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SOIL RESPONSE FROM DYNAMIC ANALYSIS AND MEASUREMENTS ON PILES
by Frank Rausche

ABSTRACT

An automated prediction scheme is presented which uses both
measured top force and acce1efﬁtioﬁ as an input and computes the
soil resistance forces actiﬁg on the pile during &riving. The
distribution of these resistance forces acting along the pile is
also determined. Shear and dynamic resistance forces are dis-
tinguished such that a prediction of total static bearing capacity
is possible. Using the shear force prediction a static load versus
penetration curve is computed for comparison with the resu’t from
a corresponding field static load test.

The method oF analysis uses the traveling wave solution of the
one-dimensional, 1ineqr wave equation. As a means of calculating
the dynamic response a lumped mass pile model is used and solved
by the Newmark s8-method.

Using stress wave theory two simplified-methods are deve]oped
for predicting static bearing capacity from acceleration and force
measurements. These methods can be used during field operations
for construction control when incorporated in a special purpose
computer. ' The automated prediction scheme and simplified methods
are applied to 24 different sets of data from full scale piles.

The piles were all of 12 inches diameter steel pipe with lengths

ranging from 33 to 83 feet. Also; 24 sets of data from reduced

pudy
s



scale piles are analyzed by the simplified methods. A1l predictions
are compared with results from static Toad tests. Correlation is
very good for piles driven into non-cohesive soils. For cohesive
soils better agreement with static Joad measurements are obtained -than
from existing methods. ~

As a check on the assumed soil response to both pile displace-
ment and velocity results from measurements taken at the pile tip
are investigated and discussed. Further, an approach to pile and

hammer design is described using the results of stress wave theory.
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CHAPTER 1
Introduction

With the recent deveiopment of electronic measuring devices for
short time phenomena it becomes feasible to record force and
acceleration at the top of a pile during the impact driving operétion.
Measurements of this kind provide information about pile and soil
behavior under hammer impact. A method to exploit these record
properties is presented in this thesis. The method yields informa-
tion about mggnitude and locations of external soil forces resisting
the motion of the pile.

The prediction of such soil forces during pile driving is complex
due to the variation of soil properties over time and space. In-
vestigations are difficult because only ihe pile top is easily
accessible for measurements and the usual static and dynamic
measurements do not provide enough information about external
forces acting on the §i1e below grade. Modern measuring techniques,
however, are shown herein to yield the data necessary to predict

forces below grade from information obtained at the pile top.

1. Problem Description and Related Investigations

A foundation usually is sensitive to deformations occurring
during and after the loading process. It is’, therefore, not oniy
necessary to qbtain knowledge about the bearing capacity of the
pile but also to predict tha deformations associated with the load.

The static load test of a pile after driving provides the most



reliable source of information. However, due to often rapidly
changing soil properties within relatively short distances many
static Toad tests have to be performed fbr»different piles, a
procedure that is not economical.

Good analytical results, i.e., a prediction o7 the deformations
of a pile under load, can be cbtained from so-called static for-
mulae if extended informatfon of soil properties is given in the
neighborhood of all piles analyzed. Poulos and Mattes (1), (2)
presented a realistic analysis by considering both pile and soil
deformations. More work done in the area can be found in LaPay (3)
and Coyle and Sulaiman (4). Besides the fact that it is not pos-
sible to determine soil properties at a sufficientiy large number
of locations erfors will also arise from applying laboratory
measured soil properties which are, in general, different from those
encountered around the pile after driving.

To avoid the difficulties encountered in the use of the above
static formulae, a commonly employed method relates bearing capacity
of fhe pile to the rated hammer energy and to the pile permanent
set under a blow. Thus, each pile can be tested individually during
driving. Energy‘or dynamic formulae have been developed which will
provide good predictions on the static bearing capacity of the pile,
provided, hammer energy and certain soil properties are sufficiently
well known. The Michigan Highway Commission (5) performed extensive
experimental research in order to answer questions about hammer out-

put cushion properties and the energy delivered to the pile, but the




question still remains as to what energy a hammer actually delivers
to the pile since hammer and cushion are subject to wear. Discussions
of dynamic formulae can be found in LaPay (3).

Hammer and soil properties alone are not sufficient to draw
conclusions regarding the ultimate bearing capacity of a pile.
Other important factors are the hammer impact velocity, and the

flexibility of cushion and pile. This means that pile dynamics
| or wave theory have to be applied as a means of'ana1ysis. First
attempts were made by Isaacs (6) and Fox (7) using the traveling
wave solution which St. Venant had introduced. (A summary of St.
Venant's method is given in (8}). The object of all these studies
was to find the resistance force acting on a pile during driving
when hammer energy and pile permanent set were given. Assumptions
regarding resistance force distribution and its variation with
time limited the applicability and accuracy of these methods.

With the introduction of high speed computers a numerical
integration of the wave equation became possible. Smith (9)

developed such a solution commonly referred to as “Pile Driving

Analysis by the Wave Equation". A major adVéﬁtééé-;fVLSjng such
a numerical method is the unlimited choice of a soil resistance
law. This method of analysis was also used by Samson,’Hiréch cnd
Lowery (10) and Forehand and Reese (11) for parameter studies.
Basically, these investigations'"by the wave equatioh" used’the
approach introduced by Isaacs (6) and Fox (7), wherein namely,

hammer energy and pile set were employed for predicting pile bearing



capaéity.

In orcer to overcome one of the major sources of error in both
dynamic formuiae and wave equation methods, Goble, Scanlan and Tomko
(12) proposed to take acceleration and force measurements at the
pile top during driving. To compute the static bearing capacity of
the pile they used a simplified model. It was assumed that the
soil resistance R(t), acting along the pile could be approximated

by Poncelet's Law:

R() = 3 R (v(e))]
i=0 (1.1)

where R, are constant and v(t) is the velocity of the pile which is
thought to act.as a rigid body. Applying Newton's Second Law at the
time to’ the time when the velocity becomes zero, Teads to

= - Maf )
R, = F(t;)) - Mait)) (1.2)

where R is interpreted as being the static bearing capaciﬁzz F(to)
i5 the Torce and a(to) is the acceleration, both measured at.the
pile top. M is the total mass of the pile. This prediction
scheme, referred te as the Phase I method, is simpie enough to be
programmed in a special purpose field computer to display the
static bearing capacity, Ro’ under every blow in the field.

The results obtained from Equation (1.2) were compared with
a static loaditest which was performed within a short time before
or after the dynamic measurement was taken. Soils change their
physical properties in response to driving operation. It was,

therefore, proposed to delay the load test for a waiting period




after driving had been completed and then only to restrike the pile
and take dynamic measurement.

Tomko (13) performed a study on.how to obtain pile static
bearing capacity by using the measured force as an analysis input
and compare the output, i.e., top acceleration, with the measured
one. As a mathematical model a continuous pile was used. A few
parameters describing the soil resistance were adjusted to yield
a match between theoretical and measured acceleration. The cases
treated in this study showed encouraging results. Aiso an im-
provement of the Phase I method was recommended, by time averaging
the second term in Equation (1.2) over some time before the time of
zero velocity. A disadvantage, however, of the continuous pile
modei used by Tomko was that only simple soil resistance laws could
be utilized in the analysis.

A large portion of Tomko's work was concerned with data
acquisition on both full and reduced scale piles. Since his work is
essentiai to the study reported in this paper a short review will
be given. A

His experiments on reddced scale piles involved statfc Idadv
tests and dynamic measurements under different soil conditions and
with vérying pile length. Two different static load tests were
reported, a Constant Rate of Penetration (C.R.P.) and a Maintained
Load (M.L.) test. The C.R.P. test yielded good results with
significant time savings. Full scale pile tests were performed

on actual construction sites. One test was reported which had



been conducted on a special test pile (referred to as F-30, F-50,
F-60). Here additional instrumentation was used also for obtaining
force records on locations other than the rile top.

Most of the piles tested were in coarse grained soils and
agreement was good when using either the matching technique or the
Phase II methcd. Resuits from reduced scale piles driven into
cohesive soils, however, showed very poor correlation. The question
as to the effects which soil properties and pile length had on the

rigid body simplified models could not be answered.

2. Preliminary Experimental Work

Experimental data are the basis of the method discussed 1in
this paper. Since much of the experimental work was performed in
a manrer as reported by Tomko (13) only a few special results are
discussed in this Chapter.

A complete set of data consists of force and acceleration
measured at the pile éop. Analytical resuits from such dynamic
data have toc be compared with a static load test. The load test
has to be performed within a short time of the dynamic measurements.
Conpiete data sets were obtained from a number of actual construction
piles and from reduced scale piles. The fecording and signal
conditioning equipment was essentially the same as in (13) also the
types of force and acceleration transducers were the same as
reported. Modifications had to be applied where special measurements
were undertaken. Two full scale pile tests deserve special comment.

In the first a site in Toledo was selected because cof its clayey




-

soil conditions (see Table (1.1) for the soil profile). It was
decided to drive two test piles one of 50 feet length (To-50)

and one of 60 feet length (To-60). Further physical characteristics
are given in Table (3.1). Both piles were instrumented along their
length'with strain gages. Two compiete sets of data were obtained
from each pile by testing the piles immediately after driving and
after a waiting period. Both C.R.P. and M.L. tests were performed
and their outcomes compared. Particularly interesting findings
will be discussed using To-60 as an example.

(i) Dynamic strain records were obtained from various locations
along the pile. As an illustration of this result see Figure (1.1)
which is a three-dimensional plot of force in the pile as a function
of time and piie length. Such results give further information
for correlation with analytical predictions.

(ii) The static load test showed a very 1rw ultimate bearing
capacity (43 kip) immediately after driv?ng but a strength increase
of 100 percent during the waiting peviod. This change is due to

high pore water pressures which build up during driving and which

are only slowly released during the waiting period. In sﬁch sbiiﬁﬁ
highly viscous driving resistance forces can be expected.

(ii1) The main static resistance was encountered at the pile
skin. Figure (?.2) shows the load versus penetration curves of
four locations along the pile. Also the forces in the pile are
plotted for different penetrations.

The second special full scale pile test was conducted in



Rittman, Ohio. Table (1.2) shows the soil profile encountered at the
site. Organic clays and silts of about 55 feet depth overlie a

hard iayer of gravel and sand: Hence, it was decided to drive a
pile first to & depth of 50 feet to obtain two complete sets of data
and then to extend the pile by diriving it until the hard layer was
reached. Thereafter, two more complete sets of data were to be
obtained. Results of these tests are discussed in more detail later
in this paper. However, two plots of the forces in the pile (before
and after thg pile hit the hard soil layer) are presented in Figure
(1.3 and 4). Forces in the pile were again plotted as a function of
time and pile length. A special feature of these tests in Rittman
was an accelerometer placed in the pile toe. Physical pile
characteristics are given in Table (3.1); the pile is referred to,
either as Ri-50 or Ri-60, according to the length at which it was
tested.

Further work was herformed on reduced scale piles such as
described by Tomko (13). Additional strain records from several
locations and an acceleration record from the pile tip were obtained
on piles driven into coarse sand (Table 1.3}. It was observed that
a shortcoming of tests on short piles was the relatively s16w rise
time of the pile top force at impact. Thus, .cushioning properties
were changed in order to make the reduced scale piles a better model

of full scale piles.




3. General Description of Analytical Work

The force and acceleration of the pile top recorded under a
hammer blow establish redundant information. In the usual dynamic
problem only one of these variables is prescribed together with the
external forces acting along the sides or at the other end of the
pile. Pile driving, however, complicates the problem in that
information can only be obtained at the pile top while the soil
forces acting along the pile are unknown. Thus, the usual analysis
process cannot be applied. Generally, the top force and acceleration
of the pile ;re dependent on the external forces so that an inverse
process of the usual dynamic analysis will yield information about
these unknowns.

In this paper .a method is presented which predicts the soil
resistance force distribution along the pile by using both as input
the acceleration and the force measured at the top of the pile. As
an introduction to the analysis the traveling wave solution is applied.
A detailed investigation of wave propagation in a pile under impact
is discussed in Chapter—1I; wherein-the-development-of-an.external .
force prediction scheme is also reported. It was found that the
Phase I and II simplified methods derived from a rigid pile model
can be studied on the basis of wave considerations and that an
insight in their actual meaning can be obtained. This, together
with proposals for improvement (Phase II-A) and the development of a
new - Phase III - simplified prediction scheme, is presented at the

end of Chapter II.



10

Chapter III summarizes the analytical results from both the external
force prediction scheme and from the simplified methods. Special
consideration will be devoted to the predicted force distribution
along the pile and to comparisons of predicted load vs. penetration
curve compared with that measured during a field static joad test.

In Chapter IV 1imitations and shortcomings of the proposed
method are critically investigated. Chapter V, finally, summarizes
the present work and includes suggestions about possible extensions
of the method and further necessary research.

Appendices contain the mathematical derivations along with
additional materia1 related to Chapter II. Appendix Al dea]s with
a Tumped mass analysis based on Smith (9) and Newmark (14). This
lumped mass analysis is a convenient tool for checking the validity
of dynamic predictions from wave theory. Appendix A2 presents the
Static analysis used for computing a theoretical load test by use
of the predicted external resistance forces. In Appendix A3 the
traveling wave analysis is developed as discussed in Chapter II.
Appendix B is a summary of studies required to interpret properly
force and acceleration records. Appendix C discusses validity and
Timitations 'cf the soil model used in the present prediction method.
Simplified computation schemes which can be used in a special purpose
computer are given in Appendix D. Finally, the computer program used
for the prediction of the external forces along the pile is described

in Appendix E by means of a block diagram.




CHAPTER 11

Analysis by the Traveling Wave Solution

1. Introduction

Already in the nineteenth century a stress solution for a
uniform and elastic rod struck by a mass had been derived by Saint-
Venant, see Reference (8). The method of analysis used the solution
of the one-dimensional, Tinear and homogeneous wave €quation }
Superposition of suitable waves yielded results for rods with either
prescribed end forces or displacements. Donnell (15) also used this
method and extended it for investigating various problems of one-
dimensional wave propagation including conical rods, nonlinear
material properties and problems where impact forces were applied
on locations other than the ends of the rod. The resuits of these
investigations were applicable to problems where the external forces
along thé bar were known and stresses or velocities of rod particies
were to be predicted.

Another approach of studying wave propagation in rods became a

convenient methddeith thé'use bf high sbéed digital computers. This
aﬁproach which breaks up the rod into several elements - lumped
masses - was introduced for pile driving amalysis by Smith (9)’and
applied by Samson, et al. (10) and LaPay (3) among others. In
these studies it was attempted to find out about certain pile,
hammer and soil characteristics by using pile set and hammer energqgy
as an input. In the present approach for using acceleration and

force records measured at the pile top both methods, wave and lumped

11
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mass analysis, will be used for devising a scheme in order to find
out about the external forces acting on the pile during the motion
of the pile. In this chapter relations wi11'first be discussed
which exist between sfresses and particle velocities in a stress
wave traveling through a rod with various boundary conditions.
Then conclusions will be drawn on the effects which soil resistance
forces have on the hammer applied stress waves. For this a spring-
damper soil model will be used. It then will be attempted to describe
a prediction scheme for determining the magnitude 6f these soil
passive forces which are initiated by the mqtion of the pile under
the hammer blow. This method will make use of the two records
measured at the pile top: force and acceleration. The acceleration
will be applied as an input, i.e. as a sensor wave. Sdi] reaction
forces initiated by this sensor wave also produce stress waves which
can be separated from the hammer input by means of the measured
force. Knowledge of the mechanics of wave propagation will now
give a tool for locating the source of these soil resistance forces
and computing their magnitudes. |

Finally, again using wave considerations existing approximation
schemes for predicting static bearing capacity will be critically

investigated and a new method will be deQeToped.

2. Fundamentals of Wave Propagation in a Uniform and Elastic Rod
A continuous rod under impact having non-zero force cr displace-

ment end conditions and external forces acting along its length
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can best be analyzed by use of a Tumped mass system. In such an
analysis the rod is divided into connected elements whose elastic
and inertial properties are represented by springs and Tumped masses,
respectively. Since it is necessary herein to check predictions
from wave theory the lumped mass analysis is a necessary and
convenient tool. It is described in detail in Appendix Al. A few
remarks are appropriate.

The method as developed by Smith (9) uses a so-called Euler
intearation scheme. This method computes the displacements of all
rod elements at a certain time by means of linear extrapolation
from values computed for an earlier time. This way an approxima-
tion error is made and carried through the subsequent computations.
The results can be only a good approximation to the behavior of ths
discrete system if the time increments are chosen small enough.
This, however, can introduce numerical errors due to the limited
number of figures carried in the computétions and will certainly
add to the amount of computation time. In order to overcome this
difficulty an improved numerical integration was proposed by Newmark
{14). At every time step the Newmark methcd uses the result
obtained from the Euler method as a prediction and computes a
correcticon by checking on the dynamic balance of the whole system.
Prediction and correction are then considered a new prediction
and new corrections computed until the process converges. Then
only, the computation proceeds to add the next time increment. By

use of this method both accuracy and stability of the solution
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is essentially improved without increasing excessively the computation
time. Studies on accuracy, stability and computation time of the
solution are investigated in Appendix Al together with the question as
to the necessary number of pile elements for a good representation

of the continuous system.

For deriving qualitative results and for obtaining an insight
into the propagation of hammer applied stresses the wave theory
treatment of the continuous pile is of great help. Appendix A3
shows how the stress or particle velocity can be computed at a point
along the pile even if the pile is subjected to complicated external
force conditions.

A stress wave 1is due to a difference in stress between
neighboring cross sections, so that no static equilibrium exists.
The stress gradient causes accelerations of particles. Therefore,

a dynamic ba]anée exists between inertia forces of particles and
stresses in such a wave. In a uniform and elastic pile where no
external forces act the stress gradient will travel through the
rod without being changed in magnitude so that particle ‘velocity
or acceleration are predictable for a point along the rod if they
were known for some time at another location. The_speed of
propagation, commonly denoted by c, depends only on the material
properties of the rod. It is equal to vE/g where E is Young's
modulus and p is the mass density of the material. In a uniform
rod the stress gradient will cause the same particle velocities

independent of the location at the rod. An important result of
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this fact is the proportionality which exists between stress and
velocity in a stress wave, providing a convenient means of calculating
the one if the other one is known.

When the stress wave arrives at an end the stress gradient
will be changed. For example at a free end the particles will be
subjected to higher accelerations (twice as high in a uniform rod)
since no further material is strained in front of the wave. How-
ever, due to the higher acceleration a new stress gradient builds
up between particles next to the end. The dynamic balance can be
maintained only if another wave travels away from the end. This
stress wave will be called a reflection wave. At a free end a
reflection wave changes the sign of the stresses. At a fixed end
where the stresses build up to twice their original magnitude and
no acceleration of particles is possible the particle velocity in
the reflection wave will point in a direction opposite to that in
the arriving wave. A-°more detailed discussion with quantitative
results is given in Appendix A3.

_If a load is applied at some point along the rod then a tension

and a compression wave will be built up on both sides of the loaded
section causing two stress waves to travel away from the load. In

a uniform rod these two waves will have the same stress magnitude
equal to one half of the applied stress. This is necessary to
satisfy the condition of equilibrium at the loaded point and in order
to satisfy the condition of continuity the particle velocities in

both waves have to be the same.
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For no internal damping or external forces present stress waves
will continue to travel along the rod always generating reflection
waves at the ends. If stresses are observed at a particular cross .
section after the impact forces ceased to vary then the stresses
will oscillate about the static value. Velocities observed this
way would oscillate about zeroc if the rod is fixed at one end or
about the value obtained from Newton's Second Law for a rigid body
in case of the unsupported rod.

In the present analysis two records, continuous over time, are
available. The first question is as to which is more convenient
to use as an input. Because of the proportionality connecting stress
to velocity in a wave in an infinitely long rod both the force
or the velocity {acceleration integrated over time) seem to be equally
well suited. Comﬁaring the measured force with velocity obtained
from the measured acceleration shows that this p}aportionality exists
- only in the beginning. of the record. This can be observed in
Figure (2.1). Deviations from this proportionality can be due
either to the finite pile length and reflection waves or the action
of the soil, resisting the motion of the pile particles. If the
‘pile is of finite léngth and no forces are assumed to act along the
pile then by accounting for reflection waves generated at either
cnd of the pile the velocity can be calcuTaied from the force or
vice-versa. The output from the calculation can be compared with
the other meaSured guantity.

Suppose that the velocity were derived from the measured

force for a free pile of actual Tength L. If this solution would
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agree with the measured velocity then this would indicate that the
actual pile had indeed no resistance forces acting. In general,

this will not be true. A difference between the actual and the thus
derived velocity could be interpreted as a top velocity effect due to
the soil resistance forces.

The other alternative is to compute the force on top of the free
pile of length L using the velocity as an input. The difference
between measured and computed force at the top is the force effect
due to the soil action. Since it is intended to predict forces
along the pile it seems natural to select the second way of
analysis. This yields a top force effect versus time relation due
to the resistance forces. The advantage of this choice will become
apparent when such difference curves are analyzed.

To understand the meaning of the above described top force
effect the boundary conditions have to be examined. The free pile
solution is defined to have the prescribed measured velocity at th?
top and zero forces along its length and bottom end. The actual

pile has the same velocity at the top and the real resistance

forces acting along its length and the bottom end. Thus, the
“‘difference between the measured top force.of the actua1 pile and that
"Of'the free pile will be the top force for‘a pi]e whose top has

‘fixed end conditions being subjected to the actual resistance forces.

This difference will be referred to as the Measured Delta Curve.

The advantage of dealing with the Measured Delta curve rather
than with either measured force or acceleration is the fact that the

effect of the actual resistance forces on the force at the pile top
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has been separated from the forces due to the applied velocity. The
measured velocity or force show very different characteristics
depending on the hammer properties. Properties of the Measured
Delta curves are independent of these hammer characteristics and,
therefore, can be compared even if obtained under different driving
conditions.

It i1s next supposed, that the resistance forces acting on the
actual pile can be represented by concentrated equivalent forces.
The Measured Delta curve can then be thought of being the result of a
superposition of top force effects from each of these concentrated
forces. Each of these top force effééts is due to the action of
only the one particular force acting on the pile with fixed top.

-Such a top force effect will be called a Resistance Delta curve.

In case of a pile havihg only a résistance force acting at one
station, the Measured Delta cufve would be equal to the Resistance
Delta curve for this station if the resistance force versus time
re]ationvis the same in both cases.

The Resistance Delta curve is a theoretical force versus time
relation. It can be obtained for each force acting on the piie as
a function of time. Since resistance forces acting on the pile depend
on displacement and velccity at the point of action the Resistance
Delta curve is to be computed by first computing the top force for
a:pi1e with the actual top velocity and the considered resistance
force acting. Then the free pile solution has to be subtracted as
in the case of the Measured Delta curve. It must be kept in mind,

however, that obtained this way the actual resistance forces
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influence the pile displacements and velocities so that the
Resistance Delta curve computed in the above described way can

only yield an approximation of the real top force effect. Examples
for both Measured and Resistance Delta curves will be given below
after a discussion of how resistance forces are functions of dis-

placements and velocities.

3. Relations Between Delta Curves and Soil Resistance

In the previous section a way was illustrated of identifying
the soil reaction forces. The soil behavior will be thought of as
being dependent on the pile disp]acemént and velocity assuming that
the soil motion is negligible during the short time considered. The
" knowledge of pile top velocity and force makes it possible to predict
the velocity of any other point aiong the pile allowing conclusions
on the soil resistance. The Measured Delta curve will be used to

determine the magnitides and locations of soil model parameters.

(i)} Shear Resistance at a Point Along the Pile
 Shear resistance will be designated herein as all of those resis-
tance forces which are independent of the rate of loading. Thus, shear
resistance parameters of soils or of the pile soil interface can
be determined in a static test. Aithough the type of soil failure
is at the pile bottom very different from that at the pile skin no
differentiation will be attempted. Furthermore, the term shear
resistance will be used independent of the nature of these static

forces. They might be either due to cohesion or due to internal
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friction.

Triaxial tests on sands and clays show basically the same
tendency of shear versus displacement beh:vior. The shear strength
can be represented in first appro%imation by a straight Tine untii
a load value - herein called the ultimate shear resistance - is
reached. While in clays it is usuéIly not possible to reach higher
values of shear stress even for large deflections sands usually
show a strength increase after the ultimate strength has been
reached. Since this strength increase goes with a much smaller
modulus in the beginning of the curve it might not be essential
for considerations dealing with relatively small dynamic displace-
ments. However, some special considerations can interpret the
results obtained Trom such an assumbtion. This will be discussed
in Chapter III.

The ultimate shear resistance is reached at a pile deflection
value which is usually called "quake" in the pile dynamics literature.
Thus, the stiffness of the soil for deflections smaller than the
quake is the ultimate shear strength divided by the quake. It can
be assumed that the soil has the same stiffness during unloading.
See Figure (2.2) for an example.

The value for the quake was found not to be critical for pile
driving analysis. Smith (9), for example, recommends a value of
0.1 inches. It was found in analyzing actual records that the
displacement reached at the time of maximum velocity is usually
in the neighborhood of this value. Choosing that displacement

as the value for the quake has the advantage that the quake will
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always be exceeded by the pile displacements. This is a necessary
condition for obtaining a final set under the hammer blow and for
reaciiing the ultimate capacity. Also, the number of unknéwns will
be reduced since the knowledge of ultimate shear strength is now
sufficient to describe the shear versus disp]acemeni behavior
completely. Table {2.1) lists the quake values used for some of
‘the piles analyzed. As an upper bound .12 inches had been used.
Because of the action of resistance forces the displacements at
maximum velocity are usually smaller at the lower parts of the pile
than at the top. Thus, the quake will not be constant throughout
the depth of the pile.

The force versus time relation of a shear reéjstance force

is easily described when the displacement of the pile at the point
where the resistance acts is known. The displacement at the point
where the force acts will be zero as long as the stress wave due to
the impact did not arrive at this section. At a time, given by the
distance from the top divided by the wave speed, the displacement

will start to increase and a reaction force will be exerted on the
pi]é; This force will send out two reacticn waves in either
direction along the pile according to the previously discussed |
conditions of equi1ibrium and continuity. The total reaction force
will be directed upwards and consequently the stress in the upwards
traveling wave will be compressive, that in the downwards moving
wave will be tensile. Because of the choice of quake discussed
above the quake will be reached at the time when the particle

velocity at the considered section becomes a maximum. After this
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time no further increase in reaction force can be observed, i.e..
the reaction force stays constant until the displacements start to
decrease. Then unloading will start. |

In order to describe the Resistance Delta curve for a shear
resistance at some point, say at a distance X4 below the top, a
hypothetical case is considered: The pile is fixed at the top, the
bottom is a free end (except if the shear would be acting at the
bottom end itself) and the shear force is assumed to be known as a
function of time as developed above. For the discussion here this
relation can be simplified by assuming that the shear resistance
force is zero until a time x;/c and equal to the ultimate shear
resistance thereafter (Figure (2.3a)). This assumed resistance
force versus time relation is .realistic as 1oﬁg as no unloading
occurs.

The stresses in the two generated waves are equivalent to one
half the ultimate resistance force. First the upwards moving wave
is considered. Its stress is compressive. At a time 2xi/c it will
reach the fixed top causing there a reaction force of twice the
force in the wave - i.e. a force equal to the ultimate shear

resistance. The reflection wave, traveling now downwards, will

also have a compressive stress equivalent to one half of the ultimate

shear resistance. This reflection wave will be a second time

reflected at the pile bottom. Here a free end condition is encountered

causing a new reflection wave with tension stresses. At a time
@xi + 2L)/c this new reflection wave will again reach the top but

this time with opposite stresses. The top force effect, therefore,
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becomes zero at this time. Figure (2.3b) illustrates the action
of this initially upwards moving stress wave.

Turning now the attention to the initially downwards moving
stress wave which has a tensile stress, again equivalent to one
half of the ultimate shear resistance, it is observed that at a
time L/c this wave reaches the free bottom end causing a reflection
wave of compressive stress. This wave reaches the top at time 2L/c.
The effect at the fixed top will be a reaction force of twice the
force in the wave, i.e. 2 force equal to the ultimate shear resis-
tance. A reflection wave caused at this instant will return not
before time 4L/c. No consideration wiilhbe given to effects after
this time. Figure (2.3c) shows the way the initially downwards
moving wave travels along the pile and finally Figure (2.3d) is a
plot of the Resistance Delta curve for the shear resistance obtained
from superimposing the top force effects of both waves. Summarizing,
this Resistance Delta curve reaches a value equal to the ultimate
shear resistance at time 2x,/c twice that value at time 2L/c and
decreases again to ongvtimes the ultimate shear resistance at time
2(xi + L)/c. If the shear resistanéé forée Qbuid aét atwfﬁewﬁbfibhww .
end of the pile then the two waves would act as one wave moving
together upwards with a stress equivalent to the ultimate
shear resistance. Examples of these Resistance Delta curves will

be demonstrated in the next section of this chapter.

(ii) Dynamic Resistance Forces

Dynamic resistance faorces are usually assumed to be proportional
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to the pile velocity at the location of the resistance force. This
can be modeled by a linear viscous damper and, therefore, dynamic
resistance forces are also called damping forces. The linear
force velocity relation is the feature which distinguishes dynamic
from shear resistance forces. Thus, dynamic forces change magnitude
while shear resistance forces stay constant after the quake is
reached.

In order fo construct a Resistance Delta curve for a damper at
a distance X; below the top the force versus time relation must be
found. In the case of a linear damper this means that the velocity
of the pile section where the damper acts must be known. Waves due
to the damping forces, however, will influence this velocity and
the computation amounts to a rather difficult bookkeeping of
reflection waves. Examples are discussed in Appendix A3. For
obtaining an understanding of thé main features of a Resistance
Delta curve for a damper the assumption will be made that the damping
forces are small as compared to the forces applied at the top of the
pile. If this'is the case then the velocity at the location of the
damper is equal to the pile top velocity at a time xi/c earlier.
This is valid until the wave applied by the hammer has been
reflected and reaches the damper a second time. Since the reflection
was at a free end the velocity in the reflection wave will have the
same sign as the applied wave thus increasing the velocity at the
damper. Without giving more detail about further changes of the
velocity at the damper the Resistance Delta curve for this damper will

now be investigated. Again the top force effect due to the damper
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will be the result of a superposition of the effects of the two
waves generated by the damping force. One of both waves will move
upwards to the top so that the damping force can be observed at the
top in equal magnitude at a time xi/c later. The second wave will
arrive - after reflection at the bottom end -~ with a time delay of
(2L - xi)/c. Together with this wave, however, the wave which is
traveling upwards is arriving at the top. The damping force
causing this wave will be increased by the bottom reflected
impact wave so that a maximum force effect at the top will
result from superposition of both arriving waves. Since in most
of the cases of pile driving the impact applied velocity will
decrease immediately after its maximum also the effect at the top
will decrease after its maximum which is different from the

Resistance Delta curve for a shear resistance.

4. .Discussion of Computing Delta Curves and Their Meaning
In the preceding sections two different kind of Delta curves

were introduced: The Measured and the Resistance Delta curve.

Both have in common that they represent resistance forces, acting
along the pile and a means of separating their effect on the pile
top from the effect which the hammer applied force has on the top.
If Resistance Delta curves are found so that their total sum is
equal to the Measured Delta curve then the resistance forces are
known which were actually acting on the pile when acceleration and
force were recorded.

In order to obtain either a Measured or a Resistance
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Delta curve two other curves must be found. First, the "free

pile solution", i.e. the force on top of a pile whdse top input
velocity is the prescribed record but has no otker external forces
along the rest of the pile. Second the fokce effect on top of the
pile must be found whose top has again the prescribed velocity but
has resistance forces acting along the pile. In the case of
Measured Delta curve this second curve is the force curve measured
in the field. In the case of Resistance Delta curve this second
curve is determined analytically as explained in the next péragraph.

