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1. Introduction

In this discussion of impact problems the wave mechanics concepts of
‘both continuous and discrete pile models are illustrated. The equations
which will be derived-should be helpful in the understanding of the pile
driving process, the Case Method, CAPWAP, WEAP, integrity testing and data
1hterpretation. Examples and some .useful numerical values will be given.
Always a uniform pile with Tinear properties will be assumed except where
otherwise noted. Also, when a length AL is considered it should be under-
stood that al is a short distance; At is considered a short time increment.

2. Linear Wave Mechanics
2.1 Proportiona]ityb

‘When a rod is struck at the end by a mass a small zone of material is
first compressed (Figure 1). This compression causes a strain e and there-
fore a force F = ¢ AE (A is thelcross sectional area and E is Young's
Modulus of the rod). F then compresses a neighboring particle. However,
since material is compressed a motion of the particles is also necessary.
We speak of a particle velocity, v, in the rod. Whenever a velocity is
giVen to a particle of mass, m, withﬁn a time period at the particle has to
be accelerated causing an inertia force (v/at)m. This inertia force is in
balance with the strain force and because it takes time to accelerate the
particles the strain will be transferred at a certain speed, c, called the
wave speed (in/s or ft/s). '

Consider Figure 1. The wave has already traveled to a point which is
still at rest. During a time interval at (sec) the wave travels a distance
AL = (At)c-(ft) and since the material below the point became compressed,
the point moved a distance 3. .
| This deformation 5 was caused by a strain e over a distance AL and
therefore

Nt



e = 3/AL

ButArep]acing AL by (at)c leads to

Since the point traveled a distance 3 during a time At it had a velocity

= 9
V= 3t

and we find

1
€=V =
c

Thus, the strain at a point in the rod material ié proportional to the
particle velocity of the same point. The relation can be expanded to
cover stress ‘

s=vyE
C
or force
F=uv %é

The proportionality constant %?- is often referred to as an impedance
‘because it is that force with which a pile opposes a sudden change of
velocity by oné unit.
Example 1: _ _
A pile is directly hit by a}mass which has a velocity of 10
ft/s. What is the maximum force in the pile during impact
(E =30000 ksi.210kN/mm2, A = 15.5 in? (12HP53) 115cm2,
c = 16,800 ft/s 5,120m/s). ‘ ‘
Answer:
~ During the first instant of impact the particle velocity of
the pile top is also 10 ft/s

30000 (15.5 .
Thus: F = 10 = 16880 ) = 277 kips (1.26MN)
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2.2 Waye Speed
Let us now consider (Figure 2) the balance between the force
F = e¢AE

acting at a cross section and the resulting acceleration

v
AT

a.

of a piece of rod of mass density p and length AL. According to Newton's
‘second law

F=ma

which becomes‘(since m = Apal)
AE = - Apal
€ i Pe

but v = ce and Z%-— ¢ and therefore

eE

i]
O
m

O

and the wave speed becomes:

c = vE/p

Example 2:
Compute the wave speeds for steel (E - 30,000 ksi, Yy = 492 1bs/
ft%), concrete (E = 5000, v = 150 1bs/ft3), timber (E = 2000
ksi, v = 50 Tbs/ft%) and water (E = 295 ksi, y = 62.4 1bs/ft3).
y 1s the specific weight of the pile material.

Answer:

//— /E E Lks1] 7144000 (32.17) [ft/s]
vy 1bs/ft3

- E [ ksi
= 2152 /= F%bs/ft;]

e



-~

n

16,800 ft/sec
(5120 m/s)

C = /30000 (2152)
steel | Trgr—

Ceoncrete =/5000 (2152) 12,420 ft/sec

150 (3800 m/s)
C.. = Y2000 (2152) = 13,610 ft/sec
.tlmber "o ‘ (4150 m/s)
C = V295 (2152) = 4,680 ft sec
water o> , (1430 m/s)

Another relation is sometimes helpful. Usihg c = YE/p one can

'express the quantity, %é; in terms of the basic material properties:

EA =‘_§A.= A VEp
¢ YE/p -

This expression clearly indicates that equal changes of E or ¢ have
identical effects on the impedance.

3. Non-Uniform Piles

Suppose that a pile has a splice at midlength and that its properties

change below this splice (Figure 3). The top and bottom sections may have

impedances Itop and Ibot’ respectively. When the stress wave (

vimpact)
arrives at the splice a reflection (F

up? vup) will be generated such that
forces and velocities are in balance just above (subscript top) and below
(subscript bot) the splice.

