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S O U  RESPONSE FROM DYNAMIC ANALYSIS AND MEASUREMENTS ON PILES 
. . 

by Frank Rausche 

ABSTRACT 

An automated predict ion scheme is presented which uses both 

measured top force  and accelerat ion as  an inpu t  and computes the 

s o i l  res is tance  forces ac t ing  on the p i l e  during driving. The 

d i s t r ibu t ion  of  these res is tance  forces ac t ing  along the p i l e  is  

a l s o  determined. Shear and dynamic res is tance  forces are dis-  

t inguished such t h a t  a prediction o f  t o t a l  s t a t i c  bearing capacity 

is possible.  Using t h e  shear  force predict ion a s t a t i c  load versus 

penetration curve is computed f o r  comparison w i t h  the r e su? t  from 

a corresponding f i e l d  s t a t i c  load test. 

The method i;f ar;alys?'s Gses t5e t r ~ v e l i n g  wav9 snlut ion of the 

one-dimensi onal , 1 i near  wave equation. As a means of  cal cu1 a t i  ng 

the dynamic response a lumped mass p i l e  model is used and solved 

by t h e  Newmark 8-method. 

Using stress wave theory two simplified-methods are developed 

f o r  predict ing s t a t i c  bearing capacity from acceleration and force  

measurements. These methods can be used during field operations 

fo r  construction control when incorporated i n  a special purpose 

computer. ' The automated prediction scheme and simpji fied methods 

are applied t o  24 d i f ferent  sets of  da ta  from f u l l  sca le  p i l e s .  

The p i l e s  weye a11 of 12 i nches ' d i amte r  steel pSpe .with Jengths 

ranging from 33 t o  83 fee t .  Also, 24 sets of data from reduced 

i t '  



scale p i l e s  are analyzed by the simplified methods. A l l  predict ions 

are compared wtth r e su l t s  from s t a t ?  c load tests. Correlation i s 

very good f o r  p l l e s  driven i n t o  non-cohesive s o i l s .  For cohesive 

so i  1 s better agreement w i t h  s t a t i c  load measurements a re  obtained -than 

from ex i s t i ng  methods. 

A s  a check on t h e  assumed s o i l  response t o  both p i l e  displace- 

ment and veloci ty results from measurements taken a t  the  pi l e  t i p  

a r e  invest igated and discussed. Further, an approach t o  pi le and 

h a m r  design is described using the r e su l t s  of s t r e s s  wave theory. 
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CHAPTER I 

Introducti  on 

With t h e  recent deveiopment of e l ec t ron i c  measuring devices f o r  

s h o r t  time phenomena i t  becomes f ea s ib l e  t o  record force and 

accelera t ion  a t  the top of a p i l e  during ths impact driving operati  on. 

Measurements of t h i s  kind provide informati on about pile and so i  1 

behavior under hamner impact. -A method t o  exp lo i t  these record 

p roper t i e s  is presented i n  t h i s  thes i  s. The method y ie lds  infoma- 

t i on  about magnitude and locations of external  s o i l  farces r e s i s t i ng  

the  motion of the pile. 

The predict ion of such soi  1 forces during p i l e  driving is complex 

due t o  the variat ion of so i  1 proper t ies  over time and space. In- 

ve s t i ga t i  ons are d i f f i c u l t  because only the p i l e  top is ea s i l y  

access ib le  f o r  measurements and the usual s t a t i c  and dynamic 

measurements do not provide enough information about external 

forces ac t ing  on t h e  p i l e  below grade. Modern measuring techniques, 

however, are shown herein t o  y i e l d  t h e  da ta  necessary t o  p red ic t  

s below grade from information 

1. Problem Descri p t i  on and Re1 ated f nvesti gat1 ons 

A f oundati on usual l y  i s sens i  ti ve t o  deformations occurring 

during and a f t e r  the loading process. I t  is; therefore, not  oniy 

necessary t o  obtain knowledge about t h e  bearing capacity of t h e  

pi le  but  a l s o  t o  predict  t h e  deformations associated with the  load. 