The first curve which is the free pile solution is obtained

either by performing a lumped mass analysis or by using Equation
(A3-18). This equation computes the exact solution by accounting
for the effects of the applied forces as well as those from reflection
waves. Equation (A3-18) can be applied without the use of a digital
computer. A disadvantage in using a closed form solution arises

in that if it is subtracted from a solution obtained by lumped mass
analysis then differences due to inaccuracies in the numerical solution
might be introduced which can distort the appearance of the desired
Delta curve. For obtaininé the second curve - a pile top force due
to a resistance force acting on the pile and the measured velocity at
the top - a lumped mass analysis has to be employed because the force
versus time relation depends on the pile motion. As indicated

above in the case of the Measured Delta curve this second solution -
where the resistance forces act along the pile and the measured
velocity is prescribed on top - is the recorded force itself.

Figure (2.4) shows the "free pile solution" as obtained from
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Equation (A3-18). The velocity from which this solution was derived
is also plotted after having been multiplied by the proportionality
factor EA/c. (A is the cross sectional area of the pile, EA/c
relates particle velocity to force in a stress wave).

Three Measured Delta curves are presented in Figures (2.5,6,7).
The records were obtained on a special test pile. Figure (2.5)
shows the measured force and velocity and the derived Delta curve
from records taken when only half of a 50 foot pile had been driven
into the ground. The soil offered almost no resistance to driving.
The curves in Figure (2.6) are results obtained after the pile had
been driven to a depth of 48 feet. A load test performed after this
record showed an ultimate strength of only 47 kips. Later, the pile
was extended and driven to a depth of 58 feet. At this depth the
pile tip hit a hard layer. Figure (2.7) shows results obtained
from records taken under these conditions. A load test wés again
performed and carried-up to a lcad of 180 kips. At this point
no higher loads could be applied because of instability in the test

set—up: o

A1l three Measured Delta curves in’?iguresy(z.s, 2.6, 2.7§V3how
a steep increase at a time 2L/c after impact due to the returning
impact wave which has been changed under the action of resistance
forces. Fbr the pile which vas only partia]iy driven into the
ground it was not‘possib1e to obtain higher impact velocities than
shown in Figure (2.5) because of the relation between resistance
and applied energy‘in case of Diesel hammers, one of which was

used to drive this 2ile.
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However, the fact that the top velocity increases again at a time
2L/c after impact indicates that the resistance forces were sending
out waves of smaller magnitude than the applied wave. The Delta
curve itself stays zero (small values both positive and negative,
due to measurement inaccuracies, were set to zero until the point
where the Delta curve starts definitely to increase) until a short
time before the steep incrcase. After the maximum it decreases
again with a steep slope. The late onset of positive Delta values
indicates no resistances along the upper portion of the pile skin
and the rapidly decreasing nature of the curve can be explained
with mainly dynamic resistance forces.

The Delta curve in Figure (2.6) shows somewhat different
features. Already a short time after impact positive Delta values
are observed corrésponding to the fact that resistance forces are
acting along the upper portion of the pile. The behavior of the
curve displays again a sharp decline after the maximum but holds
some constant value until time 4L/c. Thus, large dynamic forces
and small shear resistance forces are present. |

A very different Delta curve is obtained from those records
taken after the piie has hit the hard layer shown in Figure (2.7).
Tﬁe resistance encountered by the shorter pije along the skin can
again be observed before the steep increase.. This time, however,
the maximum of the Delta curve is much larger as compared to these
skin forces. Also the amount of decrease of Delta after the.maximum
is relatively smaii. Another interesting observation can be made on

the measured force record in Figure (2.7).. This force shows a
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definitive increase after a time 2L/c after impact. Clearly this
increase must be due to the reaction waves sent out by the high
resistance forces acting at the tip of the pile.

The negative values in the Measured Deita curves occuring
after 4i/c and before 6L/c are due to the fact that the resistance
forces do not stay constant but decrease in magnitude. Simplified
examples in Appendix A3 will c1arify this fact.

For obtaining an insight into the meaning of the Resistance
Delta curves five different combinations of resistance forces have
been used and applied on the pile and the top force computed for the
case where the velocity of Figure (2.7) is prescribed on top of the
pile. Then the free pile solution obtained from lumped mass
analysis was subtracted.

First a shear resistance force having an ultimate of 75 Kips
was placed at the pile tip. Figure (2.8) shows that the resistance
Delta curve for this case obtains a value of 150 kips after a time
2L/c after impact. Subsequent oscillations are due to the finite

number of elemerts in the Tumped mass analysis.

Next,”a shear résiStance of 50 kipsﬂwasyp1aced at a distance
of 0.6L below the top of the pile. Figure (2.9) shows that in this
case the Resistance Delta curve first reaches a value equal to this
shear force at a time 0.6(2L/c) after impact and a value of twice
that much at 2L/c (always after maximum velocity). It is expected
that the Delta curve decreases again to 50 kips at (1 + 0.6) 2L/c,
however, because of unloading (the applied velocity has decreased

.........

considerably) the Delta curve actually decreases to even smaller
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values.

Two shear resistance forces of 25 kips ultimzte each were
placed at the pile at a distance 0.4L and 0.8L below the top. The
result is plotted in Figure (2.10). Corresponding to the distances
from the top at which these forces act the Delta curve shows a value
of 25 kips at 0.4(2L/c) and 50 kips at 0.8(2L/c) after impact. Finally,
at 2L/c after impact the Delta curve increases to two times the
acting ultimate resistance forces (100 kips) due to the return of
the bottom reflected waves. The decrease, thereafter, is again
due to both returning tension waves and unloading.

Similar investigations were performed with dynamic resistance
forces. Figure (2.11) shows the Resistance Delta curve for a damper
at the pile tip. The damping coefficient is 0.2(EA/c). Using
Equation (A3-31) the magnitude of the generated damping forces can
be calculated using wave considerations‘and compared with the result
from Tumped mass analysis. The Delta curve is in this case an
image of the applied velocity shifted over a time 2L/c and multiplied
by a factor 0.2(EA.c)2.

A damper located at 0.6L below the top having the same coeffi-
cient exhibits a Delta curve va1ué greater than zero already at a
time 0.6(2L/c). This is shown in Figure (2.12). However, the
proportionality between Delta curve and velocity cannot be observed
anymore after time 2L/c after impact since the Delta curve becomes
here the result of a superposition of two waves: The wave reaching
directly the top and the wave initially moving towards the bottom

of the pile where it had been reflected. When the latter wave reaches
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the damper on the way upwards it itself will influence the damping
force. Together with this wave reaching the damper the hammer applied
velocity will arrive a second time at the damper after having been
reflected at the pile tip. This velocity will superimpose to the
velocity applied by the hammer and reaching the damper directly.
fhe damping force at this instant, therefore, will increase, its
effect will be carried to the top by the directly upwards moving
wave and, in addition, the previously generated damping force will
increase the Delta curve a second time due to the arrival and
réf]ection of the initially downwards moving wave. The absolute
maximum of the Resistance Delta curve in Figure {2.12) is the

result of this superposition.

5. Proposed Prediction Scheme for Computing Soil Resistance

The considerations on stress waves due to resistance forces
indicated that from the early portion of the Measured Delta curve
conclusions could be drawn on the location and magnitude of
resistance forces and that from the variation of this Delta curve a
criterion could be derived for separating dynamic from shear
resistance forces.

The first step to be undertaken in devising an automated
routine for brediction of thesé reaction forces is to compute the
Measured Delta curve which is possible in closed form by using
Equation (A3.18). From this an estimate of the total maximum
dynamic and tota} shear resistance force may be calculated using the

Phase III scheme of predicting the static bearing capacity which
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also gives an estimate on the maximum damping forces. This prediction
scheme will be discussed both in Section 6 and in Appendix D.

Next, an assumption has to be made about the distribution of
these dynamic resistance forces. Since it is not possible to obtain
criteria which would indicate locations of dynamic forces several
distributions will be attempted and then a final selection taken.

In a first trial the total dynamic resistance is assumed to act
only at the bottom end of the pile.. Its influence on the top force
can be thought of being proportional to the top velocity with a

time delay of 2L/c as it is demonstrated in Figure (2.11). This
gives a means of reducing the Measured Delta curve by the dynamic
effect so that a Reduced Delta curve reflects the effects of shear
resistance forces only. For ease in predicting the shear resistance
forces this Reduced Delta curve can be reduced further to cancel
out the effects of the reflection waves arriving from the bottom.

In this case a Resistance Delta curve fbr‘one half of the total
shear resistance force placed at the pile tip is subtracted.

The reason for this is that such a Resistance Delta curve which is
subtracted approximates the top force effects of all bottom end
reflected waves due to shear resistance forces including the immediate
reflection effect of the toe shear resistance. It includes,
therefore, the quake effect. It is now assumed that the Resistance
Delta curves for the various resistance forces to be determined are
Zzero until in/c after impact and equal to the ultimate shear
resistances, thereafter, if they are acting at a distance X; below

the top. Then requiring that the sum of the individual Resistance
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Delta curves is egual to the Reduced Delta curve leads to the
magnitude of the ultimate shear resistances at all locations X; by
successively solving starting with the upmost resistance forces.
Thus, the bottom shear resistance will be determined from the
Reduced Delta curve at 2L/c after impact. If the predictions and
the soil model accurately reflect the veal physical behavior then
after the shear resistance forces had been computed from the
record driving 2L/c after impact then the second time period

2L/c < t < 4/c (t = 0 at impact) should also be matched. For
further details see Appendix A3, Section 5.

In order to complete the prediction the damping coefficient
for the bottom damper has to be computed. Since the maximum pile
tip ve]ocity can be approximately predicted using both Measured
Delta curve and measured top velocity, as shown in Appendix A3,
Equation (A3.58) the dariping coefficient can be calculated by
dividing the maximum ‘total dynamic resiétance by the maximum pile
tip velocity. Only wave considerations have been used for predict-
ing the combleteﬂset of a soil resistance parameter. Simplifying
| assumptioﬁs, however, were used since the effects of resistance
forces on pile.displacements and velocities can initially only be
estimated. Thué, a check and refinement on the predicted forces has
to be made. Placing the predicted shear resistance forces and
the bottom damper as determined above at corresponding elements of a
lumpgd mass pile model and performing an analysis will yield a .
new predicted’;op force and the velocities and diSplacemeqts

along the pile. Subtracting the new predicted top force
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from the measured one gives a new difference curve which can again
be thought of being a Delta curve. Errors in the prediction of

soil resistance forces causing this new Delta curve - which will

be referred to as an Error Delta curve - can arise in part from
inaécurate]y estimafing the pile tip velocity so that damping
coefficient times maximum velocity will not amount to the maximum
damping force necessary. Other errors may be introduced due to the
neglected portions of the shear resistance Delta curves before the
uivimate shear resistance is reached. This error will be larger for
Jonger rise times at impact, i.e. the longer it takes for the
displacements to reach the quake. If this time is longer than twice
the time in which two consecutive elements reach the quake then

the effect of the increasing resistance force on the next lower
element will add to the predicted top force. These errors will
cause a deviation of the predicted from measured force over the

first 2L/c after impact. Deviations in the later portion of the re-

cord will be corrected after the first 2L/c match sufficiently well.
Improvements on the new prediction can be obtained first by
computing a new damping coefficient using the pile tip velocity
determined by the lumped mass analysis and then by computing
corrections on the previously predicted shear resistance forces by
using the Error Delta curve as a Measured Delta curve. By repeating
this process it is usually possible to obtain finally an Error
Delta curve which is small over the first 2L/c of the record.after
impact. (§ee also Appendix A3 for a computation example). A

criterion on the qualiiy of the match can be established by
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integrating the Error Delta curve over certain intervals, say from
0 to 2L/c and from 2L/c to 4L/c, and dividing the integrals by the
time intervals used. It was found that the requirement of making
an average value small is sufficient for obtaining a good match.
The only time that rapid changes in the predicted top force can
occur is at 2L/c after impact. At this time refiection waves from
hammer applied velocity and resistances forces reach the top. Other-
wise Resistance Delta curves show a smooth behavior. Special
consideration is given to their match at 2L/c (see Aprendix A3).
Once the absolute value of the average error of thefirst 2L/c
does not anymore improve or once it is small enough tne attention
has to be directed to the later portion of the record (2L/c to
4L/c). 1In this portion a difference between measured and predicted
force can arise due to a wrong prediction of total dynamic
resistance forces. Comparing the "Resistance Delta curve obtained
for a damper at the pile tip as in Figure (2.11) with that for a

shear resistance force, Figure (2.8), it is found that the shear

resistance produces a higher @qp’force effect after 2L/c than the
 damper. Thus, if the Error Delta curve 1is matcﬁéd overvfhé>f€;§f -
2L/c but becomes positive after 2L/c i.e. the predicted top force

js smaller than the measured, then the shear resistance force at the
tip has to be increased and the dynamic resistance has to be decreased.
Of course, for a negative Error Delta curve after 2L/c the opposite
has to be done, namely shear resistance has to be replaced by damping.
The match over the iater portiocn, therefore, is dependent on the

distinguishing features between dynamic and shear resistance
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behavior.

Once a best match is obtained for a model with one damper
at the pile tip two other approaches are used for distributing
the dynamic resistance forces. In these two predictions damping
is first distributed along the pile skin so that the first portion
of the record (2L/c after impact) is matched by the effects of the
dynamic forces only, or if the damping forces are too small, a
uniform damping distribution is used together with shear resistance.
In a third trial one damper is placed at the location where the
maximum skin shear resistance force was determined in the first
distribution method. Another damper - if the total dynamic
resistance force is Targer than the repiaced skin shear resistance
force - is again placed at the pile tip. In both cases of damping
distribution the damping coefficients are determined from the re-
quirement that the sum of the Resistance Delta curves for all
dampers equals at 2L/c after impact twice the value of total
damping computad from the Phase III method at this time.

Since the maxima of the velocities along the pile during the
first L/c after impact, i.e. before the impact wave is reflected
at the bottom are dependent on the magnitude of resistance forces
and not on the kind of resistance forces acting (as long as no
reflection waves are superimposed it is possible to obtain an
estimate on the maximum velocities from Measured Delta curve and
measured velocity) the velocities obtained from the best match in

the first method can be used for computing the damping coefficients
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for the dampers distributed according to the two trial distributions.

Obtaining a match for these distributions must be done under
consideration of the variation of the Resistance Delta curves for
dampers along the skin. Thus, it is best for ease in computation
to set up a influence matrix which contains numbers reflecting
the top force effects at a time j of a damper at some location 1.

A similar matrix can be set up for the.influence of shear resistance
forces. These two matrices which actually contain the information
which Resistance Delta curves provide only for a distinct numbers
of points are discussed in Appendix A3.

Once a final Error Delta curve has been obtained for all three
damping distributions a final result for estimating shear resistances
and damping can be obtained by using a linear combination of all
three results. A minimum of the final Error Delta curve can be
obtained by performing a least square analysis on the previously
obtained smallest Error Delta curves, fdr the three types of
damping distribution.

Again, as in all previous‘predi;tionsmnq qggative results for
the soil resistance parameters can be allowed as an oﬁt&gﬁé of‘thek
least squaré analysis. Thus, the minimum Error Delta curve might not
be ﬁermissible and a recalculation needs to be performed in order to
make negative values at least zero.' Details on the computations

and a computation example are given in Appendix A3.

6. Derivation of Simplified liodels for Predicting Static Bearing
Capacity »
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In this section a short discussion will be given about existing
and newly developed schemes for total static bearing capacity.
in Appendix D more detail is presented. The need for a reliable
prediction of static bearing capacity was the reason for taking
measurements of force and acceleration on top of the pile as
outlined in Chapter I. It was hoped that a simple force balance
at the time when the top velocity reaches zero would give a good
correlation to the static load test result obtained immediately
before or after striking the pile. Such a prediction method has
advantages if & special purpose computer should be employed for
displaying the result during the driving operation. Experience
with this Phase I prediction (the predicted static capacity was cal-
culatéd from force plus total pile mass times deceleration
at the time of zero velocity) showed that.more consistent results
were obtained by using a deceleration value which was averaged
over some time. It waé found that this new prediction scheme
which is referred to as the Phase II model gave good results for
full scale'biles driven in well drained soils. The predictions
were not relijable, however, for short piles and piles driven in
highly cohesive soils. One major task in studying pile
phenomena was to find out about justifications and limitations
of these simple prediction schemes. .

For doing so the velocity of the pile top is expressed as a
function of both static resistance forces and measured top force.
Then computing a velocity difference yields an equation from which

the total shear resistance along the pile can be calculated. This
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equation proves that the Phase II model was a sound approach for
computing static bearing capacity. Since only few changes in the
Phase II model are necessary the new computation scheme which can
replace Phase II also with respect to simplicity is called Phase
I1I-A. The Phase 1I-A modei also works for short piles since it
now accounts for the effects of pile elasticity. Cohesive soils
still can lead to generally high predictions since some of the
dynamic forces are still acting at and after the time of top
zero velocity.

In order to obtain an estimate of dynamic resistance forces
encountered during the hammer blow the idea of a Delta function
was used. The disadvantage of this method - which separates
damping from shear by considering the part of the Delta function
when the impact wave returns - is the complexity of computations
involved. Therefore, a special purpose computer needs to have
storage capacity. In cohesive soils the results from this method
might still be high as in the other methods but the magnitude of
the predicted damping forces usually indicates the reliability of
the static capacity computed.r Thus, more information is obtained
than from the other models. Appendix D describes derivations

and formulations of all of these methods.



CHAPTER III
Results and Correlation

Experimental data were obtained from both Tull scale and
reduced scale piles. For each of these two pile types 24 complete
- sets of data were available for analysis. A description of the
tested piles is given in Table (3.1) and (3.2).

Several resuits can be obtained from a single data set when
applying the methods discussed in Chapter II. These results can
be summarized as follows:

(i) Pile top force during driving as a function of time.
(i1) Static bearing capacity.
(iii) Shear resistance distribution along the pile.
(iv) Force in pile and velocity at the pile tip during driving.
In addition, the predicted shear resistance forces can be used for a
static load-displacement analysis as discussed in Appendix A2. Such
an analysis produces a pile top force ve}sus displacement relation
which can be compared with the same curve from the actual field load
test. Thus, a further /sesult is
(v} Pile top force during static load test as a function of
bile penetration.

Load versus deflection curves obtained in a static load test often
show high strength gains with large static pile top deflections
which are not reached under a hammer blow. Thus, the prediction
of static bearing capacity must be the dynamic displacements of the

pile under the blow. A question arises, therefore, as to what the
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"expectedf bearing capacity will be under a blow. Using an example,
this question is discussed in Section 1.

‘In Section 2 the results (i), (ii), (iii) and (v) all as
obtained from wave analysis are presented and illustrated with
Figures.

Section 3 is devoted to the discussion of predictions of static ~
bearing capacity from simplified models. The correlaticn scheme
developed in Section 1 using pile elastic considerations is applied.
Finally, in Section 4 measured and analytically predicted piie forces
and velocities are compared.

1. Proposed Scheme for Correlating Predictad With Measured Pile

Bearing Capacity '

The considerations in thi$ section are undertaken using data
set No. 3 as an example. The description of the corresponding pile
is given in Table (3.1). This data set was applied to wave analysis
and both damping and shear resistance fo}ces were pfedicted. The
predicted shear resistance forces were then used for a static analysis
as described in Appendix A2. The load versus penetration (L.P.)
curve resulting from this analysis and the corresponding curve
measured in the field static load test are both plotted on the left
hand side of Figure (3.3). Both L.P. curves show similar behavior
up to a point where the predicted curve suddenly levels off. This
js the point where the theoretical load curve reaches the predicted
ultimate bearing capacity. The measured L.P. curve, however; shows

further increase without an indication that an ultimate bearing
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capacity can be réached. If it is assumed that the soil resistance
forces are only dependent on the pile displacements, i.e. increases
of resistance forces with time are neg]ected; then the question
arises as to what bearing capacity must be compared with the
predicted value. This question is now studied in some detaiT.

In a static load test a load is applied on top of the pile.
This load compresses first the pile and then the soil. The elastic
deformations of the pile are considerable Tor all the piles
considered iq this study. (The pile 531-76 for example compresses
0.57 inch under a uniform load of 100 kip.) Because of this pile
elastic deformation the pile tip moves at a much smaller rate than
the pile top. In general, the pile tip will be the last point
along the piie to reach the quake penetfation. If the static soil
resistance law of Figure (2.2) were valid then the ultimate capacity
were reached at that pile top penetration which produces a pile tip
penetration equal to its quake. But this is the case only in theory.
In reality, the soil resistance forces increase even after the quake
penetration is exceeded now only at a smaller rate. Since the pile
penetrations during driving are usually small the assumed elasto-
plastic relationship estab]ishes a good approximation for the dynamic
case. It can be expected, however, that with higher dynamic penetra-
tions a higher shear resistance is reached. Consequently, the dynamic
displacements of the pile have to be considered in more detaii. In
Figure (3.4) the displacements at the top, the middle and the tip of

the pile have been plotted as obtained from the wave analysis. The

o —

1T
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pile top reaches a maximum deflection of Q,ZZ inches while the pile
tip only penetrates to a méximum of 0.29 inches into the soil. The
expected bearing capacity resisting the motion of the pile,
therefore, corresponds to pile deflections of 0.77 inches at the
top and 0.29 inches at the tip. In general, the static load test
will not reach these two penetration values simultaneously. Thus,
an exact correlation between dynamic prediction and static load
test is not possible.

In order to find a sensible way of comparing the static load
test result with the dynamic prediction assumptions have to be
made. The following correlation scheme is proposed:

Find the maximum dynamic deflection of the pile
top under the hammer blow and obtain the cor-
responding load value from the L.P. curve of
the field static load test. Call this Toad
the “bearing. capacity at maximum dynamic
deflection, Ry"-

An explanation why it is reasonable to correlate the dynamically

predicted capacity, R,, with the statically measured capacity, Ry,
is given now.

The maximum dynamic deflection, max dA, 15 reached when the
pile top velocity, vA(t), reaches zero. Neglecting the influence

of dynamic resistance forces allows to assume that

. 1 :
7Ry = Falty) < Ry , (3.1)

where Fp(t ) is the hammer applied force at the-time of maximum
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velocity. Equation (3.1) is usually satisfied in practice for the
following reasens. If FA(tm) were less than RO/Z then no permament
set could be obtained under the hammer blow since the waves due to
the resistance forces would be larger than applied waves. Thus, a
negative velocity would be obtained at some point along the pile
before the quake deflection were reached. If FA(tm) were greater
than R then the zero velocity would be reached only after Fp(t)

has decreased sufficiently. In such cases the maximum dynamic
deflection becomes so large that it is comparable to large deflections
in the Toad test where the load increases only at a small rate. The
proposed correlation scheme will, therefore, work even better for
such exceptional cases.

However, if as in the usual case, then the inequalities (3;1)
will hold. Consequently, the waves generated by R (which. may be
distributed along the pile) will have particles velocities greater
than max vy = (c/EA)FK(tm) so that zero velocity is reached at the
pile top as soon as the resistance waves reach the top in full
magnitude. This is usually not much later than a time 2L/c after
tm‘ Under these circumstances an approximate value can Be calculated
for the maximum displacement at the top of the pile, namely

max dy = 1/2(2L/c)max vy + q; ‘ (3;2)
where it is assumed that the applied velocity decreases linearly
after maximum velocity and that the quake q; was reached at the
time of maximum velocity. The inequality (3.2) can be expressed

in terms of the applied force F,(t) by virtue of the proportionality
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relation between stresses and velocities in a wave, hence
max dn = (L/c)(c/EA)FA(tm) + q; ’ (3.3)

Now using the inequality (3.1) max dp can be set between bounds

1 LRo LR

FEA-t Q1 < max dy i'ﬁi\g + q (3.4)
Generally; in static pile loading the force distribution in the.pﬂe
is such that the elastic pile deflection is between %—LRO/EA
(uniform resistance distribution) and LR /EA (pile tip resistance
only). Adding q; to the elastic deflection gives the top dis-
placement necessary to just reach the quake at the pile tip.

The bounds given in the inequalities (3.4) are relatively
wide. However, since in most cases the L.P. curve is already flat
at max dA the error introduced in the correlation will not be
serious.

In the present example Equation (3.4) yields

.57 < max dy < 1:02  (inch)

Using these 1imits and obtaining the corresponding pile capacity from

132 < Ry <170 (kip)
Using the maximum deflection during driving (dA = ,77) gives
Ry = 154 (kip)
The best correlation between the dynamic value and the static Toad
test would be to use the elastic deformation computed from
the predicted distribution and to add the pile tip quake. The

resulting deflection which is marked by an arrow in Figure (3.3)
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would yield
Rd = 150 (kip)

2. Results From Wave Analysis

In this section the results from applying wave analysis to
all data sets listed in Table (3.1) are discussed and static
predictions compared with results of the static load test.
Exceptions were data sets No. 1, 2 and 4. The wave analysis could
not be applied to these data since the rfse time of force and velo-
city was longer than 2L/c so that reflections waves returned from
the rile bottom before the maximum velocity was reached at the pile
top. An example record is shown in Figure (3.1). The reason for
such records is probably a too early combustion in the hammer which
cushioned the blow excessively.

For pile 531-76 (data set No. 3) the same hammer was used,
however, a single record was obtained having the usual impact
properties. Figure (3.2} is a plot of the top forces both predicted
by wave analysis and measured. Also the velocity measured at the
pile top (used as input for the analysis) is plotted after being
multiplied by EA/c. A1l three curves differ in the beginning of the
record where the proportionality between force aqd velocity should
hold. This difference is due to a relatively slow response of the
strain signal conditioning equipment; this amounts to the lag
between the two measured curves. Then also a phase shift between
input velocity and output force arises from approximating the |

continuous pile by ten finite elements. These differences, however,
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do not present a serious problem since only the portion of the
record after maximum velocity is studied where phase shifts have
small effects (the curves change at a smaller rate than at impact).
Phase shifts of this kind can be observed also in the records dis-
cussed oelow. In some cases where the force transducer was mounted
at a considerable distance above the accelerometers-:the force record
might show an earlier rise than the velocity. The effects will be
neglected.

Ancther remark concerning pile 531-76 seems appropriate. This
pile was tapered, i.e. its cross sectional area was decreasing over
one third of its length. In the present analysis effects of a variable
cross section carnct be considered and pile No: 3 was the only pile
analyzed with this property. It was assumed that the effects of
variable stiffness are small in this case since only a short portion
of the pile was affected. In Figure (3.3) results from wave analysis
and static load test are graphicaily summarized. As discussed already
in Section 1 the graph at the left hand side represents the two

L.P. curves both measured and predicted. The dottedy]ine indicates

the maximum dynamic deflection. R4 is found where the dotted line
intersects with the measured L.P. curve.

On the right hand side of Figure (3.3) the distribution of
predicted shear and predicted maximum damping forces is represented
in form of & plot of the forces in the pile. In case of the shear
resistance forces these are the predidted forces in the pile when

R, is applied at the pile top. (Ro is the ultimate bearing
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capacity predicted). The meaning of the dynamic force distribution
is related to the static curve. For plotting this curve the maxima
of the damping forces from eaéﬁ element are used. It js assumed
that these forces occur at the same time and act statically along
the pile, balanced by a pile top force which is equal to their sum.
Thus, a curve similar to that for shear resistance forces is
obtained. The sum of all maxima of dynamic resistance forces is
called max D. This value is listed in Table (3.3) together with
other important analysis fesu]ts to give an indication of the
relative magﬁitude of damping forces as compared to shear.

The shear resistance forces predicted for pile No. 53]-76

are acting at the lower pile half distributed rather uniformly.

Since this pile was an actual constructien pile no force measurements

were obtained from locations below grade. However, the blow count
(number of blows per unit pile length penetration) gradually
increased with depth. - Dynamic resistance forces predicted were
small and acting concentrated at the pile tip. Agreement between
predicted bearing capacity RO and measured‘capacity Ry Was aood.
This correiation is discussed in more detail in Section 3.

Figure (3.5) presents the measured and predicted pile top
force and the measured velocity of data set No. 5. This data
set was obtained on a special test pile (]3); The pile was only
33 feet long and equipped with strain gages at both pile top and
bottom. The hammer force was larger at impact than the pile

resistance, thus, it is not surprising that zero velocity was not

1t




49

reached within 4L/c. Because of the short length of the pile
(one millisecond corresponds to approximately L/2¢c) the rise time
is relatively long and the accuracy of predicting the resistance
force locations is, therefore, affected. The match between the
predicted and measured pile to force is poor at time 2L/c after
maximum velocity and later. Because of the relatively constant
behavior of the top velocity it cannot be expected that dynamic
resistance force decrease immediately after their maximum. Both
shear and dynamic resistance forces, therefore, show 2 similar
behavior and do not provide the necessary force time relation to
separate them out and improve the match.

In Figure (3.6) the predictions from wave analysis are compared
with the static load test. Agreement is good between RO and Ry
(see dotted line in L.P. curve). A deficiency of the predictions
can be found in the distribution of shear resistance forces.
Apparently, the wave method failed to predict the proper pile tip
resistance force. However, a shift of the predictions over one

analysis element. is equivalent to a time shift of only 0.2 milli-

seconds (the time necessary for the wave to travel a tenth of the
pile length). The accuracy of both the measurements and the method
seemsvnot to be sufficient to distinguish forces acting at such small
distances. An explanation is given now.

A relatively arbitrary criterion for choosing the quake was
adopted. It is described in Chapter II and in Appendix A3;

The quake of a point along the pile was assumed to be equal to the
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displacement at maximum velocity. This assumption allowed to compute
the shear resistances So,i from the Measured Delta curve at time

tm + in/c. Suppose, another quake, say a larger one would be
assumed. Then the So,i would have to be obtained from a(t) at
another time. Since the total amount of shear resistance acting on
the pile is independent of the quake magnitude such another quake
would, therefore, merely shift the force predictions to some other
point of the pile. It can be understood now that such a shift in the
force prediction occured at the pile under discussion. This pile
had a re?ati&e)y slow rise time, thus, the shear resistance for some
element was already large before the quake was reached. The force
actually acting at the pile tip could, therefore, not be distinguished
from the force acting at the element above.

In Figure (3.7) and (3.8) results are presented from data set No.
6. Both data set No. 6 and No. 5 were obtained at the same pile
but at different times. Although a strength gain was observed
after the waiting period the hammer applied forces were stiil 1arger
than the resistance force so that in both cases essentially the
same match was found.

Results from data set No. 7 are presented in Figures (3.9) and
(3.10). The pile (F-50) was the above discussed 33 feet long pile
extended by a pile section of 18.5 feet. Strain records were taken
at three locations along the pile during the static load tests.

The match of the measured with.analytically predicted pile top force

shows differences a short time after maximu:velocity. These dif-
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ferences must be due to measuring inaccuracies (the velocity
multipiied by EA/c is greater than the force which, if true; means
that negative resistance forces act near the top of the pile).
Also, in the later part of the record differences in the match can
be observed which must be due to an inadequate soil model.

The shear resistance distribution shows more pile tip resistance
in the prediction than in the measurements. However, the fact that
the pile had basically point bearing properties is brought out in
both measurement and prediction.

The results shown in Figure (3.11) and (3.12) for data set
No. 8 are again similar to those for set No. 7. The test pile was
the same but thg time of testing was different. This time the
prediction R, = 230 kip was too high as compared to Ry = 200 kip.
Probably, damping forces were prediéted too small.

The same test pile, F-50, was extended by a nine foot pile
section to give a total pile length of 60.5 feet (F-60). Records
were taken again before and after a waiting period. The analysis
results for one blow of each data set are shown in Figures (3.13)
to (3.16). The match for data set No. 9 is poor for a short time
after the maximum velocity. Aga%n, as in the case of Figure (3.9)
this must be due to measuring ipaccuracieé since the proporticnal
velocity is greater than the force.