Because of the reflection we have

vtop Yimpact + vup = Voot (continuity)

F = I ‘_'.I

top . “top 'impact - I

top Vup bot Vbot (equ111brjum)

Solving simultaneously

~ 2 Itop .

v = v,
bot impact Itop + 1 bot




and therefore

™
F = v. 2 Itog Ibot BEEN
bot impact Itop + Ibot _ b
or
F . =F, % Tbot
bot  impact Itop + Ibot

“Example 3: _
A nonuniform pile consists of two steel sections. The lower
section has a cross sectional area which is only one half
that of the top section portion. What are force and parti—
cle velocity in the lower section as a function of the
impact quantities in the upper-section?> '

Answer:
v = V. 2 Itop = 2 (]) =iv ‘ m"’
bot impact Ibot + Itop 1/2 + 1 3 "impact :
Eoap “lhot _2(/2) .2,
bot 1mpact Ibot + Itop ]/2 + ] 3 impact

As it will be shown later, the wave force in a pile is essential
for overcoming soil resistance forces. Thus, a reduction in cross sec-
tional area 1ike in Example 3 can essentially influence the pile's driving
behavior.

Another example of a "non uniformity" is a free end of a pile. This

means Ibot = 0. Therefore

v =2

bot v1‘mpact

and of course

Fpot = 0 (a§ required for a free end)
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The effect of "fixing" the pile bottom can be studied in a similar fashion.

Since this means that Ib t becomes infinitely large

0

and

4. Extension of Reflection Theory to a General Situation

Suppose we investigate forces and'velocities at a pile point, k, which

is located between two sections, top and bot through which the wave travel

time, Ati = A%/ciis equal. A resistance Rk may act at k. In addition, we

know at time t; the forces in the waves that travel downward, Fd top® the upper

section and upwards, Fu bot-,the lower section. The two waves meet at k at
time t, = t; + At;+ If we use again the conditions of equilibrium and con-.
tinuity we find

Fa,bot (t2) = Fy pop (t1) (2204)
* Fu,bot (t1) (Ztop - Zbot)‘
- Ry (zpg¢)

.

u,top (t2) = Fu,bot (ty) (Zztop)

* Fd,top (Zbot - Ztop)
+ Rk (Ztop)'
The various terms are shown in.Figure 4 at point k. The waves generate a
force ' |
F, = F '
k = "d,top (ty) + Fu,top (ty)
and velocity ’
vk = (Fd,top (tl) - F_U,top (tZ))/Itop

Integrating this velocity and expressi’ng.Rk as a function of velocity and
displacement leads to a wave equation approach after Fisher. A soil model
Tike the one proposed by Smith (see also Sections 5. and 7) may be used.
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5. Soil Resistance Forces

Thé‘soil opposes the pile penetration both through friction at the shaft
and through pojnt resistance. In order to achieve a permanent pile set a
shear failure has to be induced both at the pile - soil interface and at
the pile bottom. In addition the soil must be displaced at the bottom.
Experience has shown that the static load bearing capacity is related
to the driving resistance. However, additional considerations must be ‘taken
in the dynamic case: '

(a)

(b)

(c)

The static capacity may vary slowly after the driving process

if finished. It may increase (freeze) or decrease (re1axétion).
Reasons for fhese changes are pore water pressure changes, soil
remolding, stress redistributions inythe soil and others.

During driving the pile velocity changes rapidly. Thus the soil
displacement around the tip creates mass forces (acceleration
related forces). ‘

The driving process causes resistance forces at both the pile
skin and the bottom which are substantially increased because of
a high rate of shear. '

The usual approach to model soil resistance forces is

(a)

To predict freeze or relaxation from either soil mechanical
considerations or from experience or by redriving the pile after
a waiting period and observihg the difference in driving be-
havior.

The mass related soil resistance forces are neglected.

The velocity dependent increase of the shear resistance forces are

modeled by a linear dashpot. Actually, these dashpots are used



R 4 =

{ -

in pile dynamics to account for all energy losses in the soil that
are otherwise neglected (1ike the inertia forces of (b)).
The static resistance which is thought to be present both during driving
and during the later static loading is modeled elasto-plastically. This
~ approach is certainly justified in light of the uncertainties in the dynamic
resistance forces. '
Figure 5 shows actually measured soil resistance forces as they occurred
under the toe plate during both driving and a static load test of (a) a
3 inch pile in sand and (b) for a 12 inch pile in silt and clay. The dif-
ference between the static and the dynamic curves is due to dynamic
effects. For the case of sand the difference is very well accounted for
by the linear dashpot. Case (b), however,'presents large errors with this
mode] . ' '
 The soil resistance force, R, which is the sum of the elasto-plastic
static poriion, S, and the dashpot force, D, can be written as

where Jv is a damping parameter [kips/ft/sec], and v is the pile velocity
[ft/sec] at the point where R acts. S can be written as

_ ks (d) for d < g
>T s, fordzxq

as long as unloading ( velocity v<{Q) does not cccur. Su is the
ultimate static resistance at a point, kS is the soil stiffness, d the
pile displacement, q is the so-called quake, i.e. that pile displacement
at which the soil becomes plastic.