The s t a t i c  load test of a pile a f t e r  driving provides the most 



-. 
reliable source of information, However, due t o  often rapidly 

changing soi 1 properties w i t h i n  re1 a t i  vely short distances many 

s t a t i c  load tes t s  have t o  be per fomd ?or different pi les ,  a 

procedure tha t  is  not economical. 

Good analytical results,  i .e. , a prediction oT tine def ormat-i Ciiis 

of a p i l e  under load, car; be cbtained from so-called s t a t i c  for- 

mulae i f  extended information of so i l  properties is. given i n  the 

neighborhood of a l l  piles analyzed. Poulos and Mattes (1 ) , (2) 

presented a r e a l i s t i c  analysis by considering both p i l e  and soi 1 

deformations. More work done i n  the area can be found i n  LaPay (3) 

and Coyle and Sul aiman (4). Besides the fac t  that  f t is not pos- 

s ib le  t o  determine so i l  properties a t  a sufficiently large number 

of locations errors w i  11 also arise from applying laboratory 

measured soi 1 .properties which are, i n  general, different  from those 

enco6ntered around the pi le  a f te r  driving. 

To avoid the d i f f i  cult ies encountered i n  the use of the above 

s t a t i c  formulae , a commonly employed method re1 ates bearing capacity 

o f  the p31e t o  the rated h a m r  energy and to  the p i l e  permanent 

s e t  under a blow. Thus, each pi le  can be tested individually during 

driving . Energy or  dynamic formul ae have been developed whf ch w i  11 

provide good predictions on the s t a t i c  bearing capacity of the pile,  

provided, h a m r  enemy and certain soi 1 properties are sufficiently 

we1 1 known. The M i  chi gan Highway Commission (5) performed extensi ve 

experimental research i n  order to  answer questions about h a m r  out- 

p u t  cushion properties and the energy delivered t o  t h e  pi le ,  b u t  the 



question sti 11 remains as t o  what energy a harmer actually delivers 

to  t h e  pi le  since hammer anti cushion are subject t o  wear. Discussions 

of dynami c formulae can be found i n  LaPay (3). 

tiarrssler arrd so i l  properties alone are not sufficient t o  draw 

conclusions regarding the ultimate bearing capacity of a pile. 

Other important factors are the hammer impact velocity, and the 

f lex ib i l i ty  of cushion ilnd .pile. This means tha t .  pi le  dynamics 

or  wave theory have t o  be applied as a means of analysis. F i r s t  

attempts were made by Isaacs (6) and Fox (7) us ing  the traveljng 

n w  solution which St. Venant had introduced. (A summary of St. 

Yenant's method is given i n  (83). The object of a l l  these studies 

was t o  f i n d  t h e  resistance force acting on a pi le  during driving 

when hammer energy and pile permanent s e t  were given. Assumptions 

regarding resi stance force d i  s tri but i  on and i ts vari a t i  on w i t h  

time: 1 i m i  t ed  the appl i cabi 1 i ty  and accuracy of these methoas. 

Wi th  the introduction of high speed' computers a numerical 

integration of the wave equation became possible. Smith (9) 

ped su red t o  as "Pile Driving 

Analysis by the Wave Equation". A major advantage of using such 

a numerical method is the unf imi ted choice of a so i l  resistance 

law. This method of analysis was also used by Samson, H i  rsch zzd 

Lawery (10) and Forehand and Reese (11) f o r  parameter studies. 