Data set No. 11 was obtained on an actual construction pile.
Measurements were taken only at t@e pile top. The match shown in

Figure (3.17) dis fair until time 3L/c after maximum velocity.
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After this time the analytically predicted pile top force decreases.
It was found that the match could not be improved by replacing
damping forces with shear resistance since unloading occured. In
studying Resistance Delta curves (Chapter II) it was found that the
behavior of both damping and shear forces is similar after the
velocity has become zero. Therefore, the match cannot be improved
after this time (see also Appendix A3, Section 6):

The prediction of static bearing capacity, Ry is higher than
Ry (Figure 3.18). Comparing both L.P. curves, the predicted and
the measured, throughout the examples given, it is observed that the
predicted curve shows usually a steeper slope. Two reasons can be
responsible for this deficiency. First the static quake is larger
than the dynamically predicted and second the soil creeps under the
applied load during the relatively long lasting load test.
Certainly, the second reason will always vield an effect. Thus;
max dA is smaller than necessary for an éccurate correlation and;
consequently, R, is smaller than the ultimate strength to be
predicted.

Special problems were encountered in matching the measured pile
top force fér data set No. 12. The pile was an actual construction
pile driven into stiff silt and clay. The pile was tested after a
waiting period after driving. The special feature of the record
shown in Figure (3.19) is a continuous increase of the pile top
force. Also unusual is the behavior of the pile top velocity. After

the first local maximum this velocity decreases only slightly and
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reaches, thereafter; a second maximum which is nigher than the first
one. This phenomenon was observed for.all blows in this data set
but for no other pile. Reasons for such a record can be soft cushion
properties or hammer self cushioning by early ignition. In addition,
a very high precompression force of 66 kip had to be subtracted.

Even after subtracting this force from the record the rise time was
relatively long. The late occurance of the first local maximum
velocity produces slowly increasing resistance forces which,
therefore, have already relatively large effects before the quake

is reached. The automated prediction routine, however, requires

a short impact and, therefore, failed to produce a good match.

(See also discussion of data set No. 5). Figure (3.20) shows the
predicted pile top force from the automated routine. A large
dffférence (35 kips) can be pbserved between measured and predicted
top force at time tg, (%t 4'2%5L/c) although no resistance force

was assigned for the éigth element. However, shear resistance
forces of 65 and 73 (kips) were predicted for the ninth and tenth

element respectively. (Ciearly, the resistance forces produce a

top for;e effect at earlier times than expected due to the slow

rise time at impact). To correct the maichi 35 kips resistance were
subtracted from the predicted force for the ninth element and a

Jumped mass analysis performed. The pile top force obtained from this
analysis was now smaller than measured at tg. This is reasonable
since bottom reflected waves effect the pile top force already at

time tg. Adding now 10 kips to the resistance of the eight element
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(now 40 kips) produced.the match shown in Figure (3.19). Thus,
the prediction of bearing capacity was 25 kips lower when obtained
"by inspection" rather than from the automated routine. A short-
coming of the match in Figure (3.19) is the very Tow predicted
pile top force for t > t_+ 2L/c. The solution obtained by the
computer program shows differences of equal magnitude before and
after tm + 2L/c. Both predictions, however, show a similar steep
decrease in the later part of ihe record because of an inadequate
soil modeling for unlocading. The results corresponding to both
matches are given in Table (3.3).

Results from data set No. 13 are shown in Figures (3.22) and
(3.23). The pile was one of the special test pilas described in
Chapter 1. The soil was a siity clay. A Tow static capacity of
69 kip was found in the load test immediately after driving. The
velocity was increasing at time 2L/c after impact, indicating the
Tow driving resistance. The precompress%on force subtracted frem the
force record was 26 Kips; a large force compared to the ultimate
capacity. The measured and predicted pile top force are both shown
in Figure (3.22). This match was obtained by apnlying more damping
forces than'resistance forces. Better agreement between the analytical
and the measured force could not be obtained because of the relatively
constant velocity. Thus, the soil model is, again, not able to
describe the soil behavior correctly. The predictions, however, are
good as shown in Figure (3.23) and summarized in Table (3.3).

A much better match was cbtained for the same pile tested after
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a waiting period. Figures (3.24) and (3.25) present the results
for this data set No. 14. Here, however, -the static capacity
prediction was too high. From force measurements taken during the
load test along the pile it was found that relatively large
resistance forces were acting along the skin of the pile. This
fact was clearly recognized by measurements and analysis. An
interchange of skin damping forces with skin shear resistance forces
would improve the prediction to some degree.

Data set No. 15 and 16 were obtained from the second special
test pile at the same site as the pile just discussed. The pile
was longer, however, its ultimate bearing capacity was smaller than
for the shorter pile. Very similar observations as in No. 13 and 14
can be made on the results of both data sets. The predictions and
measuremerts are plotted in Figures (3.26) to (3.29).

Data set No. 17 was from an actual construction pile without
special instrumentation. The soil was gravelly sand; Predictions
and measurements were in good agreement as shown in Figures (3.30)
and (3.31).

Another construction pile was tested but this time driven
into clayey silt (Data Set No. 18). The static resistance of the
pile was small although the blow count indicated sufficiently high
soil resistance forces. The match between predicted and measured
pi1e}top force during driving was almost perfect. However, the
prediction of bearing éapacity was too high. Thus, the damping

forces determined for obtaining the match were actually too low.
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Figures (3.32) and (3.33) present the results. It should be
mentioned that this pile gave the poorest prediction for static
bearing capacity among all piles tested.

Data set No. 19 was obtained at the same pile after it was
extended and driven to a depth of 74 feet. This time the maximum
bearing capacity determined in a load test after a waiting period
was 160 kips. Both Figures (3.34) and (3.35) show matches for the
pile top force during driving. Both matches are of the same quality
but different at time 2L/¢ after impact and later. The match in
Figure (3.345 which was obtained from the computer routine shows
fair agreement throughout the record. The piie top force (shown
in Figure (3.35)) predicted by subtracting 10 kips from the predicted
toe shear force agrees very well with the measured top force up to
time 2L/c but deviates largely thereafter. These results indicate
the difficulties in obtaining a match satisfying the matching
criteria introduced in Appendix A3. Here, as well as in all other
caseé where the match was only fair these criteria were not satisfied
and the iteration was stopped after the eight cycle in each damping
distribution trial. The prediction from the second match agrees
better with the load test result (see Table (3.3)). Figure (3.36)
shows the static results both predicted automatically and measured.
A great portion of shear resistance forces were predicted to act
along the skin of the pile. This result is not surprising for a
pile driven into cohesive soil.

Another construction pile (data set No. 20) in coarse grainad
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soil was tested. Figures (3.37) and (3.38) summarize the analysis
results. The match of the dynamic forces is good and the prediction
of static bearing capacity agrees well with the load test result.
The blow count was low until the pile was driven to a depth of

40 feet when driving suddenly became hard. This observation agrees
well with the prediction that most of the resistance forces act at
the pile tip. ; . -

Figures No. (3.39) to (3.46) present the analysis results for
the second test pile described in Chapter I. As it was outlined the
pile was driven and tested in two steps. First the pile was driven
to a depth of 50 feet (Ri-50). This pile was embedded in silty and
clayey soil. Later the pile was driven until a stiff soil layer was
reached and driving became very hard (Ri-60). The two data sets
(No. 21 and 22) for the shorter pile gave results similar to the
test piles To-50 and To-60 (Data sets No. 13 through 16). The
difference was that the waiting period did not influence the soil
properties as much as in the case of the To - piles. Figures (3.39)

through (3.42) show the correlation between measurements and

predictions. Again as in other cases of piles in cohesive soiIQW’
relatively high dynamic and skin resistance forces were observed.

A remark on the measufed force curve in Figure (3.39) is appropriate.
This force record did not show negative (i.e. tensile) forces before
the precompression force was subtracted. Due to the small fesistance
forces, however, the top force decreased to very small values at time

2L/c after impact. Thus, after subtracting the precompression force,
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Sp = 26 kips, negative values appear in the force curve.

The top force matches for Ri-60 are not very good. A reason
for this can be found in the inadequate soil modél. Velocity and
force measurements were taken at the tip of this pile, examples of
which will be presented in Appendix C. Predictions of shear force
distribution and bearing capacity are good in this case even though
the predicted top foirce is .not good. A discussion of this point is
given in Chapter IV.‘ The analysis correctly reflected the strength
gain of shear forces along the pile skin during the waiting period.
This can be seen by comparing the force distributions along the pile
in Figures (3.44) and (3.46).

Attempts were also made for analyzing the reduced scale pile
data of Table (3.2). However,.simi1ar to the data sets No. 1,2 aﬁd
4 of Table (3.1) most of the reduced scale pile data had force rise
times longer than 2L/c. Figure (3.47) shows both the measured force
and velocity (multiplied by EA/c) and also a predicted top force
obtained by assuming soil parameters and checking on the result by
performing a lumped mass analysis. Then corrections were made
and the process repeated. Data set No. 12 was here used as an
example. The maximum veiocity occurs only at a time 3L/c. Thus;
the wave analysis method is not applicable.

It was tried to obtain data for reduced scale piles such that
the maximum velocity occurs at an earlier time. This was done by
reducing the cushion between hammer and pi1e'hgad and resulted in

the measured force record shown in Figure (3.48). Due tc the very




short rise time the differences in the signal conditioning equipment
produced now such large deviations of the necessary proportionality
between pile top force and velocity that a meaningful analysis cannot
be performed. In Figure (3.48) also a predicted force curve is shown
obtained from using the static resistance of the pile as a pile tip

resistance force. No effort was made, however, to improve the match.

3. Prediction of Static Beéring Capacity

In the previous section results from wave analysis have been
presented by using only one blow as an example. Important results
from each of these blows are listed in Table (3.3). However, more
than only one blow was usually analyzed. In addition the simplified
methods presented in Chapter II and in Appendix D were applied to all
data sets for predicting statié bearing capacity. The predictions
are listed in Table (3.4) for full scale piles and in Table (3.5)
for the reduced scale.pi1es. (Reduced scale pile data were only
used for analysis by simplified methods).

In most cases a number of blows has been analyzed. Since the

correlation scheme - developed in Section 1 - requires comparing the

measured bearing capacity at the maximum dynamic dispTacement of

the blow each individual prediction is to be compared with the proper
lToad test value, Ry4- However, it was observed that the predictions
for different blows are usually quite uniform (except for the results
from Phase I). Furthermore, the maximum dynamic displacement usually |
changes only stightly from blow to blow. It seems, therefore,

Justified, to comparézthe averages of the predictions, R, with the
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R4 values used to correlate the analysis results.in Section 2.

The predictions listed in Table (3.4) and (3.5) clearly indicate
the improvement of the results by applying any of the methods derived
from wave considerations as compared to the rigid pile models (Phase
I and II). Best results were obtained using the wave analysis.

For application in a field special purpose computer, the Phase IIA
method seems as well suited as any of the earlier methods. Also
the Phase III method can be applied if some storage capacity can
be provided in such a computer. Thus, the two early methods are
discarded in’ further considerations.

A brief statistical investigation of the Fhase IIA and the
Phase III simplified method together with the results from wave
analysis is now presented. Only full scale pile results are
considered. In stﬁdying the predictions obtained from wave analysis
it was found that the differences between measured and predicted
static bearing capacity depend mainly on the magnitude c¢f dyramic
resistance forces. Dynamic resistance forces, however, depend on
the soil properties and not on static bearing capacity. For
piles with high damping errors in dynamic predictions caﬁ, therefore,
result in relatively large differences between measured and predicted
static bearing capacity. This is one reason to compare the absolute
magnitude of predictions rather than present'differences. In
addition, a reasonable safety factor can be developed from such a
study taking into account the uncertainties in the predictions for

piles with Tow capacity.
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Consider Figure (3.49). In this diagram the differences
Ry, = Ry weve plotted for the three methods under investigation.

The differences were arranged in the same order as in Table (3.4),
however, the results obtained from modifying the solution from the
automated routine were omitted. Also, the results from data set

No. 12 were -cmitted because of the unusual records which needed
special consideration. Thus, 20 sets of predictions remain.for
analysis. Figure (3.49) displays an interesting trend namely

with a few exceptions the differences are either all high or all
low. Thus, these differences must be either due to assumptions
inherent in all three methods or due to a lack of information in the
records. The largest differences were found in the predictions for
pile W-56 (Data set No. 18). This pile was driven into a clayey
silt. The match between predicted and measured pile top force
during driving was very good (Figure (3.32)). Thus, the soil model
adopted seems not to be sufficient to describe the behavior of such
a cohesive soil. However, this soil model was the basis in deriving
all three methods.

The variety of soil conditions reprr"esérwztedr by thé sampleu of 20
full scale piles chosen in Figure (3.49) is a fairly representative
statistical sample. The computation is done the same way as suggested
by Olson and Flaate (16) for the treatment of results from energy
formulae. Accordingly, the measured capacity, Rd’ is thought of

being a function of the predicted capacity, K. .

o A best fit straight

Tine
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Rd = mRo + b (3-5)

is then determined for each set of predictions by the least square
method. The results are shown in Figures (3.50), (3.51), and (3.52)
for the Phase IIA, Phase III and the wave analysis, respectively.

As a measure of the precision in the predictions also the variances,
o % and °b2 of m and b are calculated. For illustration the lines

m
Ry=(m=o )R + (bxop) (3.6)

are plotted together with the best fit lines. Table (3.6) finally
1ists all parameters calculated together with the correlation
coefficient for the three methods under investigation. Also the
results of statistical investigations on energy formulae results
from 93 piles in sandy soils given in (16) are shown for comparison.

The best predictions can be expected from the wave analysis
method. But even the simplified methods, Phase IIA and Phase III,
yield a better correlation coefficient than any of the energy
formulae. It should be observed that from the 20 sets of data under
investigation 9 were taken on piles in cohesive soils while the
data in (16) were all from piles in sandy soils.

Compared to the two earlier methods the predictions for reduced

scale piles listed in Table (3.5) were considerably improved only
by the application of the Phase IIA method. The Phase III method
did not yield improvements because - with a few exceptions - no
short time impact was measured under thg blow. Exceptions were
data sets No. 21 through 24 in Table (3.2) where the agreement

between Ro and Ru was much better. It is not necessary for
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correlating the reduced scale pile predictions to find the value
of Ry since the pile elasticity of these piles 1s small and the sTope

of the measured L.P. curve was always small at ultimate.

4. Forces and Velocities Along the Pile During Driving

For the two specia1.test piles described in Chapter I dynamic
force records were obtained on various locations along the pile.
Pile tip velocities were also obtained onbpiles Ri-50 and R1-60;
In this section examples will be giver as to how such measurements
compare with the results from analysis.

On the right hand side of Figure (3.53) the discretized pile
is shown as applied in the lumped mass analysis. ‘Aiso, the locations
where forces were recorded are indicated. On the left hand side
of the same figure the forces are plofted that were recorded at the
three different locations below the top. For comparison the force is
shown in the spring between element 5 and 6 and the force in the
lowest spring. Since.the test pile (Ri-50) was 50 feef long one
element length is 5 feet. However, the force in the pile was
" measured at one foot above the pile toe. Thus, the force predicted -
by the analysis cannot be equal to thexﬁeasured pile tip force; It
can be seen that the predicted curve (10)‘stays between the measured
curves (III) and (IV).

" The force measurement taken at a distance of 29 feet above the.

toe plate (II) agrees well with the spring force between element
5 and 6. The effects of the precompression force and a time lag

due to measuring inaccuracies give some deviations.
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A similar comparison for measured and-predicted forces at the
middle and the bottom end of the pile are-shown for Ri-60 in Figure
(3.54). This time the difficulties arising from different locations
in analysis and measurement are avoided by plotting the pile toe
resistance force as given by soil model. The agreement of these
forces is as good'as for.the forces at the middle of the pile.

In Figures (3.55) and (3.56), finally, measured and predicted
pile tip velocities are plotted. Good agreement is found for both

piles Ri-50 and Ri-60.




CHAPTER IV
Discussion of Methods and Results

‘The studies presented in this paper lead to results on two
levels. First, an analysis method for impact driven piles is
piesented which provides information about both soil response and
pile behavior. Second a contribution is made to the development of
a dynamic testing method for piles. Both the anaiysis and the
dynamic testing method are based on force and acceleration records
taken during a hammer blow.

While the dynamic testing method can be utilized in construction
control as a replacement for the static load test the wave analysis
method is also able to determine the soil resistance distribution
which is needed for pile settlement analysis. However, it is also
possible to use the basic approach of wave considerations for other
problems associated with pile driving. Such applications will be
discussed in Section T of this chapter.

Several assumptions were made in developing both analysis and
_qynamic testing method. Implications and resulting limitatiorns of
these approac?aes are di’scusr,ﬁsr.’ed 1n Sections 2 and 3. | o

Section 4 is devoted to a summary of observations regarding

measurement techniques and related questions of accuracy.

1. Possible Applications of Wave Analysis Method
(i) Summary of Ana ysis Process
The approach used in this paper for analyzing pile behavior

and soil response under a hammer blow can be summarized as follows:

65
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Force and acceleration are measured at the pile top during
driving. These two records have been used above to separate the
impact stress waves from the waves due to the soil action. The
stress waves due to the soil action are then interpreted regardihg
their locations along the pile and their respective magnitudes.

From the soil force versus time behavior, thus determined, conclusions
are drawn about the type of resistance force, whether shear or
viscous. (The type of resistance force is meant here in the Tight

of a rheological model).

In separating impact from soil action waves the concept of
Delta curves proved.he1pfu1. An important fact is that a Measured
Delta curve can be obtained in closed form from a force and velocity
record even withbut‘a high speed computer. Measured Delta curves
are shown in Figures (2.5,6,7). After some experience it is possible
to estimate soil response properties from such Measured DeTta curves
even without the further use of a complex analysis. Resistance
Delta curves were developed to assist in interpreting the Measured
Delta curve. As an example consider Figure (2.6). At time 2L/c
after impact the Measured Delta curve has a maximum of approximately
300 (kip). Within a short time after the maximum the curve decreases
to about one haif of the waximum. Thus, approximately half of the
total resistance seems to be damping. Also the fact that skin forces
act at:the pile is represented in the record.

(ii) Pile and Hammer Selection

In developing an automated routine for the prediction of soil
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resistance forces a number of equations were derived which can be
utilized in applications other than the prediction of soil resistance
forces. As an example the selection of a satisfactory pile is
illustrated.
Examplé 1:

Suppose, a pile of known material such as steel or concrete
has to be driven by a hammer whose maximum impact velocity, max Vps
is known. Then Equation (A3.43) can be modified to yield

max v, = 2 max Vp - c/EA Sn,o (4.1)

where it is assumed that no dynamic resistance forces act on
the pile. In the presence of skin shear forces Equation (4.1) is
still valid by replacing Sa,o by So’ i.e. the sum of'a11 shear forces
acting. Therefore, if it is desired to drive a pile such that it
has an ultimate bearing capacity of Sg then for the pile tip to
exceed the quake and have a permanent set_the following condition
has to be satisfied

2 max vp > (c/EA)SO* (4.2)
which- requires that |

A> (c/2E)So*/max va | (4.3)
in these considerations daﬁping was not considered. However, for
the condition of just reaching a positive velocity this was not
necessary because dynamic resistance forces are small for small
velocities. If it is intended to require thg pile tip to reach a
certain velocity, max v, then Equation (A3.43) has to be used in its

eriginal form together with an estimate for the maximum damping force,
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d, max v , (which can be assumed depending on the sc¢il properties).

Thus,

. S.* 4+ d. )
- so dn max vn

~ T 7 max Vp - max v

n {4.4)
The reverse approach can be used to find the necessary hammer impact
velocity by prescribing the pile cross sectional area and solving for
max vp. Estimates on pile set can be obtained by integrating Equation

(A3.43) over time until vn(t) reaches zero.

(i1i) Interpretation of Pile Force Records

In addition to producing a useful set =7 analysis equations wave
considerations also 1eadvtu a thorouo. undérstanding of pile behavior.
In another example it will now be explained why pile driving records
(force or velocity) seldom give a clear indication of the time when
the impact wave returns ffcm the bottom as was discusSed by Tomko (13).
Example 2: |

It was observed in Chapter III that damping forces exerted by
the soil are actirg maihly at the pile tip. For the case of only a
damper at the pile tip Equation (A3.41) gives the damping force

D"(t) from the applied velocity v _(t). The reflection of the

impact wave plus the effect of the damper causes a wave to travel

L -x
c

upwards with a partic1e velocity Vup (t - ) at time t and at

a distance x below the top. -
, , cd_2v_._(t)
=y (t) - n N,a

n,a EA T+ (can)/ﬁﬁ (4.5)

or using again the definition (A3.50) Equation (4.4) can be written

L - x
=)

vup(t -

as
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Vyplt e AR ~20‘;—E-A9-] (4.6)

. Suppose, a pulse is applied at the free pile top at a time
Zzero for a pile with free bottom end condition. If the pulse has
duration At and a particle velocity vA* then for no damper at the
bottom the pile top velocity is given by

p* for 0 <t <at

vA* forr—lé-f_tirg-lé- + At

r=1,2,...,.indicates the time interval considered. Equation (4.7)
is plotted in Figure (4.1a).

If a damper is acting at the pile toe then due to the reflection
of the upwards traveling wave (whose partic'lé velocity is given by
Equation (4.6)) at the pile top
(Vp* for 6 < t < At

2vy*(1 - 22 £2)  for 2l/c < t < 2L/c + At

vtop(t) = (4.8)

N

2v*(1 - 20 R)2  for Al/c <t < 4L/c + At

A2vp*(1 - 20 =5)"  for r2l/c <t <r2l/c + at

In Figure (4.1b,c,d) this pile-top velocity is plotted for values
of -cﬂ‘qn = 0.1, 0.5, 0.9, respectively. It can be observed that

o, = EA/2c, i.e. 4 = EA/c, gives the solution for an infinitely

n
long pile. No bottom reflection waves reach the top. This damping
coefficient, dn = EA/c, can be thought of as a critical value.

If the soil would act jike a :'.a:ﬁper having this critical damping

coefficient then in absence of 211 other resistance forces
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max D = max vA(EA/c) (4.9)

But because of the proportionality between pile top force and
velocity (which holds at time to the time of maximum velocity)

max D = FA(tm) (4.10)
Iii this context it is interesting to study the damping coefficients
obtained from analysis for different soil types. A list of such
parameters is given in Table (4.1). The damping coafficients listed
in this table are non-dimensionalized by dividing dn by EA/c.
“"Critical damping", therefore, corresponds to a value 1.0‘in Table
(4.1). It can be observed that only two data sets (No. 18 and 19)
which were obtained on the same pile are greater than unity.
Relatively often, however, values in the neighborhood of 1/2 can be
observed.

Of course, damping values non-dimensionalized with respect to
pile elastic properties can not be used for comparing the behavior
of different types of soils. Table (4.2) lists the natural
coefficients dn. These parameters must be considered with respect
to their dimensions. Thus, element surface or the total cross
sectional area of the pile toe must be considered when comparing
thg damping cerefficients determined for different piles. A
commonly employed method of referring to damping coefficients (10)
is in relation with ultimate shear resistance. This procedure was
not adopted inr developirg the predictor method since it was intended
to obtain damping and shear parameters independently. However, for

further applications of predicted soil parameters this method could
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lead to comparable values fcy different pile and soil types.
Further investigations are needed; however; to distinguish more
accurately between skin and toe damping at the bottom element.

A shear resistance force acting at the pile tip and having a
magnitude equal to FA(tm) will also produce a wave such that at
time tm + 2L/c no effect of the impact wave reflected at the pile
bottom can be observed. In fact, any combination of resistance
forces produces this effect if forces of their respective waves
sum to FA(tm). These observations can be applied to the interpre-
tation of the three-dimensional force plots shown in Figures (1.1,2;3).
(Three or four force measurerments were available. The graph was
completed by interpolation).

In Figure (1.2) a plot is shown where FA(tm) = 165 kips and
So + max D = 107 kips from wave analysis. Thus, there is less force
than necessary to cancel out the effects of the reflected impact wave
at tm + 2L/c at the top. Accordingly, a decrease in the pile top
force can be observed when the reflection wave arrives at the top.

Tﬁe p}gt gives also an impressicn as to how the waves travel through

the pile.

Figure (1.3) shows the plot of force measurements taken on a
pile with high toe resistance. FA(tm) = 290 kips and S + max D =
280 kips. This means that not much change should be observed in the
pile top force at time t,t 2L/c. 1Indeed, the force record at
this time proves this statement. The steep top force increase

in the record at a later time is due to the rapid decrease
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of impact force immediately after thé maximum. Since S, remains
on until zero velocity its effect on the top is to cause an increased
forcé. ) |

Figure (1.1) resulted from measurements on a pile with
relatively high skin resistance forces (To-60, data set No. 16).
FA(tm) = 155 and S, + max D = 200 (kip) were obtained from
measurement and analysis, respectively. This case shows a top
force increase already at a short timé after time t- At time
tm + 2L/c a drop of pile top force can be observed. In this case
high dynamic forces were found by wave analysis so that the full
effect of the maximum resistance forces does not anymore affect
the pile top at the time when the bottom reflection wave returns.
However, both hammer and resistance forces were not of very
different magnitude so that no wave return can be observed in the
force behavior.

Considerations of.the force record alone cannot yield any
qUantitative information. For obtaining accurate results about the
magnitude of resistance forces the pile top velocity must also be
considered. This point is quite important since previous
investigators have restricted their records to either force or
acceleration alone, (e.g. Buchnell).

(iv) Prediction of Pile Stresses

Since the force and acceleration records taken at the pile top
predict the soil resistance force distribution it must be also

possible to compute the stresses in the pile during driving. This
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problem is faciliated by §he fact that a distinction between dynamic
and shear resistance forces is not necessany; Hénce; estimates

can be obtained from the Measured Delta curve without performing

a complete prediction analysis.

Compression stresses reach, in general, extreme vaiues only at
the pile top or pile bottom. Along the pile skin only distributed
forces act which cause a compression wave above and a tension wave
below their respective locations. The effect of a superposition
of such compression waves can be observed at the pile. top.

A bound on the maximum toe compression stress, cn(t); can be
given by assuming all resistance forces to act at the pile tip.

But since the maximum total resistance force is given by the Measured
Delta curve, it is possible to estimate the pile tip stress:

on(t) < 2malt + 2L/c) (4.11)

Tensile stresses which can be critical in drivirg of concrete piles
occur only in the case 'of small resistance forces and are due to the
decrease of the impact velocity. In the absence of resistance forces

the stresses, o;(t), at a point x = x; is for 0 < t < (2L + x;M/c

R 2L - x;
05(8) = E/clvy(t = -y - vp(t - ———1)] (4.12)

which follows from a superposition of the app]ied wave (having
particle velocity vA(t) at the pile top at time t) with its own
reflection wave. Thus, tension stresses can occur when the particle
veiocity of the bottom raflection wave is larger than that of the
downwards traveling impact wave. The larcest tension stress to

occur in the »ije is, therefore, given by the maximum difference in
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pile top velocity during the first 2L/c time interval (after maximum
velocity]. Compression stresses due to resistance forces below
X = X%y reduce this tension stress such that from the Measured Delta

curve an estimate on this stress can be given. Thus, for X3 # L

o;(t) = E/eclvy(t - x;/¢) = vplt - L - x)/c)] - gla(t, + &y/2
- At %'Efiél (4.13)
m c '

Such investigations on the stresses in piles suggest that the hammer
and cushion properties‘have td be selected with respgct'to the pile
strength. In order to prevent tensile stresses in concrete pi1és
cushioning has to be added for‘obtaining a uniform pile top velocity,
vA(t). Excessive compression stresses in the pile can be pfevented
by keeping the hammer impact velocity so Tow that the cbrrésponding
stress is one half of the yield stress.

Implications of this kind are known to hammer manufacturers “
but records and wave considerations as outlined can give valuable

infermation for certain combinations of hammers, piles and soils.

2. Discussion of Soil Force Prediction Analysis.

The wave considerations in Chapter II and in Appendix A3 were
Timited to a time 4L/c after impact. This time interval may not
always be sufficient as when L is small (as for reducad scal piles)
in order for the soil response to develop fully within this time
period of 4L/c. Since a resistance force distribution along the
pile is usually of minor interest for short piles no serious limita-

tion seems to restrict the applicability of the present method
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from this point. Clearly, a rigid body; i.e. a pile of zero length,
cannot be analyzed regarding resistance force distribution.

A related problem is encountered when the pile is sufficiently
long but the impact is too "slow". In such a situation only
approximate solutions are found. A match of pile top forces might
be obtained by using the Tumped mass analysis and assigning soil
resistance parameters in a trial and error fashion as indicated
above. However, the results thus obtained depend mainly on
assumptions regarding the soil stiffness and to a smaller degree on
the actual soil properties since these factors can be found from the
record due to the numerous reflections occuring during buildup.

Two extreme situations may c1arify'what is meant. A "very slow"
impact is the static load test which allows a match between

measured and predicted pile top force from the assumption that all
resistance forces are concentrated at one point. A corresponding soil
stiffness - necessary for the match - can be computed, but the
resistance distribution along the pile can not be determined from

the top record. The “"fastest possible" impact exhibits a step shaped

disp1acement function (the velocity is applied as an impulse) in which
case the force distribution can be predicted indepéndent of any
knowledge regarding the quake. The latter case is ideal for the
present method.

In this context the choice of the quake should be discussed.
Frequently, in the analysis quake values are used which are relatively

smali compared to values commonly recommended. Foehand and Reese
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(11) give quake values up to 0.30 inches for certain soil types.
Also the investigations in Appendix C showed that the quake might
be larger for soft, cohesive soils than the displacement at maximum
dynamic deflection. There are several reasons, however, why the
adopted method still gives good results.

A first reason is that in all records analyzed a precompression
force was acting upon the pile and was imposing displacements such
thaf the soil structure was already compressed before the impact
wave arrived and caused the soil to yield.

Seconc, the sum of the ultimate resistance forces, si,o’ is
determined directly from the Measured Delta curve, independent‘cf
the choice of quake. Wrong assumptions in the quake will, therefore,
mainly result in errors in the shear resistance force distribution.
This, of course, is true only for small errors in the quake and does
not apply to cases where the quaké was not reached in the considered
time interval. In such cases the ratio of shear to damping forces
will be affected at 2L/c after impact in the Méasured Delta curve.

In the analysis quakes were used with only small diTferences
between neighboring elements. It can be assumed that'also in reality
the quakes do not vary substantically with depth. Erroneous
assumptions in these quakes will, therefore, produce a shift of all
resistance forces along the pile length. The results shown in
Figures (3.6 and 8) exhibit such a force shift over one element length.

Other errors in resistance force distribution can arise where

large damping and large skin resistance forces are present. In
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such cases an incorrect damping distribution will necessarily result
in shear resistance forces at locations other than measured in the
static load test. (The total amount of resistance forces is de-
pendent on the Measured Delta curve, only). An example to such
erroneous results is given in Figure (3.25). Here a large damping
force was assigned to a point where actually a relatively large
shear force was acting. Note, however, that the character of the
shear resistance distribution was still preserved. Errors of this
kind occur since no indications as to the damping distribution were
found in the records. Because of this lack of information it was
decided to use a damping distribution which yields the best matéh.
This approach solves the problem only approximately since even a
perfect match does not necessarily give a correct solution.

A rvemark on the uniqueness of a solution obtained by matching
the measured force is appropriate. Certainly, a match.with zero
differences between predicted and measured forces is not possible,
however, within the accuracy of the discussed method it is possible

to obtain several solutions with an equivalent match quality. For

 example it was observed that different damping distributions can
lead to almost identical pile top forces. To obtain a solution for
the 2nr parameter, P;» which describe either the damping or the shear
force behavior at least 2n simultaneous equations have to be
satisfied

alty) = 5 At
ALt “§=1“i 3 (4.14)

"3 = 1,2,...,2n
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where the tJ are sultably chosen times, e g.

