reinforced structures; however for normal dwellings,
vibrations must be limited to 0.3 in/sec.

1.3.2 Vibration induced settlement

Vibration induced settlements can occur in loose soils subject to ground borne vibrations
from any contiguous source like construction operations, forging operations, or other dynamic
event like blasting. The soil may be saturated in which case liquefaction may occur or non-
saturated in which case shakedown settlement may occur. Damage may occur to structures
supported on soils due to settlement by vibrations. Factors that increase the total vibration
energy input will increase settlements. Such factors are: depth of overburden, intensity of final
driving resistance, number of piles and size of the site.

Silver and Seed (1971) performed laboratory tests that showed a decrease can occur in a
soil volume at low cyclic strain amplitude after many repetitions, as in pile driving, as well as
under a few cycles at large strain, as in seismic disturbance.

Vibration-induced settlements and soil shakedown is known to occur due to densification of
loose saturated sands subjected to vibrations. Therefore, understanding vibrations resulting
from pile driving is essential to alleviate risk of damage to buildings and structures in the
vicinity of pile driving activities. Massarsch (2000) devised an analytical approach that allows
estimation of settlements due to ground vibrations close to the pile. This method, however,
estimates vertical vibration velocity at depth based on measured ground surface vibrations.

It has been indicated in many cases that settlements can occur even at low vibration levels
in loose granular soils. As the vibration amplitude is largest close to the ground surface,
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settlements will be larger in the upper soil layers, where the confining stress is low. Peak
particle velocities of 0.1 to 0.2 in/sec measured on the ground surface at some sites gave
significant settlements in case histories measured by Lacy and Gould (1985). Installation of piles
to support a foundation system for a railroad bridge, led to significant settlements of a pipeline
that was adjacent to the construction work (Linehan, Longinow and Dowding, 1992). In this
case the estimated construction vibrations were considered acceptable. Leznicki et al. (1994)
reported unacceptable settlements in a case of driving pipe piles with impact hammer when
peak particle velocities were not more than 0.2 in/sec (far less than the vibration limit to cause
damage).

Ground settlements are more significant near the piles and in loose fill deposits. Only
minimal settlements were observed until acceleration levels exceeded 0.05g in a case history
reported by Clough and Chameau, (1980). Szechy and Varga (1978) also stated that settlement
can be expected if accelerations exceed 0.10g.

Clean sands with relative densities less than 50 to 55% are considered susceptible to
densification as implicated by Lacy and Gould (1985). They also stated that prediction of
settlement in sands requires knowledge of gradation, relative density, site geometry,
groundwater levels, hammer energy and the scale of the project. In addition, soil properties
that may influence settlement include: grain shape, permeability, anisotropy and magnitude of
effective stress.

Foundation support was needed in a project encountered by Picornell and Monte (1985), in
which steel H-piles were driven in an area with loose to medium-dense silty sand layers.
Consolidation and load tests indicated that the settlements should be attributed to the dynamic
compaction induced by the pile driving.

Time-delayed settlement appears to occur after piling has been completed and can be a
significant contributor to total settlement as indicated by Leznicki et al. (1994).

Drabkin et al. (1996) proposed a polynomial model to estimate settlement taking into
consideration several factors including soil properties and number of cycles of load. This
method allows for good estimation of settlement, however, it is based on a laboratory
approach modeling vibration data obtained from field ground surface measurements. The
calculated settlements from the prediction equation by Kim et al. (1994) were compared with
two case histories after extrapolation to the in-situ condition (Clough and Chameau (1980), Lacy
and Gould (1985)) and were found to match closely.



Parametric assessment of settlement demonstrated that settlement increases significantly
with increasing stress anisotropy (Kim and Drabkin, 1995).

1.3.3 Attenuation with distance and material damping

The ground vibration attenuation relative to distance is frequently calculated with the
Bornitz’s formula (Bornitz, 1931):

25 = 21(r1/r2)*° expl-a(ra-r1)] (1.1)

where:
r, = distance from source to point of known amplitude, (ft.)
r, = distance from source to point of unknown amplitude, (ft.)
2, = amplitude of motion at distance r; from source, (ft./sec)
7, = amplitude of motion at distance r, from source, and (ft./sec)
a = coefficient of attenuation for vibrations. (1/ft.)

Since this is a surface wave attenuation formula, no information is provided about ground
vibration close to a source due to body waves (Yang, 1995). A modified Bornitz equation was
introduced containing empirical factors in order to account for different wave types, the effect
of frequency of vibration and the effect of geometry of the vibration source and the
dependence of attenuation coefficient on soil type. However, Massarsch et al. (1995)
commented that the Bornitz equation could be readily modified to apply to body waves instead
of introducing new empirical factors.

The attenuation of accelerations with distance from the piles depends upon soil conditions
as indicated by Clough and Chameau (1980). Dense natural soils showed less attenuation
relative to areas underlain by soft bay mud which is due to their greater damping capacity.
Structures more than 80 ft. from pile driving operations should not suffer structural damage
even in the loosest fills.

The ground movements induced by pile driving drop from a maximum near the affected
footing to zero in the closest unaffected footing located 39 ft. apart as measured in a project by
Picornell and Monte (1985). Observed attenuation rates by Dalmatov et al. (1968) indicated
that the ground movements were zero at distances beyond 26 ft. from the pile center, which is
in agreement with the previous case.

Densification of loose clean sands can extend as far horizontally as the piling is long as
reported by Dowding (1994) who examined case histories presented by Clough and Chameau
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(1980) and Linehan et al. (1992). Thus-the small distances at which densification is expected can
be described in terms of pile length for piling.

The volume of the sand stratum contributing to the settlements was assumed to extend an
average 10 ft. beyond the perimeter of the pile driving area in a project encountered by
Leathers (1994). This assumption was based on the observation that driving piles about 10 ft.
from an inclinometer caused ground movements.

Settlement induced by pile driving activities can extend to as far as 1300 ft. from pile driving
activities (Woods 1997). Thus the attenuation characteristics of vibrations are an important
factor in determining how far vibration induced-settlement might extend and under what levels
of vibrations this settlement might occur.

Jedele (2005) concluded that actual vibrations were not necessarily equal to the predicted
vibrations and site specific attenuation monitoring