Basi ca1 ly  , these i nves ti gati ons "by the wave equation " used the 

approach introduced by Isaacs (6) and Fox (7), wherein namely, 

hamner energy and p i le  s e t  were employed for  predicting pi le  bearing 



capaci ty  . 
In  order t o  overcome one of the major sources of error i n  both 

dynami c formu1 ae and wave equati on methods, Goble , Scan1 an and Tomko 

(12) proposed t o  take acceleration and force measurements a t  the 

pi le  top during driving. To compute the s t a t i c  bearing capacity of 

the pi le  they used a simplified model. I t  was assumed that the 

so i l  resistance R(t) , acttnq along the p i le  could be approximated 

by Poncelet's Law: 
CQ 

where Ri are constant and v( t )  is the velocity of the pi le  which i s  

thought t o  ac t .  as a r i g i d  body. Applying Newton's Second Law a t  the 

time to, the time when the velocity becomes zero, leads t o  

R0 = ~ ( t * )  - Ma(to) (1.2) 

where Ro is  interpreted as being the s t a t i c  bearing capacity, F(to) 
A-. 

4s tL.e force and a(t,) is  the acceleration, both measured a t  the 

pi le  top. M is the total  mass of the pile. This prediction 

scheme, referred t o  as t h e  Phase IC method, is simple enough to be 

programmed i n  a special purpose f i e l d  computer t o  display the 

s t a t i c  bearing capacity, Ro, under every blow f n  the field. 

The results obtained from Equation (1.2) were compared w i t h  

a s t a t i c  load ?test  which was performed w i t h i n  a short ti me before 

o r  a f t e r  t h e  dynam$ c measurement was taken. Soi 1s chacge the i r  

physical properties i n  response t o  driving operation. I t  was, 

the re roe ,  proposed t o  delay the load t e s t  for a waiting period 



a f t e r  d r iv ing  had been completed and then  only to  restrike the p i l e  

and take dynamic measurement. 

Tomko (13) performed a study on:hw to obtain p i l e  s t a t i c  

bearing capacity by using t h e  masured force as an analysis i n p u t  

and compare the  output, i .e. ,  top acceleration, w i t h  the measured 

one. As a mathematical model a continuous p i l e  was used. A few 

parametess describing the so i l  resistance were adjusted t o  y ie ld  

a match between theoreti cal and measured sccelerati on. The cases 

treated i n  t h i s  study showed encourzgjng results. Aiso an im- 

provement of the Phase I mthod was recommended, by time averaging 

the second term i n  Equati on (1 -2) over some time before the t i m e  of 

zero ve1 oci ty  . A disadvantage, however, of the continuous p i  l e  

mode; used by Tomko was t ha t  only simple so i l  resistance laws could 

be uti l ized i n  the analysis. 

A 1 arge portion of Tomko's work was concerned w i t h  data 

acquisition on both f u l l  and reduced scale piles. Since his work is 

essential t o  the study reported i n  t h i s  paper a short  review w i l l  

be given. 

His experiments on reduced scale piles involved s t a t i c  load 

tests and dynamic measurements under di fferent soi 1 condi tions and 

w i t h  varying p i le  length. Two different stat'i'c load t e s t s  were 

reported, a Constant Rate of Penetration (C.R.P.) and a Maintained 

Load (M.L.) tes t .  The C.R.P. t e s t  yielded good resul ts  w i t h  

significant time savings. F u l l  scale p i le  tests were performed 

on actual construction sites. One t e s t  was reported which haa 



been conducted on a special t e s t  pile (referred to  as F-30, F-50, 

F-60). Here additional instrumen t a t i m  was used also for  obtaining ' 

force records on locations other than the ~ i l e  top. 

Most of the piles tested were i n  coarse grained so i l s  and 

agreement was good when using e i ther  the matching technique or the 

Phase 11 method. Results from reduced scale piles driven into 

cohesi ve soi 1s , however, showed very poor correl ation. The question 

as t o  t h e  effects which so i l  properties and pi le  length had on the 

rigid body simplified models could not be answered. 

2. Preliminary Experimental Hork 

Experimental data are the basis of the method discussed i n  

t h i s  paper. Since much of the experimental work was performed i n  

a manr,er as reported by Tomko (13) only a few special results are 

discussed in  t h i s  Chapter. 