L
By =t ?t Z5e (4.15)

a(t) 1s the Measured Delta and 4,(t) is the Resistance Delta
curve associated with P~

Of course, thé tj can be chosen arbitrarily over the domain such
that actually an infinite number of equations is available. However,
. the smaller At becomes in Equation {4.15) the smaller differences
occur between consecutive equations. Thus, if n is too large
an i11 conditioned set of equations can result which alliows several
possible solutions. It can be concluded that the information
contained in a(t) is not sufficient for obtaining a unique solufion.

A further complication is that another soil model could be
chosen which would yje1d another set of.Ai(t), accordingly a .
different set of Py .

In cases where a good match was obtained with relatively poor
predictions of static bearing capacity the use of another, more
realistic, soil model would add the information necessavy for
obtaining a good match together with good predictions. Sandy soils
do not present problems of this kind, since the chosen soil model
is appropriate.

Several results were obtained with a rela?ive1y poor dynamic
top force match. (See Figures (3.22,26,39 and 41) for data sets
No. 13, 15, 21 and 22, respectively). A better match cannot be
obtained when employing the present soil model. Even a quake vaiue

different from the one assumed would not improve the situation as
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can be seen by inspaction from Figures (c.2 aﬁd’3). (The theorética]
damping forces do not decrease at a sufficiently high rate). By
choosing somewhat smaller shear resistance forces than used for the
matches in Figures (C.2 and 3) the error in the match of dynamic
pile top forces is'spread over some time before and after time 2L/c
after impact. As a result the prediction of total static bearing
capacity is relatively good but errors in the match of dynamic pile
top forces are made already before the time when the reflected impact
wave returns.

Piles with relatively small resistance forces (the impact force
is larger than the sum of all resistance forces) usually show lfttle
variation in the pile top velocity. Therefore, Resistance Delta
curves do not exhibit the characteristic differences between shear
and dynamic resistance which usually allow to distinguish these
forces. For predicting the maximﬁm dynamic resistance forces the
analysisuses'here the observation made in Appendix C on cohesive
soils namely a damping force drop independent of the pile velocity.

The Phase III simplified method of predicting static bearing capacity

uses the same idea for piles with small resistance. Since this
Phase III prediction scheme is used as a first guess on the amount
of damping forces in the wave analysis a reasonable final result

is obtained. In such cases the criteria for a good match cannot be
satisfied since the predicted force is always too large after

tm + 2L/c. .The analysis routine is programmed in such a way that

first attempts are made to improve the latter region of the match
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by adding more damping and reducing shear resistance forces. If
no improvement can be obtained then the matching criteria are relaxed
such that the iteration terminates within a few more cycles. This
way some more damping is predicted than computed by the Phase III
scheme, which means a more conservative result for the static bearing
capacity prediction. Certainly, predictions obtained in such a way
can only be considered an estimate on the static bearing capacity
and further studies on soil models particu1ar1y with regard to the
damping are necessary to devise a better basis for wave analysis of
soils driven into such soft cohesive soils. '
Entirely different problems were encountered or piles driven
again into cohesive soils but tested after a'waiting period long
enocugh to allow the. pore water pressure in the soil to dissipate.
(Only the first few blows after the waiting period can be expected
to reflect a situation different from that encountered immediately
after driving). In such cases the wave analysis produced a very
good match between predicted and measured dynamic pile top force.
Figures (3.24, 28, 32) show such good matches. However, the
predictions of ultimate shear resistance were much higher than
determined in the static load test. This surprising result can
be explained if static and dynamic measurements are obtained and
analyzed in a manner similar to those.shown in Appendix C. It is
suggested that the present soil model does not distinguish
sufficiently well betﬁeen static and dynamic resistance forces, in

cohesive soils. In other words, the linear relationship between
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pile velocity and damping forces does not hold for all soil types.
While dynamic analysis of piles driven into cohesive soils
presents problems regarding a proper soilvmodeling predictions of
static capacity and the static force distribution are reliable for
piles in sandy soils. Frequently, it was found that the match was
not good in the latter portion of the record. However, as discussed
in Appendix C, the soil model is very sensitive to small differences
in either the quake value or to the pile displacement accuracy
after zero velocity (during unloading). Figure (C.4) shows a case
where the measured pile resistance force behaved much smoother than
the force aetermined from using the soil model. Thus, oscillations
in the pile top force which are not present in the measured record
can be explained from this soil model sensitivity. However, since
the unloading portion of the record is not considered for predictions
of rgsistance forces and their distribution no error is introduced

in the result.

3. Simplified Prediction Schemes for Dynamic Testing Method

As ou§1ined in Chapter I a dynamic testing method was proposed
(12) for predicting pile bearing capacity. In this method the time
of testing is delayed for a few dayé so that soil relaxation after
driving cannot affect the result. A detailed discussion of thg
probiem of soil relaxation after driving is given by Yang (18).
That dynamic records in fact reflect the change of soil properties
during a waiting period is shown in Appendix C. Records obtained

this way are then used to predict static bearing capacity from any
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of the simplified computation schemes discussed in Appendix D. A
special purpose computer is to perform the computation and display
the result immediately after the blow.

Differences between predicted and actual static bearing capacity
can arise from wrong assumptions about both pile and soil behavior.
The investigations in Appendix D clearly show the errors made by
assuming the pile to behave .1ike a rigid body in the Phase I and II
method. The Phase IIA prediction scheme is a modification of the
Phase II method where the pile elasticity has been taken into account.
This computation scheme is easily programmed in a special purpose
computer. Results seem more reliable than from the best of the energy
formulas. Differences between measured and predicted static bearing
capacity arise from an uncertainty about the magnitude of damping
forces. Since the Phase IIA method uses an average slope approach
similar to the Phase II scheme also average damping forces can be
included in the static prediction. The choice of the time at which
this average is taken insures, however, that the influénce of
dynamic resistance forces will be small. Numericai difficulties in
analyzing digitized records require a modification of éhe method.

The higher accuracy of data directly processed in a special computer
can lead to an essential improvement of this method. |

A Phase III method was developed using the idea of Delta curves.
This method has the advantage of predicting both maximum damping forces
and static bearing capacity. Figure (4.2) shows a plot of differences

between the measured and predicted static bearing capacity versus
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maximum damping forces predicted from the Phase III method. The

data set used is the same as for the statistical investigations in
Chapter III.In this figure relative differences and relative damping
forces were used for showing the trend more clearly. The conclusion
can be drawn that a high percentage of predicted damping force induces
more uncertainty about the accuracy of the static result. As can be
expected cohesive soils are responsible for the largest errors in

the method. Thus, the predictions of static capacity of piles in
sandy soils can be considered very reliable. The only exception was
F-30 which is a relatively short pile.

A disadvantage of the Phase III method is the complexity of
the computations involved. However, it js hoped that simplifying
assumptions (e.g. as to the time of toe zero velocity) can possibly
lead to a computatibn scheme more suitable for a spezizal purpose

computer application. More studies are necessary in this direction.

4. Measurements

Comparisons between predicted and measured pile top force in
_Chapter III showed frequently differences because of mgasurgmen?r
inaccuracies. Most commonly differeices in the response of signai
conditioning equipment for strain and acceleration isal to time
lags. Such differences are.serious when short piles are analyzed.
(The time lag in Figure (3.48) corresponds to 0.3 L/c). Another
"error source is the difference in the locations of force and
acceleration transducers. Sometimes the time lags arising from

signal conditioning and recording location can cancell out.
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Acceleration measurements were performed with piezoelectric
accelerometers. For measurements at the pile tip an accelerometer
was used having a built-in amplifier. This reduces the effects of
cable noise. A disadvantage of this accelerometer is the Tow record-
able minimum acceleration (negative accelerations to act away from
the base of the transducer). Thus, mounting the instrument upright
onto the pile toe plate results in an acceleration cut.off at a 250
to 350 g-level. However, a cutoff of a recorded peak value of 100
g's with a duration of 1 millisecond amounts to a velocity error of
1.6 ft/s. 'Toe accelerations can become very large - positive dnd ne-
gative - depending on the soil resistance forces. Thus, in records
where the above mentioned level was reached uncertainty exists as
to the actual pile toe acceleration and velocity. Two figures were
presented in Chapter III comparing measured with predicted pile tip
velocity. Good agreement was obtained in these cases because the
acceleraticns did not exceed the recordaE?e Timit.

Another difficulty for comparing acceleration measurements at
the pile toe with analysis results from a lumped mass system is the
difference in location between recorded and computed results. For
short rise times with respect to the pile element length only an
average value can be expected from the analysis while the measurement
records the extreme toe bottom behavior.

Force records present another problem. Usually it is assumed
that no residual forces act on the pile. While this assumption might

hold for the first blow after a waiting period errors might be made
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for all subsequent blows. Neglecting such residual soil forces

will affect the soil force distribution only since at the onset of
each new blow a state of equilibrium exists for the pile soil system.
It also can be expected that the time lag between successive blows

is sufficient to release most of such residual forces by creep.

For analysis of piles driven by vibratory hammers this point will

require a more detailed study.




CHAPTER V
Conclusions and Recommendations

The methods for pile analysis presented above use measurements,
an exact wave theory and a lumped mass analysis in conjunction with
an assumption regarding the functional relation between soil forces
and soil motion. The analysis allows to compute the location and
magnitude of dynamic and static soil resistance forces acting on
the pile under a hammer blow. The static soil resistance forces
correspond to those forces acting on the pile during a static load
test. Another facet of the presented work is the development of a
cimple prediction scheme for static bearing capacity based on
pile elastic theory. '

- The field measurements of force and acceleration proved to be
accurate enough for commonly encountered full scale piles. The
information contained in the records was sufficient to predict the
magnitude and distribution of the soil resistance forces as Tong
as the soil model was adequate. Distinction of soil force types
regarding their velocity or displacement dependency was very success-
ful for piles insandy soils and yielded relatively good approximations
in cohesive soils.

The present method bypasses a major sﬁortcoming of other pile
dynamic analyses found in the Titerature, namely the uncertainty of
hammer input and soil parameters. In fact, the results obtained from
" the automated prediction scheme can be used to give information

on soil behavior which is in contrast to the usual procedures of

86
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first obtaining the soil properties by Tlaboratory testing and then
performing the pile analysis.

The predictions of static bearing capacity show a correlation
better than those obtained from existing methods (13; 17). Improve-
ments can be expected when further soil investigations are performed
in a manner as in Appendix C. Thus, different from the usual soil
mechanics approach of obtaining soil properties in the laboratory,
it is recommended to obtain knowledge about the gross soil response
to a certain pile type (the cylindrical piles which were used
throughout the experimental work reported herein are very common,
however, other pile types might possibly show different behavior due
to a pile shape influence. It is possible that an H-pile, for example,
will behave very different from a pipe pile). It is hoped that such
an effort would lead to an improved soil rheological model which
equally well describes both non-cohesive and cohesive soils. (A
more realistic model than presently used is discussed in (19)).

Then derived from such an improved soil model a classification of

‘the soil type surrounding the pile could complete the prediction

of pile static behavior by indicating the soil creep and strength
gain behavior.

The computer program was devised for the case of a uniform
pile. 'In order to minimize the input data ten elements were always
used and a time increment of one half of the critical time (see
Appendix Al). These assumptjons might not hold for long and non-

uniform piles. For generalizing the present routine a study on
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Measured Delta curves for piltes with variable stiffnesses and the
revision of the lumped mass analysis is recommended.

It was found that damping forc?s usually act in a large amount
at the pile tip while smaller magnitudes of dynamic resistance
forces act at the pile skin. In order to simplify the program and
to save computing time it can be recommended to decide on the
damping distribution a priori and to obtain only on solution.

Anofher important facet of pile driving is the selection of
hammers, pi]eé, and cushions. In Chapter IV hints were given on
how to approach such problems, by means of wave considerations. The
objective of such investigations would be a closed form method for
estimating the necessary properties of piles and pile driving
equipment. . ,

Regarding the measurements of pile top force and acce?eratioh
the following recommendations can be made: |

(i) The transducer cushion (i.e. the cushioning between hammer
and force transducer, initially added for obtaining smoother records)
has to be reduced if not completely eliminated to obtain a faster
impact.

(i1) Another type of signal conditioning equipment for strain
has to be used for smaller time lags between force and velocity
record.

As discussed in Chapter V care.has to be taken in
recording pile toe accelerations for piles with low resistance

since it is possible that here up to twice the top accelerations




89

occur and thus, exceed the accelerometer capacity.

The results obtained from the present method were very
encouraging. This methcd seems well suited to be employed in
subsurface soil explorations. A related study is reported by Tsai,
Schmid (19) where an instrumented penetrometer is used for data
collecticn. However, the present method has the advantage of
providing also knowledge about resistance forces acting along the
pile skin.

Another important result of the studies presentad in this
paper was the improvement of an existing simplified prediction
scheme for static bearing capacity. A further step to a realistic
dynamit pile testing procedure will be to incorporate the Phase IIA
scheme in a special purpose computer and to test the method at a
sufficient number of piles in the field where common pile materials
1ike timber and concrete should be included. Also, tests on piles
of greater length and of variable cross section should be performed.
The Phase II1I method should be modified such that a relatively
simple computer can perform the necessary computations. This new
computer should yield as an output the predictions of both maximum
damping force and the static bearing capacity. With more results
from piles tested under different conditions a statistical analysis
should then be performed so that an answer about the reliability
and precision of ti.e method can be obtained. It would then be possi-
ble to recommend with confidence a design load for a certain .

dynamic prediction of static bearing capacity.




APPENDIX A1l
Lumped Mass Analysis

1. Numerical Procedure

The problem is to find the displacements during dynamic Toading
of all pile elements into which the continuous pile was modeled.
Given are either the force acting on the top element or its
acceleration, both as a function of time, and various passive force
boundary conditions for each element. These passive forces can be
régarded as functions of displacement and velocity. In Appendix C
a study wi]i be presented on the physical medel of resistance used,
and its Timitations.

The piles encountered during this project were, with only a

| few exceptions, steel pipes of constant cross section. The program

therefore was set up for uniform cross section and steel elastic
properties. However, the changes to a more general pile, for example
tapered piles or steel piles filled with'concrete, could be easily
accomplished and examples on how to do it are given in the references,
e. g. Ref. (9). The frequency of the top boundary condition is an
important factor for the choice of the time increment, At. It is
important that no extreme values of these functions are missed. If
At is small enough, errors will be negligible (see Fig. A1-4). It

is then possible to approximate the continuous boundary function by

a sequence of straight lines. Consequently, it should be sufficiently
accurate to express accelerations of pile elements as a sequence of
straight 1ines as well. This leads to velocities and displacements

being polynomials of second and third order.

90.
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Consider Fig. (A1.1). A continuous pile is replaced by n mass
elements and n-1 interconnecting springs. The boundary conditions,
either acceleration or force, are supposed o be measured at the

middle of the top element. Then it can be justified to assign

stiffnesses:
k=-—E-‘E-n (A1.1)

to all the springs and masses:

M= ;’I-ALp (A1.2)

to all eleménts.

Some resistance force r. . acts on the ith

1sd

tj = j.at. Displacements, velocities, and acceierations of element

1 at time tj = j.At are "i,j’ ui,j and “i,j’ respectively. The top

element is acted upon by an active force fj. Velocity and displace-

element at time

ment are obtained from the piecewise linear acceleration using:

Ui j i.3- + u, J.)At: (A1.3)

and -

* 1] ’-l At
Uj 5 = U, o1t U, 18t ¥ (Ug g 204 5 )5 (A1.4)

Here a comparison with the method developed by Newmark (14) can be
made.
Newmark proposed to use instead of Equation (A1.4) the following

equation for computing the displacement

At2 + Bu. .At2 (a1.43)

» 1 [
1,31 F Vg,5-10E ¥ (o By 5 1,3
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Comparing this equation with Equation (A1.4) it can be observed
that B is the coefficient obtained by twice integrating a
linearly increasing acceleration (e.g. u=at-+u-= %at3).

.o« The force in the i-th spring at time t, is

and applying Newton's Second Law to the i-th element, one obtains
at a given time j:

MX. . = k("i+1,j -u, .) - k(

1,3 i, Y55 " Yi-1,5) T TiLg

or

§. . 2u, . + u.
15J

. . - <) = Py
it1,] i, 1-1,3) 133}

.]
mik(u (A1.6)

Then Uist,5° %, and ri.3 (a function of Ui 5 and ui,j) will be

unknown in this equation, therefore, Equation (A1.4) is applied on

both "i+1,j and ui,j to obtain:

N B - ;

v

Atz - .
* "3"(“i+1,j S TE T B 4Ui,j,1)]k - ry5t (A1.7)

Now, the only unknown left is us . if we determine r.; . by using
i+1,] ) 1,3

"1,3—1 instead of “i,j and ui’j_]At instead of ui,j' Except for the

top and bottom element Equation (A1.7) can be used tc compute Ui 4

For the first prediction u is set to zero. For any later

i+1,j

iteration step Gi+1 j can be used as obtained in the previous
?
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calculation, while r; j is always computed using the previous results
I

for u; and u .. Both u; ; and u, . are readily obtained usihg
1sd 23" LEY 153 ‘
Equations (A1.3) and (A1.4)
For the n-th element, i.e. the pile bottom (A1:7) reduces to:

L]

e B (1,5 = 5oy gt * Uy 55T 6

i3 (A1.8)
where r is the only unknown.
At the pile top the force fj may be prescribed and the

acceleration has to be computed, then:

o - " . . °
IR e AR R AR AL RR R RRL)

A tz e
(u j + 2u2,j'_1 - 4u1 1)K J (A1.9)

where the only unknown is‘§2 i since a passive reaction is not
assumed to act on the top element. If the acceleration ﬁjlj is
. 3
given as a boundary condition thzi: the force has to be calculated
from:
= bt .+ - N ~-,’0 .V " .+ R B P
5= Mug 5+ Klug soup 5 gy 5 qat- {u, 2.3 U, - 1) 23 (A1.10)

“where again‘ﬁ2 can be 'set to zero for the first step and equal

to the previousiy calculated value for all later iteration steps.

Convergence will be reached when the relative difference
between successive results is smaller than a chosen number e. (The
influence of the magnitude ¢ will be studied in the next section
of this Appendix). It is possible to compare displacements,

velocities or accelerations. Certainly acceleration will be the
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most sensitive vgriab1e but it was found that a velocity controlled
iteration yields good results. In case of an acceleration input
conditien on top of the pile, a check has to be performed on the
calculated top force. Thus, the convergence criterion which has

to be satisfied for all j can be written as

new(ui,j) - old (ui,j)

<ei=1,2,...n (A1.11)

new(ui’j)

where &1 j might be replaced by fj.

2. Analysis Parameter Study
2.1 Number of Elements

The numerical method chosen can at best be expected to gfve the
solution for the pile modeled as an N-degree of freedom system.
The question, therefore, is how many elements are necessary to
accurately represent the continuous pile. For purposes of comparison,
using the same acceleration input, time interval and convergence
criterion, a pile without reaction forces was analyzed divided into
5, 10, and 20 elements. The exact solution for the continuous
pile is easily obtained for this case {see Appendix A3) and is
given together with the lumped mass solution in Figure (A1.2).
It should be noted that the agtua1 pile length is not involved in
this comparison because it is not a factor in the number of elements
needed. As can be seen, while 5 elements represent a poor model,
the 10 element system is already a good approximation to the actual
solution. 20 elements give noticeable differences only where there

are rapid changes of force. It can be deduced that 20 elements
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will yield a very accurate solution while 10 elements give good

qualitative results.

2.2 Time Increment

Once the number of elements has been determined the choice of
a time increment is constrained. The reason for this is the
occurence of instability of solution whenever the distance traveled
by the stress wave in one time increment is constrained. Investiga-
tions into this phenomenon have been undertaken and are discussed

by Crandall (17). The suggested limit imposed on .t is

L
At £ (A1.12,3)

or since

-/
Cé__/

o |m|

t = //

‘=I=l

(A1.12,b)

Introducing

¢ = AL
~ At.c (A1.13)

as used by Smith (9) then ¢ > 1 will always yield a stable
solution. Fiqure (A1.3) shows again an exact solution and 3
solutions using ¢ = 1/2 (unstable), ¢ = 1 and ¢ = 2. A1l 3
solutions were obtained for n = 20. The differences between

¢ =1 and ¢ = 2 are very small and can be accounted for by observing
that the input condition is not exact]y‘the same when more time
increments are placed on the seauence of straight lines. Figure

(A1.4) shows what happens to the acceleration input data when used
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with different lengths of time increment.

2.3 Convergence Criterion

Various calculations were performed using different ¢ and also
calculations without any iteration. It is seen in Fig. (A1.5)
that, whenever enough elements are chosen, say greater than 10,
a number ¢ < .1 will be sufficient and that the iteration starts
only to improve the so1ut16n after 2L/c. These comparisons, however,
might yield quite different results when the solutions is carried

forward over a longer time interval.

2.4 Computation Time

In order to draw conclusions about the accuracy and feasibility
of the lumped mass analysis method the computation time has to be
considered. The calculations listed in Table (Al1.1) were performed
on a Univac 1108 Computer. The program was written in Fortran V.
The computer time in seconds is an approximation because time is listed
only in half seconds. However, it can be seen that solutions
using less than 3 seconds are not satisfactory. Using 30 elements
did not give much improvement while computation time increased
considerable (9.5 seconds!) The use of 20 elements together with
¢ =1 {at = .227 milliseconds in this case) gave a satisfactory
result and used only 3 seconds. The result could not be much
improved by halving the time increment which resulted in almost
doubling the computation time. Note that the only good result for
a pure prediction analysis took 2.5 seconds while the result between

2L/c and 4L/c is still quite erroneous as compared to the iterative
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computation on line 2 which took only 3 seconds. The method of
analysis has the advantage of accuracy and stability within the time
domain considered. Only a few rules must be observed in choosing
the necessary parameter, i.e. ¢ > 1, n> 10 and € < .1. The
application of a predictor-corrector iteration seems justified

when considering the increased accuracy in the time region after

2L/c.




APPENDIX A2
Static Analysis

The resistance parameters obtained from dynamic analysis
permits the computation of a load deformation curve to compare to
a static load test. The soil parameters descriyg'the shear
resistance in the pile soil interface as a function of deformation.
. Actually, such an analysis should take into account the deformations
of underlying soil strata. However, this would make necessary a
much better knowledge of static soil behavior than can possibly
be obtained from dynamic measurements. The analysis described
below will give only resuits which can be used for correlating
dynamic predictions to static measurement. It will, however,
provide a valuable tool to obtain an estimate on the pile
deformations to be expected. Firsg}the pile is divided into n
elements as it was done for the purpose of dynamic analysis in
Appendix A1. The static soil resistance acting on the ith element
js assumed to be directly dependent on the absolute pile displace-
.ment and is modeled again by an elastic plastic spring with
stiffness ksi = So,i/qi’ where So,i is the ultimate soil resistance
and q; the quake of the chaar resistance at the element.

Under these assumpticns the load versus deformation curve of
any pile element will be a piecewise linear function. Once all
displacements are larger than the quake the ultimate bearing

capacity has been reached and no more load increase can be obtained.
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Mathematical Formulation
Consider the i-th element in Figure A-1. Using the same nota-.

tion as in Appendix Al its equilibrium condition can be written as:

klujoy - ugd + Klugeg - ug) = kgyug™ (A2.1)

where

u; for u; < 9y

* =
Ui

q; for u; > q;

Thus, for u 9 Equation (A2.1) can be written as

<
2 + kS/k) Uy = Usuq = 0 (A2.2a)

i
+

and after the displacement has exceeded the quake

“upy t2up - g =R - (A2.2b)
For the first element on which no reaction forces were assumed to
act (Appendix A3) the equilibrium equation becomes

uy - uz = P/k - (A2.3)
where P is the load applied at the top of the pile. At the tip

=Up.p +u 1+ k/k) =0 for u < qp ~ (A2.4a)

or

“Unq

tu, = (ks/k)qn ctherwise. (A2.4b)
Thus, a system of n equations with n unknowns is obtained wﬁich has
to be solved for any interval beiween two consecutive yields of
shear resistances. Since shear resistances are acting on n-1

elements this means solvina n-1 times.
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The procedure followed here uses the same approach as would

be followed in a static load test namely first some load Pl is
applied on the top and then the deflections u} are calculated for
all elements. The next step is to determine which of the springs
will yield first, this can be done by investigating the ratios
uillqi. If their maximum happens to be ujllqj then the first spring
to yield will be located at the j-th element. Because of linearity,
the displacements for the instant when the j-th ultimate shear is

reached can be calculated from proportionality

U, . = u.l " 31
1,0 1 Uy (A2.5)
and the force on top of the pile
1 -
pj =p. El_
Uj (A2.6)

This way the first po%nt of the load deflection curve is obtained
when plotting Pj versus u; .

A new system of equations has to be set up now by writing the
j-th equation using (A2.2b) instead of (A2.2a). The new system can
be solved when using P? = Pj + AP where AP %3 an arbitrary load in-
crease and following the same routine as decribed above.

This was n-1 systems of linear equatjon each having n unknowns
and n equations have to be solved. This can be done conveniently

by means of iteration always using the previous result as an

initial guess.
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Results from this analysis were used and are demonstrated in
Chapter III for correlating soil resistance predictions with results

from‘actual static load tests.




APPENDIX A3
Wave Propagation in a Pile Under Impact
1. Force and Velocity Relation in a Stress Wave
If u(x,t) is the displacement of a particle in a uniform and
elastic rod at dixtance x from some fixed coordinate origin at time

t then the governing differential equation - the so-called wave

equation - is

3%u _ Czazu
ot~ X< (A3.1)

where c2 = Efp.
E and p are the Young's Modulus and mass density of the pile material,
respectively. The general solution of the equation is

u(x,t) = f(x + ct) + g(x - ct) (A3.2)
which is easily checked by back substitution. The general solution
can be interpreted physically by giving t a fixed value t;. Then
u is a function of x only and can be split into two components:
f(x + ct;) and g(x - ct;). At a later time t,

fx + cty) = f(x + c(t, - t;) + ct;) and

cglx - cty) = glx - c(t, - t;) - cty).

If, therefore, a distance c(t, - t;) is subtracted from x then the
station is found at which f has the value at time t, that it had
at x at time t;; g will have the same value at x + c(t; - t;)
at time t; which it had at time t; at x. In other words, if f and
g are considered to be displacement waves then f travels
in the negative x-direction aﬁd g travels in the positive x-direction,

bot having speed c.
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Differentiating Equation (A3.2) with respect to time leads to an

expression for the velocity v(x,t) of a particle

_ (af(n)  aa(u)
vix,t) = clg~=" - =55~ ) (A3.3)
where.n= x+ ctand u = x - ¢t. Equation (A3.3) can be written as

v(x,t) = vf(x + ct) + vg(x - ct) (A3.4)

thus, v can also be describéd by two waves Ve and'.vg which travel
in opposite directions.

Now, suppose that the shape of the functions f and g and,
therefore, u{x,t) is known at a certain time t. Then the étrain, e

is obtained by differentiating u(x,t) with respect to x

= elxt) = 2 (F(x + ct) + g(x - ct))
or
e(x,t) = §§§52'+ Eﬂéﬁl (h3-9)

The advantagé of usiné derivatives with respect to n or u becomes
apparent since these derivatives express the behavior of the deriva-
tive with respect to both x and t. Using the rod ‘cross sectional
area A and taking compressive forces positive, the force F(x,t)
in the wave can be calculated

F(x,t) = (AE/c) (-ve(x + ct) + vg(x - ct)) ~ (A3.6)
Thus, there exists a simple relation between particle velocity and
force in a stress wave, the force being proportional to the velocity
by a factor AE/c. The force will be compressive when the velocities

of particles and wave propagation have the same direction and it
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will be a tension force otherwise.

2. Boundary Conditions

So far, only the homogeneous differential equation has been
considered and nothing has been said about boundary conditions
or external forces. Since the differential equation is linear,
superposition is valid, so that a case of complicated boundary
conditions can be split into several basic types of easily solvable
problems. If the boundary conditions were nonlinear then a result
can be obtained by assuming piecewise linear boundary conditions
and superimposing their éffects. A wave reaching the end of the
rod might encounter either prescribed force or displacement
conditions. This problem can be split into the casé where the wave
travels in a rod with homogenedus, i.e. zero force or displacement,
becundary condi tions plus the case where no wave is present but non
zero end forces or displacements. The case where external fofces
are acting along the ;od may also be treated separate1y and then be
superimposed to the homogeneous solution. Prescribed displacements
have to be considered at the end of the rod only. Therefore, four
basic conditions must be treated

(i) Wave approaching a free end,
(ii) Wave approaching a fixed end,
(i1i) Prescribed force acting at a point along the rod,

(iv) Prescribed displacements at the end of the rod.

Case (i) Wave in a Rod with Free End -

Consider Fig. (A3.1) where on the left a wave g(x - ct) is
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shown approaching the free end (x = L) of the rod. Connected to
it on the right is an imaginary rod along which f(x + ct) travels

in negative x-direction chosen so

f(2L - x + ct) = g(x - ct) (A3.7)
Therefore,

aof _ _2g

X X

Both waves will arrive at x = L at the same time. From superposition
the displacement and strain can be calculated
u(L,t) = f(L + ct) + g(L - ct) = 2f(L + ct)

e(L,t) = flL +xct) + gfL +xct) =0

Thus the boundary condition of a free end is satisfied. The wave
f(x + ct) will now travel in negative x-direction through the rod.
It is called a reflection wave. As compared to the initiating wave
g(x - ct) it will cause displacements of the same sign but forces
of opposite sign. The displacement at the free end will be twice
that of the approaching wave.

Case (ii) Wave Approaching a Fixed End

The method of choosing an imaginary rod is used again for—the
case where the disp]acemenf of the end of a rod has to be zero. 1In
this case, however, the wave traveling in the negative x-direction
is chosen so that

f(2L - x + ct) = -g(x - ct) (A3.8)

and, therefore, %§-= %gu As a result of superposition tie force

at the fixed end will be doubled while the displacements cancel.
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The reflection wave will propagate displacements of opposite direction

but forces of the same sign as the initiating wave.

Case (iii) Prescribed Force Acting at a Foint Along the Rod
If a force is applied at x = x* along the rod then the continuity
condition requires

u(x*L,t) = u(x*R,t) (A3.9)

This can also be written in'terms of velocity
au(x*L,t) au(x*R,t)
R " ot (A3.10)

where x*L and x*R are on the left and the right side of the loaded

cross section, respectively (Figure A3.2).

. Also the condition of equilibrium has to be satisfied, i.e.

au(x*L,t au(x*p,t) = |
RE(——g5— - —53—1 = Fp(x*,t) (R3.11)

where FA(x*,t) is the applied force at x = x* and time t. Now

recalling Equations (A3.3) and (A3.5), Equations (A3.10) and (A3.11)

can be satisfied by choosing

e ix=ff aje) x=Xy 2 alx*.t)/EA (A3.12)

and

f _ ag( _

Substituting these two conditions in Equation (A3.10) leads to
1 = 1 *
cEiFA(x*,t)/AE + 0] = c[0 + EFA(X »t)/RE]
thus, satisfying the continuity condition.
Similarly it proves that the equilibrium condition is satisfied.

Figure (A3.2) shows that both waves carry a force of one half of
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the applied force while the velocities are in both-waves the same
having the same direction as the applied forve and magnitude
. %FA(x*,t)c/EA.