Damping parameters are often used in a slightly different form. While
JV is a viscous damping factor, the usual approach in pile dynamics is to
use

D = J(v)S

%

with J being the so-called Smith damping factor (thus, J = Jv and has dimen-
sions sec/ft). Another way to formulate a damping constant is by dividing
it by the pile's impedance. Then



Note that Jc i; ?ruly dimensionless. It ig referred to as the Case dampjng
constant.

An important advantage of.Case damping is that it allows a damping force
to be modeled where no static resistance force exists as in soft soils.
Also for analyses of changing static resistance values the damping paramefers
are kept constaht.

6. A Pile With Resistance at the Point Only

Suppose, énlimpact wave with velocity v, and force Fim =

impact pact
Ivimpact reaches a free pile end. It was previously found that a reflec-
tion wave would be generated such that Vioe = 2 vimpact' If the pile end'

moved through soil it would activate a resistance force

R = Jv v+SorR-= (JV+ 1) S |

Since R is suddenly applied it causes an additional (but_compressioﬁ) wave
to travel upwards through the pile having particle velocity (upwards):

vR = IR

Thus, the resulting pile toe velocity is

Vtoe T 2 Yimpact ~ IR
Substituting for R one obtains

= 2 - +

Vtoe 2 Vimpact : <JV Vtoe * )

in the case of viscous damping. Solving for Vige ON€ obtains

v - 2 Vimpact— Y1

toe
1+ Jv/I»




fr\@

\

S/1

(For Smith damping: v, = 2 Yimpact ™ , for Case damping;
- toe T+ J 5/1
v _ jmpact - S/1
. -“C‘
Thus vtoe becomes. zero when
S=21 Vimpact =2 Fimpact

In other words the largest static resistance force that the impact wave
can overcome is twice the impact force.
This formula does not tell howlmuch a pile would move given Vimpact’
I and S (this is dependent on the hammer mass), however, it clearly
gives an upper limit for S and emphasizes the importance of the impedance
I. The higher the pile impedance the larger the resistance forces that
can be overcome. |
Example 4: .
A cast in place pile (1.5 o diam., i.e. A= 1.77m", E = 40kN/mm-,
C = 4080m/s) is struck by a mass such that a 1.5m/s pile particTe
results. What maximum resistance can be overcome?
Answer: | |
s =2 (1.5) %%ﬂl 108 = 52,000kN
. (4,700 tons)
In reality, however, the maximum resistance activated by the wave will not be
much greater than 1.2 times (31,200kN) the impact force.
Another point may be of interest. We have seen that the Case damping
approach leads to a bottom ve]ocify

C
2 V. 'S—'A-

<
]
-
3
o
Y
9]
ot
m|

Subétituting‘s = 0 (no static resistance) and Jc = 1 one obtainé

v =V

toe impact
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In effect this means that no reflection wave is generated if a damper

witﬁ constan“t«JC =1 or JV = I is used. In other wdrds, the behavior

of an infinitely long, uniform pile is like that of a dashpot having a
damping constant equal to the pile impedance (of course, a linear dash-
pot is by definition a device whose resistance force is proportional

to the velocity). '

7. Effects of the Hammer to Pile Mass Ratio

The discussion of piling behavior should not be ended without
touching on the subject of hammer mass effects. So far indications
‘were that only the impact ve]ocitvaas of importance in driving a pile,
however, nothing was said about how much penetration was achieved by a
hammer blow. -

St. Venant, the father of the Wave Equation, had studied these effects
and had come up with a plot (Figure 6) showing the pile top force behavior
for various hammer to pile mass ratios. These plots were made for a v
fixed end condition. They were extended to also show the pile bottom
force. Of course, as shown above, initially the pile bottom force becomes
twice the impaét force. L/c¢c is the time that it takes a stress wave to
travel along a rod of length and is therefore that time at which the impact
is felt at the bottom. _

Two important results should be observed _

(a) The forces decay faster for smaller hammer massés.

(b) Upon wave reflection the pile forces increase to values
higher than the impact force if the hammer mass was
sufficiently large.