A complete set of data consists of force and acceleration 

measured a t  t h e  p i l e  top. Analytical resuf ts from such dynamic 

data have tc be compared w i t h  a s t a t i c  load t e s t .  The load t e s t  

has to  be performed w i t h i n  a short time of the dynamic measurements. 

Conplete data se t s  were obtained from a number of actual construction 

piles and from reduced scale piles. The recording and signal 

conditioning equipment was essentially the same as i n  (13) also the 

types of force and acceleration transducers were the same as 

reported. Modi f i cations had t o  be applied where speci a1 measurements 

were undertaken. Two f u l l  scale pi l e  tes t s  deserve special comment. 

In the first a s i t e  i n  Toledo was selected because cf i ts  clayey 



soi 3 conditions (see Table (1 . I )  for  the soi 1 profile). I t  was 

decided t o  drive two t e s t  piles one of 50 f e e t  length (To-50) 

and one of 60 fee t  le,ngth (To-60). Further physi ca1 characteristics 

are given i n  Table (3.1). Both piles were instrumented along their 

length w i t h  s t ra in gages. Two complete s e t s  of data were obtained 

fmm each pi le  by t e s t i n g  the piles immediately af ter  driving and 

a f t e r  a waiting period. Both C.R.P. and M.L. t e s t s  were performed 

and thei r outcomes compared.. Particularly interesting findings 

w i  11 be discussed using To-60 as an example. 

( f ) Dynami c s t ra in  records were obtained f rom various 1 ocati ons 

along the pile. As an i l lustrat ion of t h i s  resul t  see F igure  (1.1) 

which is a three-dimensional plot of force i n  the p i le  as a function 

of time and p i le  length. Such results give further information 

f o r  correlation w i t h  analytical predictions . 
( i i )  The s t a t i c  load t e s t  showed a very Iw ultimate bearing 

cagaci ty (43 kip) immediately a f t e r  dr iv i 'n~  b u t  a strength increase 

of  100 percent dur ing the waiting per-iod. T h i s  change i s  due to  

h i  ghly viscous driving resistance forces can be expected. 

( i  ii ) The main s t a t i c  resistance was encountered a t  the p i le  

s k i n .  Figure (1 -2)  shows the load versus penetration curves of 

four locations along the pile, Also t h e  forces i n  the pi le  are 

plotted for different penetrations. 

The second speci a1 f u l l  scale pi 1e t e s t  was conducted i n  



R i  ttman, Ohio. Table (1 -2) shows the soi l  profile encountered a t  the 

s i te .  0,rganic clays and silts of about 55 f se t  depth overlie a 

hard layer of gravel and sand. Hence, it  was decided to  drive a 

pile first t o  a depth of 50 f e e t  t o  obtain two complete sets  of data 

and then t o  extend the pi le  by &riving i t  u n t i l  the hard layer was 

reached. Thereafter, two more complete se ts  of data were t o  be 

obtained. Results of these t e s t s  are discussed i n  more detail  l a t e r  

i n  this paper. However, two plots of the forces i n  the p i l e  (before 

and a f t e r  the pi le  h i t  the hard soil  layer) are presented i n  Figure . 
(1.3 and 4). Forces i n  the p i l e  were again plotted as a function of 

time and p i le  length. A special feature of these t e s t s  i n  Rittman 

was an accelerometer placed i n  the pi le  toe. Physical pile 

characteristics are given i n  fable (3.1) ; the pi  1e is referred to, 

e i ther  as Ri-50 or Ri-60, according t o  the length a t  which i t  was 

tested. 

Further work was performd on reduced scale piles such as 

described by Tomko (13). Additional s t rain records from several 

locations and an accelerat<on record from the p i l e  t i p  were obtained 

on piles driven into coarse sand (Table 1.3;. I t  was observed tha t  

a shortcoming of t e s t s  on short piles was the relatively slow r i se  

time of the pi le  top force a t  impact. Thus, cushioning properties 

were changed i n  order to  make tho reduced scale piles a bet ter  model 

of f u l l  scale piles. 