The case where the force is acting at the end of the rod can
be deduced since one of the half-waves is immediately reflected and
superimposed to the other one. Therefore, a wave will travel away

from the end with particle velocity

aulx,t) _ cFp(t - (L - x)/c)

ot (A3.14)
and strain
e(x,t) = FA(t - (L - x)/c)/AE (A3.15)

Case (iv) Prescribed Displacements at the End of the Rod

The case of a dispiacement condition a point along the rod will
not be discussed since this is equivalent to a rod of shorter length
with prescribed end displacement. A displacement prescribed at the
end of a rod is equivalent to a prescribed velocity: vA(L,t).
From the force velocity proportionality relation this can be considered
a force condition where the force has to be chosen as FA(L,t) =

va(L,t)EA/c.  Thus Case (iii) can be applied.

3. Superposition of laves

In this section certain special cases will be treated where
the findings of Section 2 have to be applied. These special cases
will be needed in treating problems where'external forces act along
the pile together with prescribed end conditions.
(i) Free Pile Under Known Velocity at the Top

Suppose a velocity va(t) which is zero for t < 0 and imposed
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on the top of a pile of length, L, and it is desired to know the top
force necessary to maintain this velocity when no other forces are
acting é]ong the pile.

As long as the wave created by vA(t) has not yet reached the
free end (i.e. for t < L/c) a pile particle at a point has velocity

vi(t) = vp(t - x;/¢€).

At time t = L/c the wave reaches the free end of the pile and
case (i) of Section 2 holds. Thus, a reflection wave having

velocities of the same sign but opposite forces will travel back up

2L +.x.
the pile. The velocity at a station x - x; becomes for t < —— L

A new reflection wave will be generated when this fup"-trave1ing wave

reaches the top since here the veTocity is prescribed. Case (ii) of

Section 2 describes this situation of a fixed end. This second

reflection requires a force; therefore, the proportionality between

applied velocity and fop forces will not hold any longer. The force

at the top of the free pile may be denoted by Ff(t), then for t<2L/c
Felt) = vy (t)EA/C

and for 2L/c < t < 4L/c
Ff(t) = [vy(t) - 2vp(t - 2L/c)IEA/c - (A3.17)

At a time t = 3L/c the wave will be again reflected at the bottom end
(It had been reflected at the top of time 2L/c.) At time t = 4L/c tne
wave has to be reflected again at the top but this time it has the

opposite stress due to the previous reflection at the free end. In
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general for, %—C-it:i'—z—lé-(r + 1)

Fe(t) = By, (t) + 2 vyt - 1) (A3.18)
J=1

where r = 0,1,2,..., stands for the time interval considered.
Equation (A3.18) gives the exact solution for a given top velocity
and no reaction forces. This equation can be used as a check on
the lumped mass analysis. Comparative results of this kind are shown
in Appendix Al. Furthermore, if this solution is subtracted from
the measured force then the Measured Delta curve is obtained as
defined in Chapter II.

Equation (A3.16) gives an expression for the velocity at some

point in the pile for times t < (2L - xi)/c. The equation can be
extended for times E%E-g_t <2 rc+ 1) , r=10,1,2,...

r .
vi(t) = §=0(—1)3[vA(t - {2jL + xi}/c) - vA(t -{(j + 2L
- x;H¢c)] (A3.19)

(1) External Force Acting on a Pile With Fixed Top and Free Bottom
The force denoted by Ri(t), is assumed to act upwards. If it

is acting at x = X then the results of Section A3.2 case (iii)

apply. Thus, two waves are caused traveling in both directions and

H

. . ‘s - _ ¢
having particle velocities (at x x; and time t) vr(t) = - ?EK'Ri(t)

+ 1/2R(t), i.e. a compression

and the force in the waves F.(t)
in the upwards and tension in the downwards traveiing wave. The
reaction force Ftop(t) on the fixed top of the pile due to this

velocity will be a compression force of twice the magnitude of the
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force in the wave (Case (ii) Section 2). The upwards traveling wave
will arrive at the top at a time x,/c after it was applied, hence

Frop(t) = Ry(t - Sci/c) (A3.20)

which is valid for a time as long as it takes the initially downwards
traveling wave to reach the top after reflection at the bottom. This
reflection at the free bottom end causes the initially downwards
traveling wave to change the sign in force (Case (i) Section 2) and
therefore, is also a compression wave after reflection. Reaching
the top at‘é time (2L - xi)/c after it was generated by the resistance
force this wave also will produce twice the force at the top which
it was propagating. The next wave to arrive at the top will be the
- initially upwards traveling wave, its sign will be converted so that
a tension wave arrives.

This way thevréaction at the fixed‘piIe top due to Ri(t) can be
calculated for 0 < t< 4L/c

Feop(t) = Ri(t =) + Ri(t - ——1) - Ry(t - ——)
- Ri(t - —~—Er——) (A3.21)

For later times it can be observed that all the waves which arrived
at a time t, at the top have in the mean time changed their sign
twice thus arriving again with the same sign at a time t; + 4L/c.
This result can be expected since a pile of length L has a Towest
natural frequency of c/4L, its meaning is that in absence of external
forces a harmonic behavior can be observed. Therefore, for times

ral/e <t < (r+1)4l/c




1

r -2l X
Frop(t) =) [R(t - --1- O N pe——
#0 S

*# Rt - — 1-;i"".;)-Ri(t-‘*--—;g-( i 1

(A3.22)
and r = 0,1,2,..n indicates the time interval considered.

Somewhat more complicated is the problem to obtain the particle
velocities at a point x = x,, when the load, Ri(t) is acting at x = x;.
The problem can be split in two parts first considering the wave
which is initially moving upwards and then second the wave which
initially moves downwards. Both of these waves have a pértic1e
velocity -c/2EA Ri(t). In order to facilitate the derivation it is
further assumed that x, > X;. Then the velocity vh’up(t) at x = xp
due to the upwards traveling wave obtains its first contribution after
a time (xh + xi)/c,'i.e. the time necéssary for the wave to reach the
top and upon reflection the station x = x,,. The wave will again be
reflected at the bottom end with no sign change in velocities and
reach x = X, & second time with the same sign in velocities. Thus,

when observing the wave's action at x = x, for a time t < 4L/c then

— e e+ e R x + x e e e 2L + x - x -
c h i i h
vh,up(t) EA[Ri(t - c ) + Ry(t - c
2L + X, + X. . 4L + X; = X
h i h
- R'i (t - C ) - R'i (t - c )]

(A3.23)
Similarly one can find how the initially downwards traveling wave

influences the velocity at x = Xn
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| e ' ,.xhl-lx% ..2L.e.xil-,xh
Vh,down(t) = ZERLR{(t - ——1 - Ryt - c )
2L UK, TSUX. 8L e X=X
h 1 Al h
+R-l(t" c ) +Ri(t" c )]

(A3.24)

Observing that the waves arrive with the same sign of force and
velocity after every 4L/c then superimposing the results from

Equation (A3.23) and (A3.24) the velocity vh(t) due to Ri(t) becomes

fOY‘I‘&léf_ti(Y“*‘])%

2L + x; - Xp aL

v, (1) = fgwjgb{ai(t B RAC IR NURE - i
- R (t SR :h il ALy - Ry (e - fl—;—i'l
- (3 + 1AL
- Ri(t---------———-xh ;xi - 3%5) < Ri(t - - :" i jilé
+Ri(t~2L+zh—Xi 59"2)*“1-('0‘21‘3;3‘("1

-G+ a3025)
where again r = 0,1,2,..., indicates the time interval considered.
(iii) Free Pile With Known Force at the Top

In this case a force Fp(t) is prescribed at the top and no forces
act along the pile. It is desired to obtain an expression for the
velocity at the pile top Vtop(t)’ due to this force. The reflections

of waves at both ends of the pile have force but no displacement




113

restrictions. Thus, if the'appligd wave applies compressive
strains then all the reflection waves will have tensile velocities.
Thus, reflections will always add to the top velocity on every wave
arrival at the top. From proporticnality and due to the discussed
reflections the result can be readily obtained.

Veop(t) = FxlFalt) + 2Fy(t - 2L/c) + 2Fp(t - 4L/c) +...) (A3.26)

or using the notation as above Equation (A3.26) can be rewritten

2L

to yield for v“= < t < (r + 1)

op(t) = ExlFp(t) + 2 §_1FA(t ) (A3.27)

(iv) External Force Acting on a Pile with Free Top and Bottom

The external force may again be denoted by Ri(t) and act at

X = Xi. The reflections will again be of such a nature that the
waves arriving at the top always add to the top velocity Vtop(t)
if Ri(t) does not change sign. Hence for 0 < t < 2L/c
X5 2L - X5
oplt) = FAR (t - =) + Ry(t - ——=)] (A3.28)
~and for r2L/c < t < (r + 1)2L/c
r X - 2L - x.
= =C - s2L - i_ ;2
Veop(t) = ER §=3R1(t Lo 50 +R(x - 3=5)1 (A3.29)

4. Soil Resistance Forces
This.section will derive the relation between the velocity on
top of the pile and the magnitude of reaction forces which are assumed

to depend on the pile displacements and pile velocity. A discussion
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of this soil model is given in Appendix C. For ease in computation
the resistarce forces are assumed to act at a finite number of
stations at uniform spacing so that their application in a Tumped
mass analysis is possible. The model splits the soil resistance
force Ri(t), forces acting at time t and x = x; to two components:
a static component called the shear resistance Si(t) dependent upon
the pile displacements and a dynamic component Di(t) referred to as
the dynamic or damping resistance which is dependent on the velocity
at x = X3
(i) Shear Resistance Forces

The shear resistance force acting at x = x; and time t whose

force displacement reiation is i1lustrated in Figure (2.2) can be

expressed as

ki”i(t) for ui(t) < q; (a)

Si(t) = Si,o for ui(F) > q3, vi(t) > 0 (b)
Si,o - ki(max ug - ui) for ui(t) < max u, (c)

(A3.30)

where k.- is the 5011 stiffness, S.
i i,0

ui(t), vi(t) are pile displacement and velocity, respectively and

is the ultimate shear resistance,

max u; is the maximum displacement before or at time t. As a
theoretical example how a shear versus time relation can be developed
it is now assumed that only one shear force is acting, that it is
caused by a velocity vy(t) which is applied at the pile top and that
at the pile bottom is a free end. This exampie will demonstrate

the main features of wave propagation effect of a shear force.

Subsequent quantitative results, however, will be much easier
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obtained by a lumped mass analysis. The sheaf versus disp]acemént
relation requires the individual treatment of the three different
Taws described in Equations (A3:30 a; b;.c);
Suppose the wave caused by the hammer bilow is described by a

pile top velocity vA(t). Then at a time x;/c the wave will arrive
at x = x;. Thus, vi(t), u{(t) the velocity and displacement of the
pile are zero at x = X; before xi/c. When the wave arrives the shear
resistance force Si(t) will tend to resist the motion of the pile
and reduce the applied velocity by sending out waves in both directions
along the pile. This reduction in velocity is proportional to the
acting shear resistance force Si(t) which in turn is proportional
to the actual displacement. Thus, if X; is far enough from the ends
of the pile so that no reflection wave will arrive within the time
interval now considered then the actual velocity vi(t) at x = X
is given by

vs(t) = vp(t - xg/c) - c/2EA Si(t) (A3.31)
For the actual displacement ui(t) being smaller than the quake q; the
shear resistance is given by Equation (A3.30a).

Si(t) = k;us(t)

<dui(t) . ]
but vi(t) = —gF— S° that Equation (A3.31] can be written as
du,i e X; : A
It + ki ZER Y4 (t) = VA(t - ‘—é') (A3.32)

By introducihg an integration variable s and initial condition
ui(t - xi/c) = 0 and by defining = = t - x;/c then the solution of

Equation (A3.32) yields the actual displacement x = X
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T

: K.
0y ) = ! ValsJexpt( < (s - 1)3ds (43.33)

Defining ti] as the time when ui(t) becomes equal to a3 then Equation
(A3.33) is valid for x;/c < t < ti;. At time t;; the shear force
reaches its ultimate va1ue; Therefore, from Equation (A3.31)
vi(t) = vA(t - xi/c) - ¢/2EA Si;o (A3.34)
and
: ti o '..xi e :
u;(t) = q; + J *Ovpt - dt - 5 S ([t - t5q) (A3.25)
Y1
This equationbis valid until a time ti@ when the maximum displacement
is reached. This happens when vi(t) becomes zero, thus, from

Equation (A3.34)

yA(t- - xi/c) = ¢c/2EA Si,

1,0 ) (A3.36)

These equations assume no réf1ection waves have reached‘x = X5.
In most of the cases the velocity v,(t) stays greater than one
half of the proportional resistance forces for a time until the
first reflection wave returns from the bottom end. Also thz initial
portion of the reflection wave which carries the effects of Si(t) <
Si,o has usually paséed the station x = X; before t; is reached.
Then the above condtions (A3.36) becomes

Valty,o = X3/ + vplty o - —< ) =8 Si,0 (A3.37)
Here the first term on the left hand side is due to the directly
arriving wave caused by the impact wave, the second is also due to
the impact wave but after reflection at the bottom and the term on

the right hand side is due to the effects of both the ultimate shear

»0 Moy
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resistance at timg Fi,o p]qs tbe shegr actjng at a time
2(L - x{)/c earlier. |

After t = ti;o unloading will start-i.e. the shear resistance
force will decrease by virtue of Equation (A3.30c). Unloading
effects will be investigated in the later section using a simple
example. Their effect at the top of the pile will, in general,
be observed at a later time and are, therefore, not considered in
detail here.

Examples for shear resistance forces and their effects on the
pile top will be given below and in Chapter II.
(ii) Dynamic Resistance Force Acting at the Pile

The dynamic resistance law is assumed to follow the law of a
linear viscous damper. If the damping constant at a point x = X5
is denoted by d; and the actual velocity by vi(t) then the dynamic

resistance force Di(t), defined to be é concentrated force, is

D;(t) = dyvy(t) ~ (A3.38)

The actual veiocity at x = X5 is defermined by the particle velocities
of the two waves in the pilemvf.and vg (Equation (A3.4)) traveling
in negative and positive x-direction. respectively. Further, the
effect of the damper itself has to be superimposed. The particie
velocity at x = X due to the dynamic resistance is again determined
from Equation (A3.12). Thus, if the velocities of the waves

arriving at x = x; at time t add up to Vi,a(t) then the actual
velocity is

vi(£) = v; ,(t) - 30;(t) c/EA
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and after inserting Equation (A3.38) this becomes
V.i(t) = Vi,a(t)/(] + diC/EA)

Therefore the damping force can be calculated from

Di(t) = di(vi;a(t)/(l + dic/EA) (A3.39)

This dynamic resistance force sends out waves in either direction
gaving particle velocity - %Di(t)c/EA. While for times x;/c <t <
. L.-.‘X.
i
c
Di(t) or the impact wave reach again x = X5 after having been

reflected at top or bottom end of the pile. If the damper is

or xi/c <t < 3xi/c after one of the waves resulting from

Tocated at the bottom end of the pile then simpler superpositions

occur. In this case the initiating wave, v a(t), will be refiected
4

at the same time when the damper reacts, thus

vp(t) = zvn,a(t) - Dn(tjﬁﬁ' ~ (A3.40)

2]

nd the damping force exerted by a damper located at the bottom end

having damping coefficient d  is determined by

2v_ _(t)
n | + cdn/EA n (A3.41)
If the only wave arriving is that due to the impact then
2v,(t - L/c)
n T+cd/EA n (A3.42)

(i1i) Dynamic and Shear Resistance Force Together

An important result can be obtained for the specific case where
a shear resistance force Sn(t) and a damper having coefficient dn
resist together the motion at the pile bottom. For clarity no

other resistance forces are assﬁmed to act along the pile.
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Considering only a time after the bottom displacement has
become greater than the quake and only befere a time 3L/c, i.e.
before the impact wave arrives a second time at the bottom, then
the only one wave arriving is due to the impact. Thus, because
of immediate reflection alone

v“,a(t) = 2vA(t - L/c).

Due to the shear a reaction wave will be sent upwards having
particle velocity
I

Vs(t) = - —m- Sn,o
and due to the damper

= &

Vd(t) - = EA Dn(t)
But

D, (t) = dnvn(t)
where vn(t) is the actual pile toe velocity given by superposition
of all waves. Thus,

vn(t) = ZVA(t - L/c) - c/EA(Sn’0 + dnvn(t))

- which jeads to

Vo(t) = —53 cd_7ER -  (A3.43)

and the damping force Dn(t), therefore, becomes

. 2v,(t) = .¢c/EA S
- A n,o )
D, (t) = d —5% cd_7ER (A3.44)

5. Resistance Nelta Curves
In Chapterll Delta curves were introduced as a means of studying

the effects of the actual resistance forces at the pile top by
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means of the Measured Delta curves.here referred to as A(t). The
effect of resistance forces acting at x = X; due to the chosen
soil model were investigated by means of Resistance Delta curves,
called Ai(t).

A11 Delta curves are defined to be the effects of the acting

resistance forces (depending on pile displacements and velocities)

..

- at’'a fixed pilé top when thElpi1é't1b'%S'é'f?ée‘énd.

In the previous section the resistance forces had been derived
for specific cases as a function of time, depending on the impact
velocity vA(t). In the following paragraphs examples will be given
using either a theoretical resistance versus time relation or
based on a simplified top input velocity vp(t). Since a resistance
Delta curve, a;(t), for a force R;(t) acting at x = x; is the force
on the fixed top of a pile under-action of R;(t) only, the Delta
curve is expressed by Equation (A3.22) as derived in Section A3.3.

Thus

j=0 1 C (od Cc
) 2L + x. 4L - x.
i 4L - i 4L
- R‘i(t - .........E......_ - 3...6- - K‘i(t - .--.._.c_-—-.- - J_..E.)}

(A3.45)
for r4l/c < t < (r + 1)4L/c where r, therefore, indicates the time
interval considered.

Suppose a shear resistance force acting at x = x,; is given by

1
X
- 1
S;(t) = H(t - IS, 4 (A3.46)
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This shear resistance force has zero magnitude until t = x./c and is
constant thereafter, as described by the unit step function

H(t - xi/c). Using Equation (A3:45)

r 2R .. .. .
- e : CP AL 2L AL
Ai(t) = S, §= {H(t - — J*EJ + H(t s J-;ﬁ

1,0 0 C
..ZL.-.-.ZX- .. . ..
i 4L 4L 4L
- H(t - ""-——‘-:———— - J"'—c—' - H(t - —E - J—E)} (A3.47)

Both shear resistance force and the corresponding Delta curve are
plotted in Figure (A3.3 a,b) for two cases of shear resistance
namely Xy = L/2 and X; = L, respectively. In comparing Figures
(A3.3 a,b) with Figures (2. 8,9) it can be observed that the
simplified resistance law as expressed by Equation (A3.46) gives

a good approximation of the actual circumstances. In order to study
the effect which uﬁloading has on a shear resistance Delta curve a
second example will now be given for a shear resistance acting

at x = Xy given by

5;(t) = 55 JH(E = x;/c) - JH(t - 2] (A3.48)

This means that at time 2L/c the resistance force is assumed to

decrease to half its u]fimate value. Figure (A3.4a) shows the

shear versus time relation for X; = L/2 and x = L. The resistance
A-curves obtained from applying Equation (A3.45) are shown in Figure
(A3.4b) . The terms resulting from applying Equation (A3.45) are
individually shown before they are added. Worth noting in this
figure is the fact that negatfve resistance Delta values are obtained

for 4L/c‘< t < 6L/c and it can be concluded that negative values
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in the Measured Delta curve, as for example in Figures (2.5,6,7),
will arise from decreasing resistance forces, either shear or
dynamic. Somewhat more complicated is obtaining a dynamic
resistance force as a function of time even if an idealized
velocity input is used.

In order to compute Di(t) the velocity of the pile particles
at x = x; has to be found. This velocity multiplied by the damping
coefficient di yields the damping resistance force. If the sum of
the particle velocities of the two waves arriving from either
direction at x = x; at time t is denoted by Vi,a(t) then the actual
velocity of the particles at the damper,.ﬁi(t), can be computed by
use of Equation (A3.39).

e T ) .
vi(t) = Tc vi,a(t) “ivi,a(t) (A3.49)
1+ e
Thus,
' d; "
S S (A3.50)

1 ]+ic
It should be noted that the waves arriving from either direction at
X = x; can be the result of a superposition of various other waves.
A general derivation of Di(t) becomes very involved and amounts to
a complicated bookkeeping of all the waves traveling through the
pile. Therefore, two special cases will be presented as an
illustration of the main features of dynamic resistance forces. A

damper at x = L/2 and a damper at x = L will be chosen as examples

and the computation limited to times t < 4L/c.
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 In order to find out the magnitude of the velocities of the
arriving waves applied velocity and velocities due to the damping
force will be considered separately. If a velocity vA(t) is
apnlied at the top of the pile at times t then due to this velocity
alone the velocity at x = L/2 for times t < 4L/c can be computed
from Equation (A3.19) which leads to
vi’A(t) = vp(t - L/2¢) + vp(t - 3L/2c) - vp(t - 5L/2c)

- vA(t - 7L/2¢) (A3.51)

If a damping force Di(t) is acting at x = L/2 at time t then two
waves are generated traveling upwards and downwards away from the
location of the damper both having the same particle velocity
—cDi(t)/ZEA. Due to the initially upwards traveling wave the pile
at x = L/2 is subjected to the velocity _

Viup 5eal0; (t - L/e) + D, (t - 2L/c) - Dy(t - 3L/c)]  (A3.52)

The three terms on the right hand side are due to reflection waves
arriving. The first coming from the top after the first reflection,

the second arriving from the bottom after the second reflection and

‘the third is again due to a wave arriving after a refiection at the
top, this time having been reflected a third time.
The effects of the initially downwards moving wave on the

velocity at the damper location can be expressed as

Vi down = E%K{'Di(t - L/¢) + Dy(t - 2L/c) - Di(t - 3L/¢c)]
' (A3.53)
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Summing up all the effects of applied and resistance waves yields,
after simplification, a velocity of the arriving waves for t < 4L/c

Vi a(t) = valt - L/2c) + vp(t - 3L72¢c) - v, (t - 5L/2¢)

- VA(t - 7L/2¢c) + c/EA Di(t - 2L/c) (A3.54)

1]

But Di(t - 2L/c) (t - 2L/c)

*Vi,a
| = “i[VA(t - 5L/2c) + vA(t - 7L/2g)]
and therefore

Vi alt) = vyt - L/2c) + vp(t - 3L/2¢) - vp(t - 5L/2c)

(1 - aic/EA) - vA(t - 7L/2¢)(1 - aic/EA) (A3.55)

which leads to Di(t) by multiplication with a;. |
~ Figure (A3.5a) shows the graph of Di(t) for an assumed constant
velocity of magnitude Va(t)/c'= 1 and a damping coefficient .
d; = EA/c, so that a; = EA/2c. Figure (A3.5b) shows Ai(t) due
to this damping force obtained from applying Equation (A3.45) by
graphically superimpoéing the applicable terms as it was shown in
Figure (A3.4).

1f a damper is located at the pile bottom then only waves
arriving from one direction have to be considefed. This leads to
simpler computations. The arriving wave velocity for times t <
4L/c is tnen given by

Vo.a = 2lva(t - L/c) = vp(t - 3L7c} + c/EA Dy(t - Zijc)]
or

Vo.a = 2[vA(t -1/c) - vA(t -‘3L/c)(1 - uic/EA)]‘ (A3.56)

k]
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and therefore the resistance Delta curve for t < 4l/c

2 (1) = 2a [va(t - 2L/c)] (A3.57)

since D (t) = “n-vn a(t).
Both Dn(t) and An(t) are shown in Figure (A3.5c¢,d), respectively.
Applied velocity and damper coefficients were chosen the same way
as in the previous example. This resistance Delta curve seems
identical to that for a sheér resistance at the tfp of the pile.
Of course, this is a result of the choice of a constant velocity
at the pile top. It was found in analyzing actual records where
the velocity showed only a small decrease after the maximum that
it is, in fact, difficult if not impossible to disﬁinguish between
shearvand dynamic resistance f?rces. Further detailed discussicn
of this important point is presented in Chapter IV,
6. Prediction of Soil Resistance Forces Act1ng Along the Pile

Under a Hammer Blow .

Using the concept of Measured and Resistance Delta curves
a predictlon scheme will be developed for the magnitude of forces
which act along,theng1e under a hammer blow. Their effects at the
pile top are displayed in the Measured Deita curQé wﬁ%&ﬁwgé d;;%véa
from acceleration and force measured at the pile top.

The actual resistance forces are distributed along the pile.
For ease in computation it will be assuhed that they act as
concentrated forces on n equally spaced locations along the pile.
The number of unknowns is slightly reduced by assuming that the

pile top element has no resistance forces acting, an assumption
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which is sensible because part of the pile is mostly above grade
and the upmost soil is usually not in contact with the pile due to
transverse pile vibrations. Thus, the magnitudes of (n - 1) quakes,

;> (n - 1) ultimate shear resistance S; , and (n - 1) damping

0
coefficients, di’ have to be computed.

As outlined in Chapter II the i-th quake will be assumed to be
reached when the velocity at the point x = X; reachés a maximum
velocity. If no resiStance forces were acting then this dispiace-
ment would be the same as the displacement at the top at time t_,
the time when the top velocity has a maximun. Only the bottom end
would obtain twice the displacement due to ithe reflection of the
arriving wave. The effect of the resistance forces can be estimated
by considering the Measured Delta curve. In Section 5 it was found
that a sheaf resistance force produced a pile top-force effect of
twice its uitimate shear resistance value at time Co 2L/c. A
damper at the pile toe also yields a top force effect of twice its
maximum resistance force at this same time. The Measured Delta
curve is equal to the sum of all Resistance Delta curves if the
’parameters are correct. Thus, a(t) shows at a time 2L/« after
impact twice the magnitude of the sum of all resistance forces if
all the damping force is assumed to act concentrated at the bottom
end. The effect of all ultimate shear resistance forces and the
effect of the toe damping force on the toe velocity is proportional
to their respective wave particle velocities or magnitudes of

resistance forces. Thus, the maximum velocity at the pile bottom
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at time L/c + tm‘is

max v, =='2 max v -—E-% %A(tn,l + 2L/c) (A3.58)
where vA(t) is the top measured velocity and A(t) is the magnitude
of the Measured Delta curve at time t. _

A good estimate on the bottom end displacement can be obtained
by assuming that the ratio of pile top and pile tip displacement 1is

Tinearly proportional to their respective velocity ratio thus

max v

= - n
Ay = Uy(t + L/c) = up(t)) e 7y (A3.59)

uA(t) being the pile top and un(t) the pile tip displacement. The
quakes for locations other than pile top or pile tip are linearly

interpolated so that
X
a; = valty) - Dupltn) - utey + L/e)I (A3.60)
Quakes resulting from this calculation which are larger than
.12 (inch) are set equal to this value the quake, therefore, cannot
exceed commonly recommended values for sand (9). A lower bound is

net introduced because it is desired to keep the quakes small enough

so that the ultimate resistance can be reached at all elements. The

prediction scheme for quakes is based on the following considerations:
Examples of Measured Delta curves are shown in Chapter II,

Figures (2.5), (2.6) and (2.7). A1l three curves, although

obtained from very differently behaving piles have their makimum

value at a time 2L/c after maximum velocity at the top. 1If skin

damping forces are considered smai] then this means that the maximum

shear and damping forces were all reached before or at a time L/c
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after maximum velocity.at the top. Then, the toe shear resistance
force must have reached its ultimate shear resistance force at the
same time. This time, however, is the time of maximum velocity at
the pile tip. Consequently, the quake of thé tip shear resistance
force is reached at the time of maximum tip velocity a result which
is extended to all points along the pile. In Chapter III and IV
this point will be further discussed.

Although several simplifications have been made in the above
described computation quakes will in general result which lead to
the ultimate shear esistance at the i-th element at or before a
time t,+ xi/C’ Therefore, in the absence of dynamic resistance
forces the value of the Measured Delta curve at time tt 2x;/c
will be a result of a superposition of the top force effects of the
first i ultimate shear resistances plus some small influence of the
already increasing shear resistances of Tower elements due to the
part of the before maxi mum velocity. Calling this influence ¥

and defining t; = tm + in/c then

. i ‘
A(ti) = §=1So,j P _ (A3.61)
and for t, ; = t - 2%, ,/c
i-1
A(t.i--l) = §=1So’j + e-i..] (A3-62)

Subtracting Eguation [A3.62) from Equation (A3.61) leads to

So,i = M) - alty ) + e - g5y (R3.63)
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If it is then assumed that the difference €541 ~ 5 is small the

+1
i-th ultimate shear resisiance has been found. Figure (A3.6)

serves to clarify this point by use of a theoretical exampfe.
Several theoretical Resistance Delta curves (ai) are shown -
corresponding to shear resistance forces =-.whose sum

corresponds to the Measured Delta curve (b). At times t; an
influence €5 from the next lower shear resistance force can be
observed. The So,i were assumed to be equal in this example so
that €5 = €41 for i < n-1.

This computation can be performed the same way for all elements
except for the bottom where the effect of all the bottom reflected
waves requires a top reaction force of twice the total resistance.
Thus, an approximation for the n-th shear resistance force can be

computed from

so,n = 1/2[A(tm) - A(tn_])] - (A3.64)

This computation scheme will not apply when damping forces have to

be considered and when t, is reached so late that A(tn-l) contains

“already effects of the return of reflection waves from the bottom.
In that case an improvement of the above described method for
predicting ultimate shear resistance forces can be obtained if the
damping effects and the effects due to reflection waves are subtracted
from the Measured Delta curve. For doing so the magnitude of damping
forces must be known. An estimate of the maximum damping force

max D can be obtained from the simplified Phase III prediction
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method as described in Chapter II, Section 5 and in Appendix D.

If it is assumed that all this damping is concentrated at the pile
bottom (actually damping will be distributed but a large percentage
is in most cases found to be concentrated at the bottom) then its
effect at the top will be proportional to the top velocity shifted
over a time of 2L/c as shown by the Resistance Delta curve in
Figure (2.11). (This is actually only true for no other resistance
forces acting, but since the shear resistance forces are constant
except for a small portion before the quake is reached this‘gives
still a good approximation).

The doubling effect due to the return of reflection waves from
shear resistance can be assumed to be proportional to the Resistance
Delta curve for a shear force at the pile bottom. Such a Resistance
Delta curve, however, can be thought of being a curve proportional
to the pile top displacement until tm and constant, thereaf{er,
with a time lag of 2L/c.

The resulting Reduced Delta curve is then

R T
Breg(t) = alt) - 2 max D —mp Vp o a3 (A3.65)
where
. _ uA(t) for t < t,
ROE
qi for t > tm

and So is the sum of all ultimate shear resistance forces.
Using the Reduced Delta curves the equation for the prediction

of ultimate shear resistance forces becomes (see Equation (A3.63))
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for i = 1,2,...,n

CSp.q = Alty) - alt;_y) (A3.66)

It is now left to compute the damping coefficient for the bottom
damper. From Equation (A3.58) it is possible to predict the
maximum velocity at the pile tip using both measured velocity and
Measured Delta curve. Therefore,

d, = max D/(2 max v, - ~(c/2EA)A(tm +2x ) (A3.67)

A1l nécéssary parameters for performing a lumped mass analysis
have now been approximately determined and the top force and all
displacements can be calculated using the measured velocity and the
predicted soil resistance forces as an input. To improve the values
an analysis should be done. .

The difference between measured and the pile top force
computed in the lumped mass analysis using the predicted soil
parameter can be considered again a De]ta_curve. It will be referred
to as an Error Delta c&rve, Ae(t), and provide a means of computing
corrections on the first predictions. These errors can be due to a

pile tip velocity different from the prediction, also the assumptions

used in reducing the Measured Delta curve can account for errors.