- The penetration of a pile depends on the difference between the toe
force (fixed case) and twice the static resistance force. The larger
the remaihing‘area the greater the penetratibn under a blow. Figure 6
shows that heavy rams can overcome a resistance force after time 3L/c
even if the impact force was less than Smax' Such a situation does not
often occur in reality.

-11-
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8.  The Lumped Mass'Wave Equation Model
8.1 Transition from Continuous to Discrete Systems

In deriving the expression ¢ = vE/p, Newton's Second Law was used
whicﬁistates that mass times acceleration equals force. We have considered
very small masses ALpA and very short time increments, At,for this dynamic
balance. '

[t is possible to use finite masses and finite time increments together

~ with Newton's Second Law to compute the pile forces and displacements at a

discrete number of points. Similarly, a ram can be divided into several
masses. Correspondingly, the elasticity of the pile can be modeled using a
finite number of springs. The errors involved are small if we consider
phenomena that change slowly with respect to the wave travel time in one
element. .

From measurements it was found that the forces and velocities in the
pile usually rise to their peak value in more than one millisecond. For
such rise times a segment length of five feet is sufficiently short. On
the other hand, diesel hammer rams which impact directly against a steel
anvil exhibit shorter rise times and a shorter segment length is recom-
mended.

8.2 The Pile/Soil Model

The pile is modeled by a series of masses which are connected by
springs and dashpots. Each mass is also supported (or its motion is re-
sisted) by an elasto-plastic spring and a dashpot which together represents
the soil action (Figure 7).

Spring constants, k, for the pile (and similarly for hammer components)
are computed using the relation '

- EA
k = AL

where AL is the length of a segment (or thickness of a cushion).
The masses are derijved from

m=Ap AL

-12-



Two important relations should be discussed

= JER T M A

. AL

m=/Ap AL = AL _ AL
//;. — ] L gy o

l

Thus, the impedgnce of a pile segment can be determined from the square root
of the product of mass and stiffness. This fact makes it easy to compute
the viscous damping factor from Cése damping constant given mass and stiff-
ness- of a segment.

Also important is that the ratio alL/c (which is the time that it takes
the stress wave to travel through the segment) can be determined from mass
and stiffness values. AlL/c is also called the critical time, Atc. Note
that the computational time increment At has to be smaller than Atc, a fact
that is considered in most programs.

' Spring and mass values are easily obtained from the equations stated.
The accuracy of the values is essential for a meaningful answer. The dash-
pots within the pile model are of lesser importance. Their constants are
not well known and are, as far as WEAP .is concerned, based on the pile's
impedance. Calling cp the dashpot constant between two pile elements.

_ EA 2
o = Cpp ¢ T00

where cpp.is the percentage of critical damping in percent (critical damping
is here defined as 2 EA/c = 2/k m for the spring next to and mass below

the dashpot). 1t is recommended to use values not larger than between one
and three (3) percent.

13-
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9. SUMMARY.
The discussion of the hammer induced stress wave has yielded a number

of important relations which are now summarized.

~I

. EA
1. F=yv c
2 c =/E/p
2 Itop
3. V., = V.
bot impact Ibot + Itop
F = ) 2Ib0t
bot 1mpa;t Ibot + Itop
c
v ___thOp-S_EI
toe 1 +4d
‘ c
_,EA
6f' Smax = 2 ¢ Vimpact
Jv
J=—§-

-14-

Force and velocity in a stress
wave are proportional. The pro-
portionality constant is equal
to the impedance EA/c.

The wave speed increases when-
Young's modulus increases and de-
creases when the material density
increases.

The velocity of the impact wave
increases when the pile impedance
decreases.

The force of the'impact wave de-
creases when the pile impedance
decreases. '

The velocity of the pile bottom '
can be expressed in closed form
if no skin friction is present.

The maximum resistance force that
an impact ane can overcome is .'
twice the impact vercity times
the pile impedance.

Smith's damping is equal to the
viscaous damping constant divided
by the static soil resistance.



10.

11.

12.

EA/c =/k m

Atc

Ap AL

=m/k

-15-
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Case damping is equal to the vis- - '
cous damping constant divided by
the pile's impedance.

A spring stiffness is calculated
as Young's Modulus times cross
sectional area divided by the
segment thickness (or length).

An element mass is the product of
cross sectional area, mass density

and element thickness (or length).

The pile impedance in the discrete

- case is equal to the square root of

the product of segment stiffness .
and mass.

The critical time increment fora
lumped mass analysis is given by
the square root of the ratio of
element mass to stiffness. .

,\\
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