3. General Descri p t i  on of  Analyti ca1 Work 

The f o r c e  and ' a cce l e ra t ion  o f  t h e  p i l e  top  recorded under a 

hammer blow e s t a b l i s h  redundant i n foma t ion .  In t h e  usual dynhmic 

problem only one o f  these v a r i a b l e s  is p r s s c r i  bed toge the r  w i th  t h e  

e x t e r n a l  forces a c t i n g  along t h e  sides o r  a t  t h e  o t h e r  end of t h e  

pi  lee P i l e  dr iv ing ,  however, compli c a t e s  the. problem i n  t h a t  

informat ion can only be obtained a t  t h e  p i l e  top  whi le  t he  s o i l  

forces ac tsng  zlong t h e  p i l e  a r e  unknown. Thus, the usual a n a l y s i s  

p rocess  cannot be applied.  Generally,  t h e  t o p  force and a c c e l e r a t i o n  

of t h e  pile are dependent on t h e  ex t e rna l  forces  s o  that  an inve r se  

process  o f  t h e  usual dynamic a n a l y s i s  w i  11 y i e l d  information about  

t h e s e  unknowns. 

In  t h i s  paper .a method is presen ted  which p r e d i c t s  t h e  s o i  1 

r e s i s t a n c e  f o r c e  d i s t r i b u t i o n  along t h e  p i l e  by using both a s  i n p u t  

the acce l e ra t ion  and the f o r c e  measured a t  t h e  top  of  the p i l e .  As  

an in t roduc t ion  t o  t h e  a n a l y s i s  t h e  t r a v e l i n g  wave s o l u t i o n  is appl ied.  

A d e t a i l e d  inves t iga t ion  o f  wave propagation i n  a p i l e  under impact 

is d iscussed  i n  Chapter- I I ,  wherein t h e  development-of- an -ex te rna l  

force pred ic t ion  scheme is zilso reported.  I t  was found t h a t  t h e  

Phase I and I1 simplified methods der ived from a r i g i d  p i l e  model 

can be  s tud ied  on the' b a s i s  of wave considerat ions  and t h a t  an 

i n s i g h t  i n  their ac tua l  meaning can be obtained. T h i s ,  t o g e t h e r  

w i t h  proposals  f o r  improvement (Phase 11-A) and the  development of  a 

new - Phase I11 - s i m p l i f i e d  p red ic t ion  scheme, i s  presented a t  t h e  

end  of Chapter 11. 



Chapter I11 summarizes the analyt ical  r e s u l t s  from both the external 

force predict ion scheme and from the s impl i f ied  methods. Speci a1 

consi de ra t i  on w i  11 be devoted t o  t h e  predi cted force d i  stri b u t i  on 

along the p i l e  and t o  comparisons of predicted load vs. penetration 

curve compared w i t h  t h a t  measured during a f i e l d  s t a t i c  ioad test. 

In Chapter IV l i m i  tat-ions and shortcomings of t h e  proposed 

method are cri ti cal l y  investigated. Chapter V,  f i na l l y ,  sumar i  z ~ s  

the present  work and includes suggestions about possible extensions 

of t h e  method and fu r t he r  necessary research. 

Appendi ces contain the mathemati cal  derivat ions along w i t h  

addit ional  materi a1 re la ted  t o  Chapter 11. Appendix A1 deals w i t h  

a 1 umped mass anal y s  i s based on Smi t h  (9) and ~ewmark (1 4). Thi  s 

lumped mass analysis  is a convenient tool  f o r  checking the va l id i ty  

of dynamic predict ions from wave theory. Appendix A2 presents the 

s t a t i c  analys is  used f o r  computing a theore t ica l  load test by use 

of t h e  predi cted extefnal  resis tance forces.  I n  Appendix A3 the 

t ravel ing  wave analysis  i s  deve1o;cd as disc~:ssed i n  Chapter 11. 