Other errors, however, will also be introduced from assuming that

i-th shear resistance force had the same top force effect at time
The Error Delta curve can be considered a Measured Delta curve

which must be the sum of Resistance Delta curves. This time the
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. computation becomes somewhat simplified since for every element
both a velocity and displacement versus time re]atioﬁ'are'avai1ab1e
which can be considered an approximation, whose quality depends on
the relative magnitude of the Error Delta curve. Using, again, the
‘concept of Resistance Delta curves it is now possible to set up
matrices whose coefficients are influence numbers reflecting the

J
i-th element. Thus, for the shear resistance forces a matrix C

top force effect of a resistance force at time t. = ij/c at the

is defined with elements

: 2L - x.
- - *lg o L
€5, = U*(t - xy/e)/a; + ugx{t /9 (A3.68)
where
u.(t) for u.(t) < q.
W+ (E) ={ ;(t) ;(t) < a4
! q; for ui(t) > q;
As an example of the méaning‘of €51
85(t5) = S5 55,3 (A3.69)

In the same way for daﬁping forces a matrix E is set up having

elements
‘ . ’ L - X.i )
ej,i = (vikt - xi/c) + vi(t - —”‘E?~TJ)/ max v, (A3.70)
So that .
= e. . (A3.71)
& (tj) max DmeJ i ‘

This matrix is used later on for distributed damping resistances.
It will be understood that max Di is the maximum damping force
occuring on the first arrival of the impact wave. It is expected

that & higher, second maximum is obtained {of about 2 max D, as can
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be seen in Figure (2.12)) after the impact wave is reflected at

the pile bottom. This maximum damping force max Di is known to
occur at a time tm + xi/c and therefore, its top force effect will
be seen on top at time tm + in/c = ti' Thus, ej,i will be a
convenient tool for computing damping resistance forces when Di

is not zero along the pile skin. By use of C5.i and €5, it is

now easy to reduce the Error Delta curve by the effect of
reflection waves at 2L/c_and by the difference AD between necessary
damping (max D) and damping found in the previous analysis (max D%),
thus, if aD = max D - max D?

Ae,red(tj) = Ae(t) - AD | (A3.72)

€j.n

The corrections on the shear resistance forces, ASo s can now

o1
be computed using the same approach as in the initial shear force
prediction

850, = Ae,red(ti) - Ae,red(ti-]) (A3.73)

The corrected damping coefficient can be computed from Equation
(A3.67) where the expression in the denominator on the left hand side

~is replaced by max v_ as obtained in the lumped mass analysis.

n
In order to further improve the predictions another lumped mass

analysis can be performed and further corrections obtained and this
process has to be continued until the Error Delta is small enough.
The number of necessary iteration cycles depends on how well the
soil model describes the actual soil behavior. For good agreement

between the assumed and actual soil action four iteration steps
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usually suffice. In many cases, however, the Delta curve portion
of the record for 2L/c after impact cannot be reduced to small
values. In such cases the computation is terminated after the 8th
attempt.

When requiring the Error Delta curve to become smaller than a
certain bound it is important to realize the different sensitivity
of an Error Delta curve at different times to a change in prediction.
As in any other Delta curve an error ASi at x = X3 will result in
a Dé1ta curve approximately given by

Ae(t) = ASi for t; <t <t
and

Ae(t) = 2ASi for ty<t< ti,o + xi/c

thus, the portion of the record for tm <t«< tn is less sensitive

to errors than the later portion of the record. The following
criteria, therefore, have been establishgd for a sufficiently small
Error Delta curve accdunting for the different sensitivities in the
record (a further discussion of these criteria is given in the example

in the next section).

i
i

t
A n=1 :
129 —1 J A_(t)dt t< CR; = 0.02 max Fa (A3.74a)
t

tn_-l - t2 e

t
|E | 1 " (t)dt
2 T
tn tn_1 a
t

n-1
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t
£
L a,(t)dt| < CRy = 0.10 max Fy (A3.74c)

|Es] = g%
t -t

th

where max FA is the maximum measured force

and
4L/c for no unloading
tf:i{j

t, o+ Ll/c  otherwise | (A3.75)
with tn,o being the time of zero velocity at the pile tip. This

way it is not required that the predicted and measured top forces
match after unloading effects become apparent at the top. It was
found in applying the above described error criteria that the
|E{l-numbers can be efficiently used to control the computation
process: As long as |E;]| is toé 1argeAthe shear resistance forces

S along the pile skin have to be corrected, when |E,| is

i,0
sufficiently small but |E,| is not less than CR, than either toe
damping or toe shear have to be adjusted by an amount equal to one
half of |E,|, and when |E;| and |E,| are small then a check on

|E5| allows to decide whether or not the total maximum amount of

damping used was correct. This is due to the fact that a Resistance
Delta curve for damping decreases with a higher rate after tm + 2L/c
than a Resistance Delta curve for shear forces. Therefore, damping
has tc be added and shear resistance subtracted at the same time if
the predicted force is greater than the measured force for t>t,

+ 2L/c, i.e. for E3 < 0. For E3 > O the opposite has to be done.

Thus, an improved total damping value will result from
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max D’i m

p = Max D - E§/2

(A3.76)
where it is assumed that the shear resistance forces are staying
constant while the damping forces decrease immediately to zero after
t,+ 2L/c. This scheme - although being quite crude - usually leads
to a satisfactory match over the third portion that is t from tn to
te as long as the soil model allows a good match in that region.

Once, the inequalities (A3.74a,b,c) have been satisfied the
prediction for all damping at the tip is accomplished.

The assumption of all damping concentrated at the pile tip
might yield a good match, however, it is possible and probable
that damping forces act also at the pile skin. For finding out how
the damper locations influence the predicted top force itwo more
methods of damping distribution will be tried. One of these methods
is to place damping forces uniformly along the skin i.e. for
i=2,3,...,n-1. Thus, (n-2) damping forces are chosen to replace
the bottom damper. Caﬁcu1ating with the damping maxima, max Di’
occuring before the impact wave reaches the bottom and assuming that
the max Di are one half of the maximum damping effect felt at the

top at time 2L/c (see example in Figure (2.12)) TJeads to

max D.
e (A3.77)

However, it has to be checked whether these damping forces would not
result in top force effects larger than specified by the Measured

Delta curve. Using the E-Matrix this can be checked
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n-1

§=2max Diej,i < A(tj) (A3.78)

If for some time t = tj this inequality does not hold than max Dj

has to be reduced

max D, j_A(tj) - %;;max Die; ;;glzmax Djey 4
J=2,3,...,n-1  (A3.79)
Also it has to be checked whether the maximum total damping force on
the return of the reflection wave would exceed the necessary total
damping force as determined in the first prediction. Again using
the E-Matrix this check requires
n-1

:

max D.e_ . = max D.
=2 1 L

n,i (A3.80)

mp

which can be accomplished by adding a max Dn if the left hand side is
smaller than the right hand side or to subtract from all max D,
i=2,3,...,n=1 if the opposite holds. If for j = 2,3,...,n-1

turns out to be negative then neighboring damping forces have to be

reduced until the maximum possible damping forces are found. The

corresponding damping coefficients can be found from the previously
predicted velocities (which had been used also for computing the
ei,j)' Errors resulting from this assumpiion must be small since a
good match had been determined previously and the maximum velocities
for t < t_ + 21/c will be the same for a (t) being small no matter
how the match was accomplished. (The particle velocities in the

waves due to either resistance forces have to be the same).
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The computations for obtaining the ultimate shear resistances
So,i can be obtaired in a similar mahner as described above for one
damper at the bottom only that the Reduced Delta curve has to
be computed by accounting for all damping forces, thus

n
Ared(tj) = A(tj) - §=

o531 X D; - 5651 (A3.81)

The variation of the damping forces and the effects of the refiection
wave on damping usually introduces more errors in the prediction

than in the case of ohly-one damper at the bottom, therefore, if
damping is Targe more computations have to be performed until the
final distribution produces a small enough Error Delta curve, if this
is possible. Otherwise the computation is terminated after the 8th
iteration.

A third way of distributing damping forces is to place only
one damper at the skin, at the point where the maximum skin
resistance force in the uppef half of the pile had been determined
in the first prediction. If max So,i.> max Dimp %-then max Di =
max Dimp/2 and if max So;i< max Dimplz then max D, = max So,i and toe
~ damping has to be added. Essentially this computation is the same
as when damping forces are distributed uniformly.

Once the final Error Delta curves have been found (these three
curves usually differ at and after tht 2L/c for all three damping
distributions) a linear combination of their So,i and d; is used to
find a final selection by minimizing the resulting Error Delta

curve. If pji stands for the i-th resistance force (either So,i
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or di) obtained in the j-th damping distribution method and a

superscript f is used for the final result, then
f

P = @b + a20;® + agp;? (A3.82)
where

a; +a, + ag =1 (A3.83)
and

Aef(t) = alael(t) + aerz(t) + a3ae3(t) (A3.84)

For Aef(t) to become a minimum the coefficients a;, a,, az can be
determined using

. 4L/c
2 | (o f()2u(t)at = 0 (A3.85)

where w(t) is a weighting function. Since the errors in the initial
portion of the match are-due to measuring inaccuracies these effects
can be removed from the computation by setting

w(t) =0 for 0 2t 2tz (A3.86a)
Aiso the portion of the record where unloading effects the match will
'be”diSfégérded (See Chapter I1I for examples), thus

w(t) = 0 for t > t. (A3.86b)
where t. is as defined in Equation (A3.75). In_order to place more
emphasis on the improvement of the first 2L/c of the match the rest
of the weighting function may be defined as

i for ta.<t < t

w(t) = (A3.86c)

-ty
1—(—5;-;:-%-[;) for‘tn<t<tf
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However, not too much improvement can be expected from choosing a
proper weighting function since it is possible that an application

of the least square method results in some S or d; negative.

0,1
Since negative values are not allowable the a;, a,. and ag
coefficients have to be adjusted under observing their relative

magnitudes. As an example suppose that az < 0 and that for some

agp.3
- - J »
j the ratio ale1+ R < 0 and smaller than any other ratio
i4$Jj,1=2,3,...n, then the new constants aln, azn, asn can be
determined from
ag" = 537'(a1"pj’ + az"pjz)
J
=N n n
a; +a, +az =1
(A3.87)

and
n,. n
ajfa; = a; /ap

Using aln, azn, agn

in Equation (A3.82) leads to the final result
if not a second coefficient was negative in which case the process

has to be repeated.

7. Computation Example

As a computation example the record obtained from pile F-60,
Blow No. 26-A is used. The record, i.e. force and velocity, is
shown in Figure (B.1). After subtracting the precompression force,
SP
the force curve as shown in Figure (2.1) was obtained.

» (for explanation see Appendix B) in this case Sp = 40.6 (kip),

The pile length below the accelerometer was 59 feet. The

pile was of 12-inch diameter pipe with 1/4-inch wall thickness
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having a cross sectional area of A = 9.82 (inch)

The wave speed for such a steel pipe pile had been
experimentally determined by placing one accelerometer on either
end of a 50 foot pile and applying a hammer blow on one end. The
wave speed thus determined was ¢ = 17,000 (ft/s) and with o =
.285/386 (1b/s2/in%)

E=c2 = 30.8 x 106 [psi]

This dynamic modulus is used in all the analyses. The proportiona-
1ity factor EA/c becomes 17.8 (kip/ft/s), which means that a
particle velocity of 1 ft/s corresponds to a 17.8 kip force in the
pile.

The maximum pile top velocity encountered in the example
problem was 9.1 ft/s which corresponds to a maximum pile tip force
of 169 (kip). (The yield load of the pile is 320 kip).

The Measured Delta curve is shown in Figure (A3.7a) and was
obtained by subtracting the free pile solution - Equation (A3.18) -
from the measured force record.

It can be observed that a(t) has non zero values before time
tm which are mainly due to recording inaccuracies. These values
are set to zero until a time 1.2 L/c after which a(t) starts
definitely to increase. In some of the records effects of high
frequency vibrations are observed which are undesired in the
analysis since they represent only local effects and could lead
to misinterpretations. For cancelling out such effects a new,

smooth a(t) was obtained by time averaging the original one.
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The result is shown as curve b in Figure (A3.7b) |
Integrating the top velocity until time tm Teads to a

displacement of 0.107 (inch). Estimating ihe maximum toe velocity

using Equation (A3.58) with the maximum top velocity being 9.1

[ft/s] and A(tm + 2L/c) = 422 kips leads to

22 = 6.5 [ft.s]

2 X 17.
So that an estimate for the toe displacement at maximum toe velocity

max Vn(toe) =2 x 9.1 -

can be given using Equation [A3.59)

u (t + L/c) = 0.107'32-?- = .075 (inch)

Linear interpolation leads to the guzkes shown in Table (2.1).
The Phase III prediction for total static resistance is
146 kips and the estimated maximum damping force 65 kips.

Reducing the Measured Delta curve by the damping effect

leads to curve c in Figure (A3.7). This curve is then reduced
further in order to vemove thc =f7=:t of initially downward traveling
waves from shear resistance forces. The resulting curve (d)

is a Delta curve due to the effect of the upwards traveling waves
from shear resistance forces only. (An infinitely Tlong pile would
show the same top force effect due to shear forces).

This curve can be used to determine the.individual ultimate
resistance forces by applying Equation (A3.66). In Figure (A3.7)
the t, (ti =t + 2xi/c) are marked with dashed 1ines. Accordingly
the So,i were determined as the differences between the indicated
Beg(ti) - values. The last twe shear resistances S, _j and

So n are éveraged since the accuracy of distinguishing these two
]
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forces is small due to the large increase of top forces at t = t_,.
Using the maximum toe velocity as calculated above leads to the
damping coefficient

d = 65/6.3 = 10.3 [kips/ft/s]
A1l soil parameters predicted so far are listed in Column 2 of
Table (A3.2). As a check on the quality of this prediction a
Tumped mass analysis is performed. The measured pile top velocity
and the predicted soil parameters are used and the corresponding
pile top force is computed. If the soil model would be correct
and if the soil parameters were predicted precisely then this
computed pile top force would be equal to the measured force (in
absence of measurement inaccuracies). In general, however,
differences between measured and computed pile top force occur.
Subtracting the predicted from the measured curve leads to an
Error Delta curve. For the present examplie curve (a) in Figure
(A3.8) shows this difference curve.l '

A remark cn this graph is appropriate. For clarity the force

scale was chosen five times larger than in the graphs for the

Measured and Reduced Delta curves in Figure (A3.7). Considering

the first portion of the Error Delta curves (i.e. for toct<t +
2L/c) it can be noticed that local peaks and vaileys of this curve
are preserved and the differences of the Error Delta curves occur
only in an averaged manner. Clearly, this is due to the constant
behavior of shear resistance forces. The later portion qf the graph

(tm + 2L/¢c < t) shows this behavior for Error Delta curves a and b
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only. But it must be recalled that the amount of damping had been
changed for obtaining curve c and curve d. These changes influence
only the behavior of this later portion. The high frequency
oscillations in the Error Delta curves are due to small time lags
from Measurement inaccuraries causing a shift between the predicted
and the measured force, also the accuracy of reading the original
measured force record is responsible as can be seen Figure (2.1)
where the relative smoothness of the velocity compared to that

of the measured force becomes apparent.

It is not possible to influence the high frequency behavior
of the Error Delta curves by applying low frequency resistance
forces and a check on the absolute values of Ae(t) could lead to
unnecessary computations without convergence. Thus, an average
is used. Also, when using the Error Delta curve for computing
corrections on the So,i and di only a smoothened Ae(t) is used as
in the case of the Measured Delta curve.

The maximum damping force obtained by using dn = 10.3 in the
analysis was 70 kips. Using the Error Delta curve for calculating
the Aso,i’ correcting the damping coefficient and performing another
Tumped mass analysis leads to the Ervor Delta curve (b) in Figure
(A3.8). The damping coefficient is correéted to produce the
assumed damping force of 65 kips (i.e. dn = 10.3(;%)). The criteria
CR; of the Inequalities (A3.74) are shown in this figure. Here;
it also can be observed that over the first and second region the

average Error Delta curve stays within the bounds. Thus,
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|E1] = CRy

|E2| = CR;
however

|Es| < CRg
and

E3 = 26 (kips) > O
Ez is the average delta value between t = 2L/c + tm' and t = tf.
Since the sign of g3 is positive, it means that not enough shear
resistance force was applied. Thus, 13 (kips) total damping
will be subtracted and 13 (kips) shear resistance added both at
the pile tip.

The Error Delta curve resulting from the redist}ibution is shown
in curve ¢, Figure (A3.8). Error Delta curve c satisfies the
conditions in region one and region two but not in region three
since E; < 0 and E3 < 0 this will be corrected by subtracting shear
resistance. However, s%nce E2 was also less than zero né damﬁing

is added this time. After another lumped mass analysis is performed

Error Delta curve q is qptaiqurwhich satisfied all three criteria.

The final result is given in column 3 of Table (A3.2). As an
example for the C and E matrix the displacements and velocities
were used from this final match of the first distributien. The
resuiting matrices are shown in Table (A3.1). Ten elements are
used in the Tumped mass analysis together with ¢ = 2 (see Appendix
Al), therefore, xi/c = 24t. Thus, the influence numbers represent

relative displacements or velocities which are taken at time
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differences of two time increments. (At = .178 milliseconds). It
can be observed in the E-matrix that max v was not reached exactly
at tm + xi/c but at tm*+ xi/c + At a tihe for which there is no
matrix element. Thus, ei,j = 1.0 was not obtained. A serious
defect is not introduced since the E-matrix recognizes this fact.
Note, that at j = 7 the influence of the retufning wave can be
observed in both C and E ~ Matrix. The C and E matrix are always
feca1cu1ated when a lumped mass analysis is performed. |

The second damping distribution leads to max D, 55/8 = 6.9
(kips) maximum damping force for the second through ninth element.
The Measured Delta curve, however, indicates that the predicted force
would become too large in the beginning of the record. Therefore,
these damping forces have toﬂbe reduced. The result are the
parameters listed in Column 4 of Table (A3.2).

It can be observed that some damping was used at the pile
tip element in order not to exceed allowable top force effects
before time t + 2L/c. The So,i had been obtained after reducing
the Measured Delta curve by means of the E and C - matrix. Figure
(A3.9) shows the successively improved Error Delta curve obtained
until finally the error criteria were satisfied. The final resu]t
is given in Column 5 of Table (A3.1). |

In the third distribution a max D3 = 6.4 (kips) was used
corresponding to 50’3 which was the maximum shear- resistance force
at the pile skin in the upper pile half for the first distribution.

Corresponding for the pile toe a damper was necessary for max Dn =
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57 (kip) (the total damping determined in the second method was 69.8
(kip), therefore, max D, = 69.8 - 2 x 6.4 = 57.0).

Since the difference between the third and the first method
is small for a small damping force at the skin a sufficiently
small Error Delta curve (see Figure (A3.10) was obtained already
from the prediction. Soil resistance paramete;s obtained from this
distribution are given in Table (A3.2), Column 6. .

In Figure (A3,11) the predicted top forces are shown for all
three predictions together with the measured force.

Now, the least square procedure can be performed. This leads

to
a, = 1.48
a, = 0.09
" ag = -0.57

The negative as produces a negative damping parameter, d; = -0.3
which 1s discarded since its effect is small. The final result is
tabulated in Column 7 of Table (A3.1). Thus, S, = 157.4 (kip)

and max D = 52 (kip).

This-so is the shear resistance acting under impact. But the

hammer compression force S_, had been subtracted from the total

record. This static forcephas to be added to S in order to obtain
Ro, the total static bearing capacity. As for the distribution

it is sensible to add to all So,% a contribution of this static
force proportional to the dynamically predicted value. The

total static bearing capacity then becomes Ro = 157.4 + 40.6
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= 198.0 (kip). The final distribution and the load test curve

predicted from this result are presented in Chapter III.




APPENDIX B
Study on Characteristics of Force and Acceleration Records

As a basis for the studies on pile dynamics presented in this
work two quantities must be available as continuous functions over
time, namely force and acceleration measured at the top of the pile.
Transducers, signal conditioning and recording devices have been
described in References (3, 20). Several observations were made
which need to be explained. In records taken on a pile driven by a
Diesel hammer an increase in force was noticed some time before the
impact. This force can be explained with pressure building up
in the combustion chamber of the hammer. It seemed surprising,
therefore, that no acceleration was recorded before the impact.
Thus, the pnroportionality between force and velocity derived from
wave theory appeared to be questionable. This and further details
observed in acceleration and force records are discussed in Section
1. Another phenomen on which had to be investigated was the existence
of an oscillation appearing in both velocity and force. Since this

frequency was not the p11e natural frequenqy several possible

models of p11e so1] and hammer-p11e were studwed The results of

these studies are presented in Section 2 of this appendix.

1. Obsérvations on Force and Acceleration in Diesel Hammer Records
Because of the proportionality between force and velocity in

a stress wave it is advantageous to deal with pile velocities rather

than with acceleration. From findings about velocities conclusions

can be drawn regarding the measured acceleration.

149
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Consider Figure (B-1) showing the measured force and the velocity
which was multiplied by the p}oportionality constant EA/c. The
time scale chosen is in L/c units. The time waen impact occurs is
easily identified from the éteep increase in both force and velocity.
In this particular record the force starts t§ build up at a time
of the order 10 L/c before impact while the velocity stays zero
througih the first 9 L/c.

In order to explain this lack of proportionality it is now
assumed tﬁat the pile is fixed at the bottom end and the force is
for the first 9 L/c approximated by a piecewise linear function as
indicated in Figure (B-2a). This piecewise linear function can be
abproximated again by superimposing two linear functions FA,](t)
and FA,Z(t)' For the time until the first reflection wave reaches
the top again after having been reflected at the bottom, force and
velocity must be proportional. Thus, for t < 2L/c the velocity is
C/ER FA,](t). When the first wave returns from the fixed bottom
end its particle velocities-will have changed sign. This leads to
a decrease in top velocity. At a time 4 L/c two reflection waves
will reach the top with different signs of velocities. Thus, the
pile top velocity can be written as

Viop(t) = ExlFalt) - 2Fp(t - B + 2Fp(e - 30 - L+ L)

(B.1)
Using this equation it is seen that for a linearly increasing top
force the velocity at the top will oscillate between zero and the

value proportional to the force at time 2L/c. Figure (B-2b) shows
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the velocity derived from superimposing the solutions for the iwo
'1inear force functions. This’superppsition can only produce a slope
in the velocity which is less than or equal to the maximum proportion-
al slope in the force record. A simple calculatiocn can then lead to
the maximum acceleration. Suppose max f is the maximum slope en-
countered in the record before impact then the maximum slope of .the
velocity, max a,is giveh by

C
max a < max f "EK (B.Z)

But max f can be expressed by a force difference AF over a time L/c

then

_AF ¢
Max a8 = 7 A (8.3)

and with c2= E/p and Alpg = W the weight of the pile
max a = A%-g ' (B.4)

In the example of Figure (B.2) AF = 5.7 kips and W = 2.0 (kip)
so that max a = 2.9 g's. The acceleration is read from a record
in which a 1 inck amplitude corresponds to 375 g's (see Figure B.3 ).

It is, therefore, not surprising that small magnitude accelerations

1ike the 2.9 g's obtained in the example computation were not
recognized in the record.

The results of these considerations can bérexpressed as follows:
The acceleration will reach a nbticeabie non off zero value in the
record only when the time derivative of the force becomes large
enough. Second, the velocity of the pile will have obtained some

value greater than zero which will be dependent mainly on the
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stiffness of the soil, if this stiffness would be infinite then the
above derived relations would hold. Third, the proportionality
between velocity and force was lost because of the long time over
which the force built up. It can be argued that this precompression
force is applied in a fstatic" way and, therefore, should be separated
from the dynamic portion of the record if dynamic analysis is to be
used. The dynamic record might then be defined from that point at
which an acceleration greater than zero can be observed. In most
of the records this is the time when a proporticnality between force
and velocity can be observed. For comparison Figure (2.1) shows
force and proportional velocity after the precompression force had
been subtracted. The record was the same as analyzed above.

The study of the forces recorded before the actual impact occurs

-

aj

<

x
[

wi

€ad other interesting observation. Frequently in pile dynamics
it ic necessary to predict the hammer impact velocity max Vp- In
the case of a gravity hammer this can be done when the dropheight,
h, of the hammer is known. Then
max vp = YZhg (B.5)
For Diesel hammers, however, a free fall cannot occur under the action

of the fuel compression force. In this case the velocity has io be

computed by subtracting the velocity due to these forces, thus,

= t~ta (B.6
max v, = v2hg - ﬁ;'j Ftop(t) dt .6)
t=0

where Mh is the ram mass and ta is the time wnere the "dynamic

record” starts. In the example of Figure (B.2) the evaluation of the
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integral in Equation (B.ﬁ).lgads to a difference velocity (the
second term on the right handside in Equation (B.2) of 2.7 ft/s
(Mh = 3.51 g kips/g) which is substantial compared to the velocity
encountered at impact (max Vi, = 9.6 ft/s). Although the energy
which the hammer supplied does not change due to the compression
another kind of energy will be utilized having smaller velocities
but being spread over time. This fact might prove essentiai when
applying the wave equation method proposed by Smith (9) where one
of the input parameters used is the impact velocity.

A remark on the accuracy of the velocity seems appropriate.
The usual recording sensitivity for acceleration is between 300 and
400 g's for one inch amplitude in the record. Records are read
with'an accuracy of about 1/150 inch. A shift of the assumed zero
acceleration line with this amount can produce over the length of
the record (usually about 20 milliseconds) a considerable velocity.
This effect will be even amplified when.considering displacements.
Using the average of two acceleration records taken on opposite

sides of the pile should lead to an improvement in accuracy but

velocities and displacements can still not be re]iabTe after some
vtime of integration. It was noticed in applying the Phase I
simplified theory (éee Chapter II, Section 5) that sometimes no
zero velocity was reached, which can be explained from the facts
under consideration. The Phase II-A method (see Appendix D) will
introduce a major improvement because only differences in velocity

are considered over a relatively short time and the time of zero
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velocity is no Tonger an important parameter.

Another inaccuracy can be observed in Eigure(z.l)before
maximum velocity occurs; The forcé should be exactly equal to the
velocity times EA/c. However, it is noticed that there is a time
lag between force and velocity the reason of which is a different
response time in the signal condition equipment. This time lag
causes often large Delta curve values in the beginning of the record
which must be discarded in an analysis.

Another interesting observation can be made on recordé obtained

under a single acting Diesel hammer. Such a hammer consists

basically of two parts: a cylinder whose top is open and a piston,
i.e. the hammer, which falls freely in the beginning and by falling
compresses the air in the combustion chamber. When'the piston
reaches the cy]indér bottom fuel is injectedpso that metal to metal
impact between hammer and anvil occurs together with ‘the combustion.
Impact plus combustion force will move the pile head. Ih thekfirst
instant both hammer and n:le head will move together with the
velocity of the impacting hammer. The hammer cylinder originally
resting at the pile top cannot follow this rapid movement, thus it
will start to fall under gravity. When assuming that most of the
deflection of the pile head is due to penetration into the ground
and only a smaller portion is due to e]astic.def1ection of pile and
soil, then the hammer cylinder will reach the pile only after the
pile has established its final position. The hammer cylinder then

will impact upon the pile top and a force and acceleration due to
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this (smaller) impact can be observed in these records. Figure
(B.3) shows a record in its original scale. In both force and
acceleration the second impact can be observed after a time AT.

It is now interesting to compute the distance Ue which the hammer
cylinder was falling freely disregarding any friction in the leads
or other iosses firom the time At between the impact of the piston
and that of the cylinder '

ue = 4 g(aT)? (8.7)

and, therefore, in the example of Figure (B.3)

ug = %386(.054)2 = .562 [inch]

During the driving operation an average set of .06 inch under one

hammer blow was measured. It seems that in cases where the set

of the pile is large enough aﬁﬂ where a single acting hammer is

used more accurate information about the pile set can be obtained

from this observation.

2. Studies of Vibration Frequences Occuring on the Pile Head
During Driving

~ Figure (2.1) shows typical force and velocity curves having

the above mentioned oscillations about an essentially 1linear behavior.
If the lowest pile natural frequency would be responsible only pile
length and material properties would be necessary to predict these
frequencies but this is not the case. Vibrations might also cccur
due to the interaction of soil stiffness with pi]e‘mass, a system
which is represented in Figure (B.4b). Another explanation for

this phenomenon developed herein is that the cushion hammer system
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supported by the pile exerts forces upon the pile head which are
due to its natural frequencies. The model for such a system is
shown in Figure {B.4c). In the following the frequencies expected
for the discussed models will be investigated and compared to those
observed in the record.

The lowest natural frequency of a pile of length L is

=L
fi =3 (B.8)
where ¢ is the wave spéed.
Assuming the soil stiffness kS to be approximately
R ' |
R : -
ks = (8.9)

where thequake q can be chosen as .12 inches and -Ru as the
ultimate bearing capacity of the pile; then for the system of

Figure (B.4b) a frequency of

f =l.. .Ru
2 = 75/ Alpg . ‘ (B.10)

would be obtained if A,‘L, p or pile cross sectional area, length,

and mass density. In the examples given below in Table (B.2)
steel piles will be considered having a cross sectional area A =

9.82 (inch ). For these cases
p=
£, = 49.4 /Ry
T

if L is inserted in feet and Suit in kip. The system shown in
Figure (B.4c) has two degrees of freedom. If the upper cushion
stiffness is k and the lower one k.s and if the upper and lower

elements have masses rm and m, respectively then the two natural
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frequencies can be computed from

e, e s

(B.11)

The cushion stiffnesses for the transducer cushion ( ks ) were
obtained experimentally. This transducer cushion was built using
alternated layers of 3/4-inch plywood and 1/4-inch neoprene sheets.
3 or 5 plywood and 4 or 6 neoprene sheets were used. The pile
cushions stiffnesses (k) were obtained from Reference (10). In
both cases statically obtained 1oad versus deflection cuvves were
used and stiffnesses were obtained at the different load levels
observed in the Torce record. All the parameters necessary for
computing f3,, are listed in Table (B.1). The correlation of
frequencies calculated from all three methods with the observed
are listed in Table (B.2).

As an example consider again Figure (2.1) representing Pile
F-60, Blow No. 26-A.. The average frequency observed in force and.
velocity record is 409 (cps)’(Figure 2.1). The length of the steel
pile was 60.5 feet and hence f; = %Zig%%7§ = 70 (cps) from Equaticn
(B.8). The ultimate resistanca obtained in the CRP test was 242
kips which leads to a f, = 99 (cps) using Equation (B.10),. The
transducer cushion consisted of 3 sheets of plywood and 4 sheets of
neoprene. The average force acting on the ﬁi]e'top during the blow
was 150 kips as can be observed in Figure (B.3). From Table (B.1)
this gives a transducer cushion stiffness of 7,250 kips/inch. The

driving hammer was a Linkbelt 440 which has a cushion stiffness
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of 9.30Q kips/inch under the given circumstances. Thus k =
9.300 (kips/inch) and s = 7,250/9.300 = 0.78. Also from Table (B.1)

Z°1:10 kips AT, : ,
m= - g g and r 0 4.28. Inserting these values in

Equation (B.11) leads to a lower frequency f3; = 89 and a higher
frequency f, = 398 (cps). As in all the other cases

presented in Table (B.2) fy is the only frequency of a magnitude
comparable to the measured one (409 cps in the discussed example).

It seems that the only reasonable explanation for the occurence of
frequencies higher than 100 cps for the listed cases is that the

two degree of freedom system described above vibrates in its second
mode, thus, exerting forces and velocities upon the pile head

reflecting this higher frequency.




APPENDIX C
Soi1 Model Studies

The investigations presented in this Appendix give an insight
into the relations between the pile motion and the soil resistance
response. This se¢il response is approxfmated in Chapter II by a
Sinp]e model, which is also employed by other investigators in the
pile dynamics literature (9, 10). Results in Chapter III show that
this model does not always describe the soil resistance force,
Ri(t), accurately for all times t.

The soil model is shown in Figure (2.2). It consists of a
spring and a dashpot in paraliel, thus

Ri(t) = Si(t-) + Di(t) ‘ - (c.1)

Si(t) and Di(t) are the shear and dynamic resistance, respectively.
The index "i" indicates the.location where the resistance force
acts. .
The spring in the'soil model is thought to have elasto-plastic
properties such that
,,Si(t) = kiui*(t) (c.2)

where ki is the soil stiffness at x = X3 and

u; (t) for u;(t) < q;
ug*(e) = (c.3)

max u; + qq - u; (t) for u;(t) > max uy

ui(t) being the displacement of the pile at x = x; and time t; q,
is the quake and max ug is the maximum displacement reached at or

before time t.
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It is further assumed that

Sict) Z.'kiqi (C.4)
and that
Sn(t) 3‘0 (C.5)

i.e. no tension shear forces are allowed to act at the pile tip,
X=X, This is a reasohab}e assumption'for the soil forces acting
against the pile toe plate. The quantity kiqi is fhe ultimate shear
resistance force and is denoted by Si,o‘ A typical force versus
displacement relation resuiting from the definitions in Equations
(€C.2) through (C.5) is shown in Figure (2.2).

The dynamic or damping resistance force, Di(t), is linearly
proportional to the pile velocity, vi(t), at x = x;, thus

D (t) = dyv, (t) - | (c.5)
where di is a damping coefficient. Again, it is assumed that only
compressive resistance forces act at the pile toe. Figure (2.2)
shows the damping velocity relation graphically.

To investigate the validity of the above soil model measurements
were taken during driving at the pile bottom end. Both force and
acceleration records are available. Also the pile tip force was
measured as a function of pile penetration during a static load test.
The force was always recorded at some distance above the pile toe
plate to which the accelerometer was connected. From these measure-
ments the soil resistance force, R?f(t), acting against the pile

toe plate during driving can be approximated by
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! () = F(t) ~ Ma(t) (.7)

where F(t) is the measured force, a(t) is the measured acceleration
and M' is the mass of the pile below the point of force measurement.
Five representative records are selected for investigation.
Oné set of measurements - obtained freom a reduced scale pile - is
typical for the soil response in coarse grained soils (see Table
1.3 for the soil profile). Two records are from full scale pile
Ri-50 (see Chapters I and III) where the soil surrounding the pile
tip was highly cohesive. The records were obtained immediately
after driving and also after a waiting period of three days. 1In
a similar manner records were taken on full scale pile Ri-60. This
pile had a high point resistance due to a sandy gravel layer at the
bottom of the pile. Table (IfZ) gives the soil profiie for both
piles Ri-50 and Ri-60.

1. Reduced Scale Pile in Sand
The discussion is illustrated in Figure (C.1). At the top

of this Figure a plot is shown of both velocity, vn(t), and

di§;1acement, un(fi;vagwaﬂiéihéd by integrating the measured toe
acceleration. The measured resistance force, RMn(t); computed
from Equation (C.7) is plotted at the bottom of Figure (C.1).
For further discussions the index n is omitted.

The first remarkable observation is that RM(t) has its maximum
at the same time as the velocity v(t). Thus, dynamic forces seem

to be present. After its maximum the measured resistance force



162

decreases monotonically. This is in agreement with the decreasing
velocity and corresponds after zero velocity to the pile rebound.
The soil model under discussion requires three parameters
to describe the behavior of R(t) in terms of u(t) and‘v(t). These
parameters (q,d and So) give the theoretical resistance curve such
that it agrees with the measured curve at three points. Using the
same approach as in Chapter II for finding the quake, i.e. assigning
the displacement at maximum velocity to be quake, leads in the
example of Figure (C.1) to
g = 0.08 (inch)
With-this choice only two parameters are left to.be determined.
Selecting the time of both maximum velocity and zero velocity to,

for obtaining agreement between measured and theoretical resistance

force then

M -

R (tm) = sn(tm) + Dn(tm)
and

M -

R'(tg) = S(ty) + D(t)
However,

S(tm) = S(to) = SD
and

D(to) =0
so that

I

So =R n(to)

and

D(t,) = R"(tm) - s,
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Thus, M
;'R'(tm)"'so

vit)
In the example of Figure (C.1) the soil parameters become
S, =6.75 (kip)
max D = 10.0 - 6.75 = 3.25 (kip)
d = 3.25/8.3 = 0.39 (kip-sec/ft)

Using now Equation (C.1) through (C.6) the theoretical resistance
curve can be plotted. 1In Figure (C.1) both R(t) and S(t) are
plotted and can be compqred with the measured curve. Since no
negative damping forces are allowed for the bottom end of a pile
R(t) = S(t) when the velocity v(t) is negative. The resistance
curves R(t) and RM(t) agree quite well before and at zero velocity.
Afte} this time the Fheoretica] curve‘decreases at a slower rate
than measured. Certainly, a smaller quake could match this portion
of the record better, however, such a éhange would also affect the
quality of the match béfore maximum velocity. Furthermore, the

resistance force is very sensitive to changes in either the quake

or the displacement during unloading. ‘An error of 0.01 inches in_

the displacement at the end of the record would amount to a difference
of the theoretical resistance force of 12.5% of the predicted
ultimate shear resistance. The displacement curve is not very accurate
for later times, therefore, not much accuracy can be expected in pred-
icting the quake from the unloading behavior.

To summarize the results obtained from this record: A maximum

damping force was found of approximately one half of the ultimate
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shear resistance. The match between theoretical and measured
resistance force is good before zero velocity. The ultimate shear
resistance force So = 6.75 (kip) compares well with the point
resistance under the static load test which is plotted in Figure
(D.6a).(7.3 kips at ultimate and 6.6 kips at maximum dynamic

displacement). Also soil stiffness and quake are in good agreement.

2. Full Scale Pile in Cohesive Soil

Two records taken on a pile in a cohesive soil are shown in
Figures (C.Z)‘and (C.3).  The records were obtained before and after
a waiting period, respectively. The following characteristics are

common to both records.

. At time zero a force, Sps can be observed which must be due to
the hammer precompression. For further considerations Sp is thought
to be a static force independent of velocity and displacement and is,

therefore, disregarded. (S_. = 3 kips in Figure (C.2)). The

resistance forces show a stZep rise together with the corresponding
velocity. After the maximum the resistance force rapidly decreqses
to a magnitude not much greater than Sp. Thereafter, an almost
steady strength increase can be observed. This strength increase
corresponds to the monotonicaliy increasing displacement while
oscillations in the force show some felation to the velocity record.
The velocity shown in Figure (C.2) reaches no zero within the
time period considered but a small value at the end of the record.

Thus, defining for this case t, to be the time of minimum velocity

the match shown in Figure (C.2) is obtained. The soil parameters,
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thus determined, are:

q = .12 (inch)
S, = 15 (kip)
d = 1.24 (kip/fts)

This match is very poor immediately after the time of maximum
velocity. Several reasons can be responsible.

(i) The proportionality between damping force and velocity
holds only until time tm, the time of maximum velocity. Immediately
after this time damping forces become very smaill.

(ii) High pore water pressures are building up during the time
of the initial load application and are released slowly, thereafter.

(iii) A strength increase can be observed throughout the
resistance force record. Since the velocity is positive and decreasing
this strengtn gain must be due to the displacement gain.

Comparing Figure (C.3) with Figure (C.2) it is observed that
higher resistance forces were acting at the pile toe although the
displacements were smaller. Thus, a strength gain due to the waiting

period can be observed. A match was performed using the same procedure

as described before. The soil parameter thus determined are

q = .096 (inch)

S, = 24 (kip)

d = 2.5 (kip/ft-s)

Ry = S, + S, = 29 (kip)

As in Figure (C.2) the predicted soil forces in Figure (C.3) are to
large after maximum velocity and agree quite well thereafter.

In Figure (C.6b) are shown the two pile tip force versus pile
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tip penetration curves obtained from static load test and corresponding
to the two records just discussed.

At ultimate the point resistance is 14 and 18 (kip) for the cases
in Figure (C.2) and (C.3), respectively. This compares to 18 and 24
(kip) from the dynamic measurenments. Thus, both dynamic resistances

are high at about 25 to 30%.

3. Full Scale Pile with High Point Resistance

Two cases where the soil consisted of a very hard grave' and
sand layer are shown in Figure (C.4) and (C.5). The resistance force
shown in Figure (C.4) can be represented with a fair degree of
accuracy by the proposed soil model. A small difference occurs at
the second local maximum of the_RM(t) curve. A sensible explanation
is a further strength gain due to still increasing disnlacements.
Differences in the unloading portion are again due to the high
sensitivity of the soil model tuv small errors in quake and displace-
ments. This was outlined in Section 1.

A time lag between velocity and force (a measurement inaccuracy
discussed in Appendix B and Chapter III) imposes problems on the
match in the first porticon of the record. In Figure (C.4) this
difficulty leads to determine the quake at the time of maximum force.

A different way of match was used in Figure (C.5) namely by
assuming that the quake is greater than maximum displacement and then
matching the maximum resistance‘va1ues. The special feature of this
record are the small displacements (Note the change in scale), and

the smootﬁ resistance force curve. Except for a time lag due to
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measurement difficulties the resistance force essentia11y follows

the behavior of the displacement curve. The fact that this
proportional relation holds throughout the record indicates that

only little or no yielding occurred. Thus, the hammer did not supply
enough energy to overcome the soil resistance forces. Small damping
forces can be observed at the time of maximum velocity.

The static load tests corresponding to the records of Figure
(C.4) and (C.5) had to be terminated before the ultimate load was
reached. However, the soil stiffnesses from static and dynamic
measurements can be compared. This is shown in Figure (C.6¢)
Apparently the soil offered a stiffer resistance during the dynamic
Toad application than during the static test. Such a loading rate
dependent behavior can be expected. Interesting to note is that the
soil Tost stiffness'during the waiting period; an effect which is

reflected in both dynamic and static measurements.

4. Summary
The following conclusions can be drawn from the records

presented in Figures (C.1) through (C.5).

The present-sdilbmodel describeérfé%;ly Qéil thé forééwvérsus
displacement and velocity relation for granular soils. The unloading
porticn, however, is difficult to match although the model might still
hold.

Cohesive soi1s presént charactéristic resistance force patterns
which cannot be described by a simple spring - dashpbt model. Further

studies on how to mndel such soils must be conducted, including
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other independent variables 1ike pore water pressure or soil dynamic
effects. The prediction of static capacity from dynamic records can
give good results for piles driven into granular soils. In the
cohesive soils as in Figures (C.2) and (C.3) it is seen thaf the
shear resistance forces vary throughout the records and no indication
is given_of the static resistance. A more realistic soil model could
improve this situation. In Chapter IV further discussion of this
problem is given with respect to the results which can be expected
by employing tne present soil model in a wave analysis. It should be
noted that an average value of the measured soil resistance curve
immediately after the maximum leads to a reasonable answer. One
important observation is made when studying the dynamic and static
leoad versus penetration curves plotted in Figures (C.6b and c).

For cohesive soils a strength increase is observed during the
waiting period. The soil stiffness decreased, however, for the
granular material. These effects were measured both dynamically

and statically, thus, justifying the proposed method of taking
dynamic measurements always after a waiting in order to obtain

meaningful predictions on the static pile behavior.




APPENDIX D |

Simplified Methods For Predicting Static Bearing Capacity

In Chapter I efforts were discussed on how to develop a simple
method for predicting.static bearing capacity. Such a method utiliz-
ing in a special purpose computer would display in the field the
prediction within a short time after the hammer blow. Thus,
decisions could be taken du%ing driving. In the following two
previously developed methods (13) are briefly reviewed. The earlier
methods were based on a rigid pile model. Using wave considerations,
i.e. employing an elastic pile model, two new computations schemes

are derived. Results from all methods are given in Chapter III.

1. "Rigid Body Models

Suppose, a rigid body of mass M is acted upon by a force F(t),
and a resistance force R(t). If the acceleration of this mass is
denoted by a(t) then the static bearing capacity, R,s is given by

Ry = F(ty) - Ma(t)) (b.1)
where t_ is the time of zero velocity. The derivation of Equation
(D.1) is given in Chapter I. The sign convention is shown in Figure
(D.1). Equation (D.1) is referred to as the Phase I prediction
scheme.

The results obtained from the Phase I prediction scheme were
promising when compared with the maximum bearing capacity determined
in the static load test. However, the results differed substantially

from blow' to blow and it was found that small changes in to, the time
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of zero velocity, often amount to large differences in the
predictions. Figure (D.2) il1lustrates this sensitivity of Ro to
changes in t,- In this Figure are plotted the measured acceleration
and the. velocity and displacement obtained by integration. Also the
measured force and the resistance, R(t), are shown where

R(t) = F(t) - M a(t) (D.2)
The point of zero velocity is indicated by a dotted 1ine in the
force diagram. If this point of zero velocity were shifted even only

a small time increment (due to measurement inaccuracies such a shift

“is always introduced) then predictions ranging from 150 to 200 kips

could be obtained.

This defect of the Phase I prediction method lead to an
averaging method referred to as the Phase II prediction scheme.
Consider the velocity graph in Figure (D.2). A straight line marks
the trend of the descending velocity curve. Using the siope of this
line instead of a(to) in Equation (D.1) the new prediction scheme
becomes by + AT

Ry = F(t.) - %TJ a(t)dt (D.3)

t
where t was chosen as the time of maximum velocity and the average

was taken until the time of zero velocity (t; + aT = tO). As a result
of the averaging procedure the variations in the predictions from

blow to blow were relatively smali. Another method was proposed where
the force F(t) is also time averaged, however, results were little

affected because of the relatively smooth force records.
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2. Elastic Pile Models

The above methods used a rigid body as a pile model. To explain
and clarify limitations on these methods the traveling wave solution of
the linear, one-dimensional wave: equation is utilized.

(i) Phase 1IA

In Appendix A3 relations were developed by which the pile top

velocity v,..(t), can be expressed as a function of external forces.

to
In particulai, if a force, FA(t), is acting at the pile top then
Equation (A3.27) can be used to compute vtop(t). Similarly, Equation
(A3.29) expresses the pile top velocity as a function of a resistance
force Ri(t) acting at x = x; and time t at the pile in upward direct
direction. If it is assumed that n resistance forces act along the
piTé together with the force applied at the pile top then the
resulting pile top velocity can be calculated-by superimposing the
solutions from Equations (A3.27,29). Thus, with r indicating the

time interval considered, i.e. 2L r=<t«< (r + 1) 2L/c

Veoplt) = E ek ¢
_ Vioptt) = EALFALE) * g 5““ - 79 - }_j_ 2 {Rk(t - = - 3%
2L - x
k _ s2L

It is assumed now that the resistance forces, Ri(t), are only
due to shear. Effects of dynamic resistance forces will be included
later. Therefore,

Ri(t) = Si(t) (D.5)

and using the simplified expression for a shear force as given in
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A3.5, Equation (A3.46), then
X
= - L
R_i(t) = Si ,0 H(t c) (D.6)
which means that the quake is assumed to be zero. Inserting Equation
(D.6) into (D.4) yields

() = SR () + 21 Folt - 528 - 7 3 5, Mt i
A = + t-3=2) - { - —
top EALFA 521 A ¢ i §=0 k,o0 c
- j§%9 * S¢.0 H(t - g%__ 52%0}] | (D.7)
Now, two different times, f§ and % , are chosen so that
t, = t; +2L/c (D.8)

therefore, if rg—%f_ ty < (r+1)2L/c then (r+1) <ty < (r+ 2)-'2-%'-

The difference between the velocities at both times, A"top’ is
Avtop = Vtop(tZ) - vtop(tl) = c/EA[FA(t1 + 2L/¢c) - FA(tl)
r r+1
.2L 2L
- 2§=1FA(t1 - J—E) + 2§=1FA(t1 + 2L/c - J—E)

] |
-)L- z(s)kou(tl-Zxk/c-jg-'gnmtl-:;?—t
= J=0"? :

Y ) ‘
+ 1 S otH(ty = 2x /¢ - (§ - 1) 2L/c) + H(ty - jg%}}]

J=0
(D.9)
This expression can be simplified to yield
n .
Avtop = c/EA[FA(tl + 2L/c) +FA(t ) - Eagsk,o{ﬂ(tl - 2x./c
+ 2L/c) + H(t1)3]1] (D.10)

The arguments of the step function terms on the left hand side of

Equation (D.10) are non negative so that
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n
A¥op c/EALF,(tp) + Fp(ty) - g.E;?k’oj (D.11)

which can be written as

2Tjc € ¢ Z " f3k.0 (D.12)

However, ¢2 = E/p and ALp = M, M being the mass of the pile. In

‘addition 2L/c = AT, i.e. the time between t, and tz, thus, with
r

E=]Sk,o =R

RO = ]/Z(FA(‘tl) + FA(tz)) - %T[ a(t)dt (D.13)
4

Equation (D.13) establishes a simple method for computing the
static bearing capacity, Ro’ if the force énd the acceleration at the
pile top are known. Because of the similarity between Equations
{D.13) and (D.3) this me thod is.referred to as the Phase IIA
prediction scheme.

Two differences can be observed betwéen Equations (D.13) and
(D.3). First, the fbr;e term has to be calculated as an average ¢of

the forces where the acceleration average starts and ends. The sec-

~ond difference is the need of restricting a7 to exactly 2L/c.

) In order to under the actual meaning of the results bbtained

by applying Equation (D.1) Equation (D.7) has to be differentiated
with respect to time and the result, the acceleration of the pile

head, substituted into Equation (D.1).

(t) dF (t -
a(t) = gt ,§ 1A ° -1 z{sk (st

- L =t
. -zf‘s-&..f'--) + 8(t - zili—‘lk)}] (D.14)
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where &(t - a) stands for the Dirac &function which is zero for Ha.

Inserting (D.14) into (D.2) and avoiding times t, such that
' x =~ JjL

2-2
tg: ¢ for j =0,1,:..,rand t = 1,2,...,n
zgj + 1)L
C
yields at t = t
(s}
: .2L
dF,.(t ) r dF,.(t_ - 3=
b - c A'"o Ao . Y ¢
Ry = Flty) - Mg [—gg— + 2 dt ] (D.15)

=1
The second term consists of the slopes of the force record taken
at time intervals of 2L/c. These slopes of the force recofd change
rapidly over short times dug to vibrations in the hammer cushion
system (see Appendix B). Therefore, it is not surprising that the
results from the Phase I method changéd largely whenever the time
to was changed by small amounts. |

In deriving the Phase IIA prediction scheme dynamic resistance
ferces were not considered. Such forces éan be thought. of being
Tinearly proportional ko the pile velocity. Thus, Equation (D.13)
is only applicable at q11 time pairs t; and.tz if either the dynamic
resistance forces are identically zero because of special soil pro-
perties or the pile is ﬁot moving. Practﬁca11y,'there exists no
case of pile driving without velocity depeﬁdeni forces and the pile
motion ceases only after the pile has rebounded and alsc :“hear
forces reached zero. However, due to the negative particie velocities
of waves caused by resistance forces the velocities along the pile .
are usually small - positive or negative - when the piie top velocity

has reached zero. For this reason a good approximation to the
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prediction of static resistance forces can be found if t; is chosen
to be the time of zero velocity at the pile top and t, at a time
2L/c later.

In analyzing field measurements it was frequently found that
zero velocity was not reached even for long times after impact.
This non negative velocity can be explained due to measuring in-
accuracies as explained in Appendix B. In such cases a prediction
can be obtained by taking t; .as the minimum velocity encountered.
Since only the difference velocity between t; and t, affects the
result no major error is introduced into the computation.

(ii) Phase III

The studies on wave prop;gation in Chapter II and in Appendix
A3 showed that the Measured Delta curve reflects the effects of
soil resistance forces at the pile top. Figures (2.5,6,7) show three
such Measured Delta curves. Also Resistance Delta curves were
investigated which display an approximate.pile top force effect of
a certain resistance force acting at some point along the pile.

It is now intended to show how the concept of Delta curves

‘can be used to obtain a simple computation scheme for predicting
stafic bearing capacity. In such a simplified analysis it is not
possible to find where the resistance forces act. Therefore, the
portion of the Measured Delta curve with t < t + 2L/c (t being
the time of maximum ve1ocity»at the pile top) is of minor interest.
However, important information regarding the total amount of static

and dynamic resistance forces can be obtained from the Measured
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Delta curye for tm +2l/c <t 5_tm + 4l /c.

A first assumption in the derivation of the Phase III prediction
scheme is to neglect any influence of skin damping forces. That
- this assumption is at least a good approximation is proven by the
resuits in Chapter III. Next it will be shown how the Measured Delta
curve can be modified such that the effect of skin shear forces
can be converted to an equivalent effect of pile tip forces. This
then will reduce the problem to a pile with only pile toe resistance
forces.

Consider Figure (D.3a) which shows a theoretical Delta curve
for a shear force Sn,o acting at the pile tip. (Such a theoretical
shear force is discussed in A3.5). A shegs;igrce having the same
magnitude acting at x = X; produces a Resistance Delta curve as shown
in Figure (D.3b). The difference between these two Delta curves
is the earlier pile top effect of the upwafds traveling wave generated
by the skin forcé. A wodified Delta curve can be obtained by delaying
the earlier effects by a time 2(L - xi)/c. Figure (D.3c) illustrates
this procedure. Analytically, the Modified Delta curve can be
obtained from the Measured Delta curve, a(t), and thé pile top velocity,
VA(t), using

(t - 4L
Bnoa(t) = a(t) + alt - 2L/c) - 172 A )

max VA

alt, + 2L/c)
(D.16)

which is valid for t +2L/c <t <t +4L/c, and only if skin forces

are of the step shaped type as in Figure (D.3). The third term in

this equation is necessary for not delaying effects of the already
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returning waves after reflection at the bottom end. (This is a
similar approach as used in the derivation of Ared(t) in A3.6).
In further derivations of the Phase III method the subscript "mod"
is dropped and it is understood that A(t) means the modified
Delta curve. |

If all resistance forces act at the bottom end of the pile then
their effect can be felt at the pile top at a time L/c later. Thus,
the Measured Delta curve is given by

a(t) = 2[D (t - L/c) + S (t - L/c)] (p.17)
where the notation of Appendix A3 is used. The velocity of the pile
tip that results from the velocity vA(t), imposed on the pile top
and from both shear and damping forces acting at the tip is given

by

v () = ZVA(t - L/c) - (c/EI\)S“’Q .
n T+ cd /ER (p.18)

where Sn d is as ‘defined earlier the ultimate shear resistance at
the pile top. (This is Equation (A3.43) derived in A3.5). Equation
(D.18) is valid for L/c <t <t ., i.e. after the quake is reached

until the pile tip velocity becomes zero and unloading starts.

The time th .00 i.e. the time of zero velocity at the pile tip can be
9

determined from Equation (D.18)

However, S can be expressed in terms of the Measured Delta curve

n,o
by using Equation (D.17} and by observing that at time t,  damping
3

is zero and Sn(tn,o)= Sp,o° Thus,
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2vp(t, o = L/c) = (c/2ERa(t, o+ L/c) = 0 (D.20)
or rewritten '
Aty o+ L/c) ="4E—‘,‘5 vp(t - L/c) | (p.21)

Equation (D.21) shows how to find the time of zero velocity at the
pile tip from pile top velocity and Measured Delta curve. A comment
i§ apprOpriate. Suppose that the pile had a fixed bottom end (this
is the condition which yields the 1érgest possible pile resistance
forces assuming that there are no forces acting at the pile which
could produce a negative pile permanent set). At a fixed end
reflection waves are generated such that no movement occurs. This
constraint requires a reaction force, Re(t), of twice the magnitude
of the forces in the wave. Therefore,

Re(t) = 252 vy (t - L/c) | (0.22)
if it is assumed that the only wave arriving is due to the hammer
impact. The Measured Delta curve resulting from a fixed end is
then

a(t) = 458 v, (& - 2/c) | (D.23)

Hence, whenever the Measured Delta curve exhibits a value four
times larger than the force proportional velocity at a time 2L/c
earlier then no motion of the pile tip wili occur at a tiime L/c
earlier.

In the usual case of pile driving a motion of pile will always
occur before the fixed end condition, Equation (D.23),is satisfied.
Such a motion is necessary to activate the resistance forces. Once,

however, the resistance forces have reached a value Targe enough or
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once the applied velecity, vA(t - 2L/c), became small enough then
Equation (D.21) will be satisfied. (An exception is the case where
the hammer applied forces are so large that the motion will not
cease before time tm - 3L/c; this case wi]i be discussed iater).
Once the time of zero velocity at the pile tip has been
determined the ultimate shear resistance force can be found using
Equation (D.17) _ .
Sp.0 = 38ty o+ L/C) (D.24)

Also, the maximum damping, max D, force which acts at the pile
tip - at the time of maximum tip velocity can be found. Since the
effect of the maximum pile tip velocity is felt at time tm + 2L/c
at the pile top one obtains again from Equation (D.17)

max D = a(t, +2L/c)/2 - S | (D.25)

To illustrate the prediction scheme as developed so far a
computation example is given. The acceleration and force record
used is the same as in the computation example in A3.7. In Figure
(D.4) both Measured and Modified Delta curve are shown together

~ with the force proportional to velocity and the curve obtained by

multiplying the velocity by 4c/EA and shifting it over 2L/c. The
point where both curves intersect is at a time 3.91 L/c and at a
Delta curve value of 292 kips. This intersection represents the
solution to Equation (D.21). The maximum Delta is 422 kips, thus
Sp,0 = 146 (kip) (from Equation D.24)
max D = 65 (kip) (from Equation D.25)

The precompression force, Sp = 41 kips, had to be subtracted in this
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method as well as in the wave analysis (see Appendix A3) so that the
prediction of static capacity becomes:

R, = 146 + 41 = 187 (kip).

For the same record analyzed by wave analysis the results were:

R, = 198 and max D = 52 (kip).

Special consideration was necessary for cases with low driving
resistance in the Phase IIA derivation. In such cases no zero veloc-

ity was encountered at the pile top throughout the analyzed record.

_ A similar difficulty can arise in the Phase III method. Subpose, that

tn,o > 3L/c + t, then the fixed end condition (D.23) is not satisfied
within the considered time interval (t < 4L/c + tm). An approximate
prediction scheme for such cases is to neglect presumably small dyn&-
mic force effects at the pile top at time 3L/c + t_ (the maximum
damping effect is displayed in the Measured Delta curve at time 2L/c +
tm).'This assumption is derived from studies at piles with Tow shear
resistance and re]ativé1y high damping as discussed in Appendix C. In
order to avoid using a local extreme value for predicting the ultimate

shear resistance an average Delta is taken over some time before and

after tm + 3L/c . Thus,
t +3.5L/¢
- [ dt (D.26)
So,n 2L a(t) : .
tm+2.5L/c :
An example to this computation scheme is given in Figure (D.5).
It can be observed that (4EA/c)vA(t - 2L/c) is always greater than
a(t), within the time interval t +2L/c <t < t + 4L/c. The

predictions taken from Figure (D.5) are:
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max D =72 andS =46 (kip).
»0
The Phase III method is used as an initial estimate on the
magnitudes of shear and damping forces in the wave analysis, disc-
ussed in Chapter II. Table (D.1) gives the results from both Phase III
and analysis for the cases discussed in Chapter III. It can be seen

that the Phase III method gives good results in most cases.




APPENDIX E
Computer Program

In the following a brief description is given of the comp-
uter program used for predicting the soil resistance forces from
mzasurements of both pile top force and acceleration. The program is
demonstrated using block diagrams and short descriptions. Only the
main features of the program are discussed. Emphasis is placed on a
description of both input and output.

The program consists of two parts. The first part is an
ALGOL 60 routine employed for reading the dynamic data and the pile
parameters. A1l necessary arrays are declared in this program, thus,
dynamic allocation is possible.

The second part of the program consists of several FORTRAN V

subroutines. A subroutine MAIN controls the actual computation process.

1. ALGOL Program PREDIC

One force record and two acceleration curves (see MAIN) are
needed as dynamic input. The continuous records are dicitized by plac-
ing points on the traces such that linear interpolation between these
: points closely resembles the original record. Both the time and the
function values are then determined in units of 0.02 {inch).

Frequently, the portion of the record before impact (the
acceleration is still zero while the force is already increasing as
shown in Appendix B) is long. It would be unreasonable to include

this portion of the record in the dynamic analysis. Therefore, an

182
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input parameter SUB is included which is the time at which to start

the dynamic computations. Also, the maximum time is limited by an

input value MAXT.

The following input is necessary:

N1,N2,M
$1,52,53,54
SUB,MAXT
UAT,UA2
UF,UT

MASS
AE,LE

TF(3)
FO(d)
Q)
A1(J)
T2(9)
A2(J)

The numbe=.+F values of the first acceleration,
second acceleration and force trace, respectively.
Four string variables describing pile, blow,

soil, and transducers, respectively.

Time at which to start and terminate computat-
ions, respectively.

Calibration constants for firSt acce1eratibn {A1)
and second acceleration trace (A2), respectively.
Calibration constants for force values and

length to time conversion, respectively.

Mass of pile

Cross sectional area and length of pile, resp-
ectively.

Force time vector in units (3 = 1,2,...,M).
Veétor of force values in units (J =1,2,....M).
Accel.-1 time vector in units (J = 1,2,...,N1).
Vector of accel.-1 values in u's (J= 1,2,..,M).
Accel.-2 time vector in units (J = 1,2,....N2).
Vector of accel.-2 values in u's (J= 1,2,..,N2).

(If N2 = 0 then no values for T2(J)and A2(J)

" have to be given).
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From MASS and LE together with ¢ = 2 and N = 10 (N being

the number of elements to Le used in the lumped mass analysis) the

_ time increment DET is computed (see Appendix Al). From the total

time interval (MAXT - SUB) one obtains NT, the number of time

increments neceSsary.-PREDIC now calls MAIN.

2. FORTRAN Subroutines

MAIN controls the compufation process. The following

subroutines are called:

ANALYS
DISTRI
LEASTS
PILEPL
RESIST
SMOOTH
STATIC

For lumped mass analysis (see Appendix Al). -

For computing shear resistance distributions.

For performing a Least Suare Analysis.

For plotting results.

For finding soil resistances (Eqs (A3.30,38)).
For smoothing a given function.

For finding a'theoretica1 Toad versus penetr-

ation curve see Appendix A2).

In the following these subroutines and MAIN are discussed

in more detail.
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(a) ANALYS (see Appendix A1)

Problem: For given pile top acceleration (velocity, displacement),
pile preperties and resistance force parameters find
the pile top force and displacements along the pile.

Input: A(1,d) Pile top acceleration (J = 1,2,...,NT)
v(1,4d) Pile top velocity (0 =1,;2,...,NT) ~
D(1,d) Pile top displacement (J = 1,2,...,NT)

K Element stiffness
MA Element mass
N Number of pile elements
NT Number of time increments
Pracedure: see Block Diagram
START
|
J=1

o 1 d =J+1 l

Resist j@———= Qo Euler Prediction

el

.?—1

ol |

Resist [* " Compute Newmark correction

I
ER= Newmark-Euler A

Newmark ' ,

Euler=Newmark

g




(b) DISTRI
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(see A3.6)

Problem: Compute corrections on predicted shear resistance forces

and damping coefficients for given Error Delta curve

and displacements and velocities from corresponding analysis.

Input: DN(J)
RE(I)
co(1)
ITIME(I)

v(I,J)
D(1,J)

DAMP(T)

DET
N,NT

Procedure:

Error Delta curve

Previous ultimate shear resistance forces
Previous damping coefficients

Time value at which full effect of ultimate
shear resistance RE(I) can be felt at pile top.
Velocity of i-th element at time J*DET
Displacement of i-th element at time J*DET
Damping Torce to effect pile top at time
ITIME(I).