Appendix B is a sumnary of s tudies  required t o  i n t e rp r e t  properly 

fo rce  and accelerat ion records. Appendix C discusses val i di ty and 

l imi ta t ions  of  t h e  so i  7 model used i n  the present prediction method. 

Simplified computation schemes which can be used i n  a special purpose 

computer are given i n  Appendix D. Finally,  t h e  computer program used 

f o r  the  predict ion of t h e  external f ~ r e s  along the p i l e  is described 

iii Appendix E by means of a block diagram. 



CHAPTER I1 

Analysis by the Traveling Wave Solution 

Introduction 

Already i n  the nineteenth century a s t ress  solution fo r  a 

uniforn and e las t i c  rod struck by a mass had been derived by Saint- 

Venant, see Reference ( 8 ) .  The method of analysis used the solution 

o f  the one-dimensional , 1 inear and homogeneous wave equation 

Superposition of s u i  tab1 e waves yielded results f o r  rods w i t h  ei ther 

prescribed end forces o r  displacements. Donne11 (15) also used t h i s  

method and extended i t  f o r  investigating various problems of one- 

dimensi onal wave propagation including conical rods, nonlinear 

material properties and problems where impact forces were applied 

on locations other than the ends of  the rod. The resul ts  of these 

investsgations were applicable t o  problems where t h e  external forces 

along the bar were known and stresses or velaci t i e s  of rod particies 

were t o  be predicted. 

Another zpproach of studying wave propagation i n  rods became a 

approach which breaks up the rod into several elements - lumped 

masses - was introduced f o r  p i le  driving analysis by Smith (9) and 

applied by Samson, e t  a l .  (10) and LaPay (3)  among others. In 

these studies i t  was attempted t o  f i n d  out about certain pi le ,  

hamner and so i l  characterist ics by using pi le  s e t  and hammer energy 

as an inpu t .  In  t h e  present approach for  using acceleration and 

force records measured a t  the p i le  top both methods, wave and lumped 



mass a n a l y s i s ,  w i l l  be  used for  d e v i s i n g  a scheme i n  o r d e r  t o  f i n d  

o u t  abou t  t h e  e x t e r n a l  f o r c e s  a c t i n g  on t h e  p i l e  d u r i n g  t h e  motion 

o f  t h e  p i l e .  I n  t h i s  c h a p t e r  r e l a t i o n s  w i l l  first be  d i s c u s s e d  

which s x i s t  between stresses and p a r t i c l e  v e l o c i t i e s  i n  a stress 

wave t r a v e l  i n g  through a rod w i t h  va r ious  boundary condi t f  ons. 

Then conc1usions w i l l  be  drawn on the effects which s o i  1 r e s i s t a n c e  

forces have on t h e  hammer a p p l i e d  stress waves. For  t h i s  a s p r i n g -  

damper s o i l  model w i l l  be  used. I t  then w i l l  be  a t t empted  t o  d e s c r i b e  

a p r e d i c t i o n  scheme for de te rmin ing  t h e  magnitude of t h e s e  s o i  1 

p a s s i v e  f o r c e s  which are i n i t i a t e d  by the motion of t h e  p i l e  under 

t h e  hammer blow. T h i s  method w i l l  make u s e  o f  t h e  two r e c o r d s  

measured a t  the p i l e  top:  f o r c e  and a c c e l e r a t i o n .  The a c c e l e r a t i o n  

w i l l  b e  a p p l i e d  as a n  i n p u t ,  i.e. as a s e n s o r  wave. S o i l  r e a c t i o n  

forces i n i t i a t e d  by t h i s  s e n s o r  wave a l s o  produce stress waves which 

can b e  s e p a r a t e d  from the h a m e r  i n p u t  by means o f  t h e  measured 

force. Knowledge of t h e  mechanics of wave propagat ion  w i l l  now 

g i v e  a t o o l  f o r  l o c a t f  ng t h e  s o u r c e  o f  t h e s e  s o i l  r e s i s t a n c e  f o r c e s  

and computing t h e i  r magnitudes. 