Time increment.

A; introduced in PRECIC

J = 1,2,.w0NT I=1,2,...,N

Compute C- and E-Matrix. Compute differences AD between prop-

osed and actually obtained damping'forces. Reduce Error

Delta curve by AD effects. Reduce Error Delta curve by the

effects of returning reflection waves due to shear forces.

Compute corrections on ultimate shear resistance forces

and find new damping coefficients.




187

(c) LEASTS

Problem: Compute coefficients A1, A2, A3 such that
Al + A2 + A3 = 1

and
I’{ a(t) }zdt becomes a minimum
where
A(tj) = AT*DN1(J)+A2*DN2(J)+A3*DN3(dJ)
Input: DN1(J) Error Delta curve for first damping distribution
DN2(J) Error Delta curve for 2nd damping distribution
DN3(J) "Error Delta curve for third damping distribution
DET As in PREDIC
NT - As in PREDIC
J = 1,2,...,NT
Procedure:

Generate a weighting function w(t).
Set up Normal Equations.
Solye Norma1 quatiqng.

Output: A1, A2, A3.
(d) PILEPL
Problem: Plot measured and predicted pile top force as a function of

time.

Input: FTOP(J) Measured pile top force
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F(1,J9) Predicted pile top force
NT As introduced in PREDIC
Jd=1,2,...,NT

(e) RESIST (see Equations (A3.30,38)
Problem: Compute shear and damping resistance force for element INOW
at time JNOW*DET.
Input:  INOW Element number
JNOUW Time increment number
RE( INOW) Ultimate shear resistance of element INOW
QO( INOW) Quake of element INOW
CO(INOW) Damping coefficient of element INOW
V(INOW,J) Velocity at element INOW
D(INOW,J) Displacement at element INOW
J = 1,2,...,JNOW
Procedure: ‘
Solve Equation (A3.30).'
Solve Equation (A3.38). |
Output: RESI Shear resistance at ejement INOW and time JNgg;
DI Damping resistance at element INOW and
time JNOW*DET.

(f) SMOOTH
Problem: Time average a given curve to obtain a smooth curve.

Input:  ROUGH(J) Original function.




ISTART
1STOP
ITVAL

CuT

Procedure:

Output:

Problem:

Input:

189

First value of ROUGH to be included in smoothing.
Last value of ROUGH to be included in smoothing.
Time interval DET*ITVAL is to be used &s interval
over which to integrate for smoothing. Odd integer
Option: CUT
ISTART. CUT

1 means no change of function before

2 means set all function values te

zero before ISTART.

L
A,

Integrate ROUGH over time interval ITVAL*DET and divide

result by ITVAL*DET. This yields the new function value at

the middle of the time interval. The new fqnction is called

SMOOTH.
SMOOTH(J)

(g) STATIC

New smooth function between ISTART and ISTOP.

Either SMOOTH(J) = 0
or J < ISTART
Or SMOOTH(J) = ROUGH(J)

and SMOOTH(J) = ROUGH(J) for J > ISTOP

(see Appendix A2)

For given static soil resistance parameters and pile

stiffness compute static load versus deflection curve.

RE(I)
Qo(1)
K
N

Shear resistance force at i-th element
Quake at i-th element

Stiffness of pile element

'As introduced in PREDIC.

I=1,2,...,N
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see Block Diagram

START
|

Set up pile stiffness

matrix
Jd=1
) 4

Impose P' on pile top

Compute pile deflections
X' (I) for all elements

Find element where a
soil spring yields
first

Compute pile top force P(J)
and pile tecp deflection X(J)
for first yield.

Modify pile stiffness
matrix

d=J + 1

END
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(R) MAIN  (see.Appendix A3)

For given pile properties and both measured force and
acceleration find shear and damping resistance distribution‘
for a best match of predicted with measured top force;
Also, predict static load versus deflection curve;

Plot and print pile top forces both measured and predicted.
Print predicted pile displacements, velocities and forces

below pile top.

Input: A1(J) Acceleration 1 :} ] )
measured at opposite sites of
A2(J) Acceleration 2 pile
FToP(J) _ Measured pile top force
DET Time increment
N Number of pile elements
NT  Number of time increments
LE Length of pile
AE Pile cross sectional area
MASSr " Pile Més§ | -
Procedure: see Block Diagram

“"Prepare" stands for the following manipu}ations:

Use E =30.8 (psi) and compute pile element stiffnesses K.
Compute element mass MA. Average both acceleration curves.
Integrate acce1eration‘twice. Subtract precompression force

from force record.
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START

Prepare

Compute Measured Delta
Smooth

Apply Phase III

L=1
i. e. all damping at toe

Compute Soil Parameters
Analys

Compute Error Delta
Smooth

Correct Predictions

COUNT = 1

COUNT

= COUNT + 1]

* Analys

Compute Error Delta
Smooth

Compute E,, E;, E3

i |

1<CR1, E2<CR2, Es<CR >

No Improvement 4

COUNT > 8

®

©)
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se previous solution
Relax CR;

| e

Change total damping

Plot and print

L=L+1
N
|
Distri
» Y
4
Y




L>2

L>3

194

Compute uniform damping

Compute one skin damper

1]

COUNT = 1

Leasts
Analys

Static

Plot and print

END
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Depth Below Grade in Feet
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Gray Clayey S1lt
| i

Description

Brown Silt
Gray S11t
Gray Silt
Gray Clayey Siit

Gray Siit
Gray Silt

" Gray Clayey Si't
Gray Gravelly $ilt
_Gray Sandy Silt

Gray Sandy Silt
Gray Silt and Clay

Gray S11t and Clay
Gray- Gravelly Clay

Gray Gravelly Ciay
Cray S11t and Clay

Gray Sandy S11t

Surface Elevation at 610 Feet

Sample Physical racte —

No‘ ' ISI oS- S ]t ] \".C.
Agg. | C F i Clay

2l oo o | 78| 22| 2

4 0 1 1 | 64 34 28

8 0 0 0 73 27 | 25

nm |1 |5 |6 | 39| 37|18

15 0 6 n 41 42 17
18 15 5 9 35 36 16
20 0 4 1 29 56 18

2 0 4 6 42 48 18

..l..............a.....-.L..-..L....--......J-.-..q

TABLE 1.1:

SOIL CHARACTERISTICS AT TEST SITE IN TOLEDO

L6l
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Depth Below Grade in Feet .

32

28

4

20

16

12

| Sample Phystical Characteristics in %
- Description No. | Agy. | C.S. ] F.S. | si1t | Clay | W.C.
| e e e
r ‘
o Brown Silty Grayelly Sand 10 16 1 58 16 9 17
. Brown Gravel 9 81 s lw] 2| 21 9
- Brown Gravelly Sand 8 42 2 | 44 5 7 9
- Brown Sand 7 3| w0 | e | ofw]| W
Brown Sand 6 8 9 75 4 4 12
Brown Sandy Grével 5 52 24 14 5 5 9
Brown Sandy Gravel 4 48 26 16 5 5 6
Brown Sandy Gravel 3 v I S u A L
Brown Sandy Gravel 2 v I S U A L
Brown S{lty Gravelly Sand 1 KX ] 23 29 7 8 8
— E——

Surface Elevation at 675.0 Feet

TABLE 1.3: SOIL CHARACTERISTICS AT TEST SITE FOR REDUCED SCALE PILES

661



Pile No.

Pile Name

200

q1 qs q10

3 531-76 12 12 .09
5 F-30 .07 .06 .05
6 F-30A .09 .07 .05
7 F-50 .10 .08 .07
8 F-50A .10 .07 .05
3 F-60 12 .09 .07
10 F-60A 11 .09 .07
m Cincinnati 1 .09 .06
12 272 Toledo 12 .09 .07
13 To-50 .08 .07 .06
14 To-50A 1 .09 .07
15 To-60 .07 .06 .05
16 To-60A .10 .08 .06
17 Logan .12 12 .10
18 W-56 12 .10 .07
19 W-76 12 .10 .07
20 Chillicothe 10 .08 .06
21 Ri-50 .06 .06 .05
22 Ri-50A .12 .12 .10
23 Ri-60 a1 .10 .09
24 Ri-60A N .10 .08

TABLE 2.1: TABULATION OF QUAKES USED IN PREDICTION ANALYSES

Not listed values can be obtained by interpolation




DATA . PILE NAME DATE ~ DATE LOAD DATE OF SOIL LENGTHL AREA A HAMMER  REMARKS
SET NO. DRIVEN  TESTED DYN. MEAS. ‘ N2
1 c-1 12-28-66 . 12-30-66  1-3-67 58 5,81 Fluted
2 531-70 4-12-67  5-12-67 - 4-13-67 6.5a. 1 5.8 )12 and
3 531-76 4-13-67  4-17-67 - 4-18-67 8. g9 5.81 taperd
4 '531-83 4-18-67  4-18-67  4-18-67 82 581 <
5 F-30 6-21-67  6-21-67  6-21-67 32.5 9,82
6 -~ F-30A 6-21-67  6-28-67  6-28-67 32.5 9.82 Specl.
7 F-50 6-28-67  6-28-67 6-28-67 it 50.5 9.82 b.B. M Test
8 F-50A | 6-28-67  7-5-67 7-6-67 Sa 50.5 9,82 (13)
9 F-60 7-7-67  7-7-67 7-7-67 59,5 9.82
10 F-60A 7-7-67 7-20-67 7-20-67 59.5 9.82 J J
11 Cincinnati 12-22-67 1-4-68 1-4-68 G.Sa. 69 6.66 D-12
12 272 Toledo 4-10-68  4-17-68  5-18-68 Si.&C 54 6.66  L.B,
13 To-50 9-6-68  9-6-68 9-6-68 49 9.82
e To-50A 9-6-68  9-9-68 9-10 68 ee 49 9,82 pecl.
15 To-60 9-11-68  9-11-68  9-11-68 able 59 9.82 Test
16 To-60A 9-11-68  9-18-68  9-18-68 (1.1) 59 9.82 h. I
17 Logan 11-25-68 11-5-68  11-5-68 G.Sa 57 6.66
18 W-56 6-11-60  6-18-69  6-18-69 Y 4¢ 55 6.66  0-12
19 W-76 6-19-69  6-24.69  6-24-69 y 75 6.66
20 Chillicothe 9-18-69  9-25-69 9-25-69 G.&S  40.5 6,66 |
21 Ri-50 1-6-70  1-6-70 1-6-70 see 49 9.31
22 Ri-50 1-6-70  1-6-70 1-6-70 e X 9,31 pecl.
23 Ri-60 1-9-70  1-9-70 1-9-70 (1) 615 9.3 Test
24 Ri-60A 1-9-70  1-20-70  1-20-70 : 57 9.31 h. I
A11 piles were of 12-inch diameter pipe. G.Sa. Gravelly Sand D-12 Delmag
Sj & Sa Silt and Sand L.B. Linkbelt 440
Si & C Silt and Clay
G&S Gravel and Sand

TABLE 3.1: DESCRIPTiON OF FULL SCALE TEST PILES

L0¢



DATE OF

SOIL

DATA PILE NAME DATE DRIVEN  DATE LOAD LENGTH L REMARKS
SET NO, TESTED DYN. MEAS. FT

1 2-R-10 7-27-67 7-27-67 7-27-67 3 10.8

2 2-R-10A 7-27-67 8-1-67 8-1-67 15.8

3 2-R-15 8-1-67 8-1-67 8-1-67 @ - 15.8

4 2-R-15A 8-1-67 8-4-67 8-4-67 ® 20.8

5 2-R-20 8-4-67 8-4-67 8-4-67 5 20.8

6 2-R-20A 8-4-67 8-9-67 8-9-67 >.Z 23.8

7 3-R-10 8-18-67 8-18-67 8-18-67 s 10.8

8 3-R-10A 8-18-67 8-22-67 8-22-67 = 15.8

9 3-R-15 8-22-67 8-22-67 8-22-67 o 15.8

10 3-R-15A 8-22-67 8-28-67 8-28-67 ~ 20.8

N 3-R-20 8-30-67 8-30-67 8-30-67 20.8

12 3-R-20A 8-30-67 9-5-67  9-5-67 23.8

13 1-T-15/20  11-25-67 Ne25-67  11-25-67 3 22.4 e
14 1-T-15/202  11-25-67 12-2-67 12-2-67 o 22.4 »
15° 2-T-15/20 12-28-67 12-28-67 12-28-67 - 22.4 o
16 2-T-15/20A  12-28-67 1-13-68 1-13-68 o+ 22.4 o
17 3-T-15 6-11-68 6-11-68 6-11-68 8 22.4 ‘o
18 3-T-15/20A  6-11-68 6-17-68 6-17-68 o 22.4 D
19 4-T-15/20 6-29-68 6-29-68 6-29-68 Q 22.4

20 4-T-15/20A  6-29-69 7-3-68 7-3-68 & 22.4

21 6-T-16 7-31-69 7-31-69 7-31-69 20.1 " =
22 6-T-15A 7-31-69 8-7-69 8-7-69 20.1 a
23 6-T-20 8-7-69 8-7-69 8-7-69 J 20.1 2
24 6-T-20A 8-7-69 8-15-69 8-15-69 20.1 =

Cross Sectional Area = 1.7 1in

TABLE 3.2:

2

for all listed piles.

DESCRIPTION OF REDUCED SCALE TEST PILES

20e



DATA PILE LOAD TEST  LOAD TEST  PRECOMPRESSION  PREDICTED PREDICTED  TOTAL MAX.

SET NO.  NAME RESULT AT  RESULT AT  FORCE SHEAR STATIC DAMPING
max dy ULTIMATE! FORCES RESISTANCE  FORCES

Rd R, Sp ) S0 R0 max D

3 531-76 151 198 18 141 159 15 -
5 F-30 ~ 97 103 33 . 55 88 39
6 F-50 107 114 30 106 336 24
7 F-50 172 224 29 138 167 41
8 F-50 200 238 - 52 178 .230 52
9 F-60 176 204 29 171 200 25
10 F-60 174 242 40 158 198 52
1 Cincinnati 137 190 39 122 161 17
12 272 Toledo 183 221 66 138 229 22
122 272 Toledo 183 221 66 138 204 22
13 To-50 60 69 26 36 62 57
14 To-50 93 94 3B 86 119 88
15 To-60 32 43 29 26 55 69
16 To-60 75 86 25 94 119 106
17 Logan 165 220 13 167 180 54
18 W-56 .90 92 20 123 143 125
19 W-76 125 160 22 139 161 141
192 W-76 125 160 22 129 151 127
20 Chillicothe 152 207 18 133 151 18
21 Ri=50 40 46 23 22 45 88
22 Ri-50 64 64 15 70 85 105
23 Ri-60 176 -3 22 167 189 92
24 Ri-60 174 -3 9 185 194 48

1Y1timate may be defined here as the maximum value obtained in the load test
20btained by Inspection
3Load test incomplete ' ALL RESULTS IN KIPS

TABLE 3.3: SUMMARY OF RESULTS FROM WAVE ANALYSIS

€0¢
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METHOD SLOPE Intercept = CORRELATION

m o B(E?pé) ‘ COEFfICIENT
=% ’ r
Phase IIA 0.998 +0.146 ~19 22 .83
Phase III 0.867 +0.108 -7 £17 .87
Analysis 0.949 +0.067 ~-11 +10 .94
Enging. News .33 +74 .29
Gow .32 +74 .36
Hiley - .92 +14 .72
Pacific Coast 1.04 +14 .76
Jambu .87 +20‘ .81
Danish .77 -4 .81

Gates 1.81

-96 .81

TABLE 3.6: STATISTICAL PARAMETERS FOR SIMPLIFIED METHODS AND
ENERGY FORMULAS (16)




ELEMENT NUMBER

DATA SET NO. 1T 2 3 4 5 6 7 8 9 10 EA/c
3 o 0 0 0 017 0 0 0 JA73 .148 10.5
5 6 0 0 0 .025 0 0 0 .160 .158 17.8
6 c 0 O 0 .104 0 0 0 129 317 17.8
7 o o0 O 0 0 0 0 0 .1568  ,150 17.8
8 c 0 O .009 .081 046 .049 055  .055 .090 17.8
9 ¢ 0 0 0 .003 0 .001 024  .028  .140 17.8

10 0 0 0 0 .001 .005 .003 0 .560 .394 17.8
11 0o 0 O 0 134 0 0 0 0 047 12,1
12 0o 0 0 0 0 0 0 0 0 - .254 12,1
13 o 0 0 .032 0 0 0 14 238 122 17.8
14 0o 0 0 435 0 0 0 0 J12 412 17.8
15 0 0 .157 012 0 0 001 .008 0 .554 17.8
16 0 0 .312 0 0 0 0 0 431 424 17.8
17 ¢ 0 .009 0 0 012 0 .020 025 .455 12.1
18 0 0 0, 021 445 032 040 047 .042 312 12.1
19 0 .072 .053 0 .308 0 .042 0 0 .370 12.1
20 0 0 .10 0 0 0 0 0 0 .260 12,1
21 0 0 0 .100 0 0 0 0 .263 .292 16.9
22 0 0 .039 0 0 0 0 0 .246 .309 16.9
23 0 0 i .087 0 013 0 0 017 .338 16.9
24 0 0 .110 016 .017 - .018  .019 020 117 16.9

TABLE 4.7: DIMENSIONLESS DAMPING COEFFICIENT dn/(EA/c) AS DETERMINED BY WAVE ANALYSIS

L02



ELEMENT NUMBER

DATA 1 2 3 4 5 6 7 8 9 10 Element  Enclosed
SET ’ Tength cross
NO. ft sectional
area
_ _ N in2

3 0 0 0 0 .18 0 0 0 1.82 1.5% 8.20 28 (at tip)
5 0 0 0 0 .45 0 0 0 2.86 2.80 3.25 128

6 0 0 0 0 1.85 0 0 0 2.29 5,65 3.25 128

7 0 0 0 0 0 . 0 0 0 2.80 2.68 - 5,05 128

8 0 0 0 .16 1.44 .82 .88 .98 99  1.60 5.05 128

9 0 0 0 0 .06 0 .02 43 49 2,50 5.95 128

10 0 0 0 0 .03 .09 .05 0 10 6,97 5.95 128

1 0 0- 0 0 1.62 0 0 0 -0 .50 6.90 113

12 0 0 0 0 0 0 0o -0 3.17  3.17 5.40 113

13 0 0 0 .56 0 0 0 2,03 4,17 2.17 4,90 128

14 0 0 0 7.75 0 0 0 0 2.00 7,35 4,90 128

15 0 0 2.81 .20 0 0 .02 14 0 9.89 5.90 128

16 0 0 5.55 0 0 0 0 0 7.67 7.54 5.90 128

17 0 0 .06 0 0 14 0 24 30  5.50 5.70 113

18 0 0- 0 .25 5.37 .39 .48 57 b1 15.84 5.50 113

19 0 .87 .64 0 3.70 0 .50 0 0 28.6 7.50 113

20 1] 0 1.33 0 0 0 0 0 0 3.15 4,05 113

21 0 0 0 1.67 0 0 0 0 4,44 4,93 4.90 13

22 0 0 .65 0 0 0 0 0 3.90 5.22 4,90 113

23 0 0 0 1.47 0 .23 0 0 .29 5.70 6.15 113

24 0 0 0 1.85 .28 .29 .30 32 .34 1,97 5,70 113

TABLE 4.2: NATURAL DAMPING COEFFICIENTS dn[kips/ft/sec] AS DETERMINED BY WAVE ANALYSIS
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Colum No. 1 2 3 5 5 6 7

Lie

Soil First Damping Second Damping Third Damping From Column 3,5,6
Parameter Distribution Distribution Distribution Final
Elelement No. Initial Final Initial Final Initial & Final Distribution

) 0 0 0 0 0 0
2 0 0 0 0 0 0
3 12.0 6.4 6.4 4.0 4.4 0
4 4.8 0 0 0 0 0
5 18.2 0 0 -0 0 0
S0 i 6 15.7 341 34.0 24.7 32.9 34.0
1 7 19.1 1.1 0 17.4 5.4 0
8 17.5 0 0 14.6 0 1.6
9 38.7 56.4 4,92 55.7 54.9 57.2
10 38.3 56.4 57.3 50.9 54,9 57.3
1 0 0 0 ¢ 0 0
2 0 0 0 0 0 0
3 0 0 .36 .36 N 0
4 0 - 0 .53 0 0 0
d 5 0 0 .36 .36 .0 .03
LI 0 0 .99 1,00 0 .08
7 0 0 .55 .55 0 .05
8 "0 0 0 0 0 0
9 0 0 1.18 1.13 0 .10
10 10.0 7.7 1.14 .99 8.00 7.00

TABLE 43.2: SOIL PARAMETERS PREDICTED (F-60, BLOW NO. 26-A)
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CUSHION STIFFNESSES k in kips/inch

Applied Force Transducer O0ak 15/15/5 Phenol
kips 3-4 5-6 (DeTmag D-12) 11"¢/2.5"
' Link Belt 440
100 4,600 3,500 1600 8,600
150 7,250 5,500 2400 9,300
200 10,000 8,000 3300 11,600
WEIGHTS of RAM and ANVIL in kips
Ram and Anvil Capblock and Adaptor
Delmag D-12 3.50 1.20
Link Belt 440 - 4.7 1.10

TABLE B.1 : CUSHION STIFFNESSES AND HAMMER WEIGHTS




b )

PILE BLOW LENGTH P AVG. HAMMER f, =S f, =49.4/0 ¢ f, MEAS.  ERROR
NO. FT. Y1t kips T /T3

KIPS 1/s 1/s 1/s 1/s 1/s %
Equ. 3 Equ. 3

£-30 13 33 104 100 88 75 360 400 10
14 104 100 : 88 75 360 400 10
15 04 M0 e 129 88 78 367 409  10.3
16 104 110 gy 88 78 367 402 87
1-A 114 120 440 92 81 375 409 8.3
5-A 114 110 92 78 367 409 10.3
6-A 114 110 92 78 367 409 10.3
7-A 114 110 92 78 367 409 10.3

F-50 18 51.5 224 140 103 86 390 418 6.7
19 224 140 103 86 390 422 7.6
20 224 140 103 86 390 422 7.6
10-A 238 190 Link 83 106 99 443 425 -4,
13-A : 238 20 Belt 106 102 454 418 -8.0
14-A 238 190 440 106 99 443 427 -3.7
15-A 238 140 106 86 390 427 8.7

F-60 17 60.5 204 180 97 97 431 435 .9
18 204 140 91 86 390 427 9.5
19 204 150 Link 70 91 89 390 418 4.8
22-A 242 140 Belt 99 86 390 414 5.8
26-A 242 150 440 99 89 393 409 2.7
27-A 242 130 99 83 382 418 6.2

TABLE B.2 :- MEASURED AND CALCULATED FREQUENCIES ON TOP OF PILE

£Le



TABLE (B.2) continued

MEAS.  ERROR

PILE BLOW LENGTH P.,. AVG. HAMMER , =S f, = 49.4/% f, f,
NO. FT. Wt yips " %
1/s 1/s 1/s 1/s 1/s %
Equ. 3 Equ. 3
050 102 50 6 M0 58 68 72 N3 1)
I11- 1 58 5 9 8.
V-2 69 10 Demag 8 58 60 239 298 19.2
3-A 95 180 68 77 314 303 -3.6
1-4A 05 200 €8 82 333 313 -6.4
T0-60 IVv-9 60 43 120 42 62 250 274 8.8
. [[-5-A 8 100 g1, - 59 57 228 285  20.0
I11-1- Ak 86 90 50 51 198 244 18.9
T0-50-ck I-9-A** 50 130 230  D-12 60 23 88 338 320 8.0

* Concrete filled pile here ¢ = 12,000 ft/s was used.

** Transducer cushion with 5 plywood and 6 rubber sheets.

bLe
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MAXIMUM DAMPING FROM

DATA SET NO. PHASE III ANALYSIS
kips kips
3 14 15
5 44 50
6 25 23
7 40 41
8 60 52
9 42 25
10 65 57
11 13 17
13 44 57
14 57 88
15 68 70
16 98 106
17 55 54
18 102 125
19 65 58
20 59 61
21 | - 80 87
22 67 106
23 96 93
24 | . . B 48

TABLE D.1: COMPARISON OF MAXIMUM DAMPING FORCE AS PRECICTED
FROM PHASE III AND FROM WAVE ANALYSIS
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FIGURET.4 : FORCES IN PILE UNDER A HAMMER BLOW (Ri-60 BLOW No. 22)
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KIPS

3007
2007 ]
. .EA
Measu elocity—
0 5 10 V0 25 MilTisec.
Measured Force
-100 T
-200‘L Measured Delta €urve

FIGURE 2.5: MEASURED FORCE AND VELOCITY AND DERIVED MEASURED DELTA CURVE
(RI-50, HALF DRIVEN)
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8 KIPS

300 T
200 |

100

-100 1

-200

Measured Delta Curve

< Measured Velocity (EA/c)

:/:C

Measured Force

FIGURE 2.6: MEASURED FORCE AND VELOCITY AND DERIVED MEASURED DELTA CURVE
(RI-50, BLOW NO. 20)

25 Millisec.
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FULL éCHLE PILE RI-6@0 IN RITTMAN
BLOW 16 ON JAN. 9 1978

[ ]
1 5 19 « MSEC.
| li 1.6 L/c | ' )
~1e8 . 2 L/c . .{
-208 L
-328.L  SOIL CONDITION SILT AND CLAY OVER STIFF LAYER OF GRAVEL AND SAND

FORCE DELTR  —=—————e VELOCITY

FIGURE 2.10: MEASURED éORCEnAND VELOCITY AND RESISTANCE DELTA CURVE FOR A SHEAR RESISTANCE
FORCE OF 25 KIPS AT BOTH 0.4L AND 0.8L
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FULL SCALE PILE 531-76
AFTER SET - UP PERIOD
PREDICTIONS FROM BLOW N2. 3-R
PILE LENGTH ... 83 FEET FORCES 1IN PILE
1 INCH= 208 KIPS
SHEAR | DANPING

280 . t' | — -
175 | |

s | /7/_._..._ |

125 | /
108 | /// | )
75 | / {
salL  J/ ;
25 | - s

) S N S S . . , LS u

2.2 0.4 ©.6 8.8 1.8 1.2 1.4 1.6 1.8 2.8
PENETRATION IN INCHES

R ———

APPLIED LORD IN KIPS

MEASULRER —=—m—m——— PREDICTED

FIGURE 3,3: COMPARISON OF PREDICTED STATIC RESULTS WITH LOAD TEST AND PREDICTED FORCES IN PILE
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FULL SCALE PILE F-38 IN RKRON
BLOW 17

n
S
||
'

L]
’

KILOPGUNDS

P

O -~
=
]

-308 L JUNE 21, 1967 SOIL CONDITION SILT AND SAND
FORCE MERS. =eneece= FORCE PRED, =~——=—=——VELOCITY

FIGURE 3.5: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA SET NO. 5
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APPLIED LOARD IN KIPS

FULL SCALE PILE F-38
RT THE END OF DRIVING
PREDICTIONS FROM BLOW ND. 17
PILE LENGTH ... 33 FEET

288
175 L
158 |
125 L
108 L

L. ]

0.2 8.4 0.6 B.8 1.8
| PENETRATION

HEASURED

FIGURE 3.6: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND FORCES IN PILE

.2 1.4 1.6
IN INCHES

g, Gt Qg it 00 REcS Sump.

1.8 2.8

PREDICYED

FORCES IN PILE
1 INCH= 288 KIPS.

SHERR

DAMP ING
—

kw—..—.—. ——

AN



FULL SCALE PILE F-38 IN AKRON

W B 1
é 208 -
& 4 J—
2 o :
; lm -lw . ' ..::’Ooo-cocv"
a.ie.—-.'a/jlil 13'1 L 4‘3'1'1 f—t 4L/C
-100 ..
-2 ..
-3g9.L  JUNE 28, 1967 SOIL CONDITION SILT AND SRND | |
“ FORCE NERS. FORCE PRED, ~————- —VELOCITY

FIGURE 3.7: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA NO. 6
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FULL SCALE PILE F-38 A
AFTER SET - UP PERIOD
PREDICTIONS FROM BLON NO. 1-A

PILE LENGTH ... 33 FEET - FORCES N PILE
1 INCH= 288 KIPS
SHEAR DANMPING
208 _ o 9
® 175 L / |
2 150 | . [
z .
g; 125 |
g 108 === |
g 75 | {
o l
o S8 |
< N
. |
g [ | } i 8 L y L _/’

g.2 B.4 0.6 8.8 1.8 1.2 1.4 1.6 1.8 2.8
PENETRATION IN INCHES

MEASURED @ @ ———me——— PREBICTED

FIGURE 3.8: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND PREDICTED FORCES IN PILE
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175
158
125
103
75
)
)

APPLIED LOAD IN KIPS

FIGURE 3.10:

FULL SCALE PILE F-58

AT THE END OF DRIVING

PREDICTIONS FROM BLOW NO, 19

PILE LENGTH ... 51 FEET FORCES IN PILE
- 1 INCH= 208 KIPS

SHEAR DANPING

.2 0.4 0.6 B.8 1.8 1.2 1.4 1.8 1.8 2.8
| PENETRATION IN INCHES -

MERSURED @ — —————— PREDICTED

COMPARISON OFfPREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND PREDICTED FORCES IN PILE

L¥e



KILOPOUNOS

FIGURE 3.11:

FULL SCALE PILE F-58 IN RKRON
T BLOW 13- |

L JuLY s, 1967 SOIL CONDITION SILT AND SAND

FORCE MERAS, -»eeoseencere se« FORCE PRED, == ===~ VELOCITY

COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA SET NO. 8
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FULL SCALE PILE F-58 R

AFTER SET -~ UP PERIOD

PREDICTIONS FROM BLOW NO. 13-R

PILE LENGTH ... 51 FEET ' FORCES IN PILE
1 INCH= 288 KIPS

_.7.4_._.__' ————— SHERR DAMPING

2ea
175
158
125
108
75

58

25

APPLIED LORD IN KIPS

4 i i 1 1 3 i 3 |

p.2 8.4 9.6 ‘B8 1.8 1.2 1.4 1.6 1.8 2.8
PENETRATION IN INCHES

—— HEASURED === PREDICTED
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FIGURE 3.14: COMPARISON OF PREDICTED STATIC RESULT WITH FIELD LOAD TEST AND FORCES IN PILE
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FIGURE 3.18: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND FORCES IN PILE
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FIGURE 3,29: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND FORCES IN PILE
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FULL SCALE PILE CHILLICOTHE
AFTER SET - UP PERIOD
PREDICTIONS FROM BLOW NO. 13-R
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FIGURE 3.38: COMPARISON OFiPREDICTED STATIC RESULTS WITH FIELD TEST AND FORCES IN PILE
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FULL SCALE PILE RI-58 A

AFTER SET - UP PERIOD
PREDICTIONS FROM BLOW NO. 14-R
PILE LENGTH ... 58 FEET
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MERSURED e e e e e e PREDICTED

FIGURE 3.42: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD.TEST AND FORCES IN PILF
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FULL SCALE PILE RI-68 IN RITTMAN
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FIGURE 3.45: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA SET NO. 24
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FULL SCALE PILE RI-68 R
AFTER SET - UP PERIOD '
PREDICTIONS FROM BLOW NO. 8-A
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FIGURE 3.46: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND FORCES IN PILE
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FIGURE 3.47:
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FIGURE A3.6: PREDICTION OF SHEAR RESISTANCE FORCES FROM MEASURED
DELTA CURVE IN ABSENCE OF DAMPING FORCES
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FIGURE D.2: DYNAMIC RESULTS OF PILE F-50 AFTER DRIVING
(DATA SET NC. 7)
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