F i n a l  ly , a g a i n  us? ng wave consi  d e r a t i  ons e x i s t i n g  approximation 

schemes f o r  p r e d i  c t i n g  s ta t i  c bear3 ng c a p a c i t y  wi 11 be cri ti cal ly  

i n v e s t i g a t e d  and a new method w i  11 be developed. 

2. Fundamentals of Wave Propagat ion  i n  a Uniform and E l a s t i c  Rod 

A cont inuous  rod under  impact  having non-zero f o r c e  cr d i s p l a c e -  

s e n t  end c o n d i t i o n s  and e x t e r n a l  f o r c e s  a c t i n g  a long i t s  l e n g t h  



can bes t  be analyzed by use of a lumped mass system. In  such an 

analysis the rod is divided in to  connected elements whose e l a s t i c  

and iner t ia l  properties are represented by springs and lumped masses, 

respectively , Si nce i t i s necessary herein t o  check predi c t i  ons 

from wave theory the lumped mass analysis is a necessary and 

convenient tool. I t  i s  described i n  detai 1 i n  Appendix A1 . A few 

remarks are appropriate. 

The method as developed by Smi th  (9) uses a so-called Euler 

integration scheme. T h i s  method cornputes the displacements of a l l  

rod elements a t  a certain time by means of lsnear extrapolation 

from values computed fo r  an e a r l i e r  time. T h i s  way an approxima- 

tion error  is made and carried through the subsequent computations. 

The results can be only a good approximation t o  the behavior of t h ~  

discrete system i f  the time increments are chosen small enough. 

Th i s ,  however, can introduce numerical errors due t o  the 1 i m i  ted 

number of figures car'ried i n  the computations and w i l l  certainly 

add t o  the amount o f  computation time. In order t o  overcome t h i s  

di f f i cul ty  an improved numerical i nteg 

(1 4). A t  every time step the Rewmark method uses the result 

obtained from the Euter method as a prediction and computes a 

correction by checking on the dynamic balance o f  the whole system. 

Prediction and correction are then considered a new prediction 

and new correcticns computed u n t i l  t h e  process converges. Then 

only, the computation proceeds t o  add the next time increment. By 

use o f  t h i s  method both accuracy and s tabi l i ty  of the soluti  on 



is essentially improved without increasing excessively the computation 

time. Studies on accuracy, s tab i l i ty  and computation time of the 

solution are investigated i n  Appendix A1 together w i t h  the question as 

t o  the necessary number of p i l e  elements f o r  a gcod representation 

of the continuous system. 

For deriving quali tative results and f o r  obtaining an insight 

into the propagation of hamner applied stresses the wave theory 

treatment of the continuous pi le  i s  of great help. Appendix A3 

shows how the s t r e s s  or  particle velocity can be computed a t  a point 

along the p i  1e even i f  the pi le  is subjected to  complicated external 

force conditions . 
A s t ress  wave is due to  a difference i n  s t ress  between 

neighboring cross sections, so that  no s t a t i c  equil i brium exists.  

The s t ress  gradient causes accelerations of particles,  Therefore, 

a dynamic balance exis t s  between iner t ia  forces of particles and 

stresses i n  such a wave. In  a uniform and e las t i c  p i l e  where no 

external forces a c t  t h e  s t ress  gradient w i l l  travel through the 

rod without being changed i n  magnitude so tha t  par t ic le  'velocity 

o r  acceleration are  predictable for  a point along t h e  rod i f  they 

were known for  some tjme a t  another 7ocation. The speed of 

propagation, conanonly denoted by c, depends only on the materi a1 

properties of the rod. I t  is equal to  where E is Young's 

modulus and p is the mass density of t h e  material. I n  a uniform 

rod the s t ress  gradient w i l l  cause the same part ic le  velocities 

independent of t h e  location a t  the rod. An important result of 



t h i s  f a c t  is the proportionality which exis ts  between s t ress  and 

velocity i n  a s t ress  wave, providing a convenient means of calculating 

the one i f  the other one is known. 

When the s t ress  wave arrives a t  an end the s t r e s s  gradient 

wIll be changed. For example a t  a free end the particles w i l l  be 

subjected t o  higher accelerations (twice as high in  a uniform rod) 

since no fur ther  material is strained i n  front of: the wave. How- 

ever, due to  the higher acceleration a new s t ress  gradient builds 

up between part ic les  next t o  the end. The dynamic balance can be 

maintained only if another wave travels away from the end. T h i s  

stress wave w i l l  be called a reflection wave. A t  a free end a 

ref1 ect i  on wave changes the s i g n  of the stresses. ' A t  a fixed end 

where t h e  s t resses  build up t o  twice their origf nal nagni tude and 

no acceleration of particles is possible the par t ic le  velocity i n  

the ref'lection wave w i l l  point i n  a direction opposite t o  tha t  i n  

the arriving wave. A 'more detailed discussion rri t h  quantitative 

results is given i n  Appendix A3. 

If a load is applied a t  some point along the- rod t h e n  a tension 

and a compression wave w i l l  be b u i l t  up on both sides of the loaded 

section caus?ng b i o  stress waves t o  travel away from the load. In 

a uniform rod these two waves w i l l  have the same s t r e s s  magnitude 

equal t o  one half of the applied s t ress .  This is necessary t o  

sa t i s fy  the condition of equilibrium a t  the loaded point and i n  order 

t o  sa t i s fy  the condition of continuf ty the par t ic le  velocit ies Jn 

both waves have t o  be the same. 



For no internal damping o r  external forces present s t ress  waves 

w i  11 continue t o  travel along the rod always generating reflection 

waves a t  the ends. If stresses are observed a t  a particular cross 

section a f t e r  the impact forces ceased t o  vary then the s t resses  

w i l l  osci 11 a te  about the s t a t i c  value. Velocities observed t h i s  

way would oscil l a t e  about zero if the rod is fixed a t  one end o r  

about the value obtained from Newton's Second Law for  a r i g i d  body 

i n  case of the unsupported rod. 

I n  the present analysis two records, continuous over time, are 

available. The first question i s  3s t o  which is more convenient 

t o  use as an i n p u t .  Because of the proportionality connecting s t r e s s  

t o  velocity i n  a wave i n  an infinitely.  long rod both the force 

o r  the velocity !acceleration integrated over time) seem t o  be equally 

well suited. Comparing the rneasured force w i t h  velocity obtained 

from the measured acceleration shows tha t  t h i s  proportionality exis ts  

only i n  the beginning. of the record. T h i s  can be observed i n  

Figure (2.1 ) . Deviations from t h i s  proportional i tY can be  due 

e i ther  t o  the f i n i t e  p i l e  length and reflection waves or t h e  action 

of the s o i l ,  resist ing the motion o f  the pi le  particles- If the 

p i l e  is of finite length and no forces are assumed t o  act  along the 

p i le  then by accounting for  reflection waves generated a t  e i ther  

ead of t h e  p i le  the velocity can be calwlated from t h e  force or  

vice-versa. The output from the calculation can be comparea w i t h  

the other measured quantity . 
Suppose that  the velocity were derived from the measured 

force fo r  a f ree p i le  of actual length L. I f  t h i s  solution would 



agree w i t h  the measured velocity then t h i s  would indicate that  the 

actual p i le  had indeed no resistance forces acting. In general, 

t h i s  w i l l  not be true. A difference between the actual and the t h u s  

derived velocity could be interpreted as  a top velocity effect  due to  

the soil  resistance forces. 

The other alternative is t o  compute the force on top of the free 

pi le  of length L using the velocity as an i n p u t .  The difference 

between measured and computed force a t  the top is the force effect  

due t o  t h e  soi 1 action. Since it is intended t o  predict forces 

along the p i l e  it seems natural to  select  the second way of 

analysis. This  yields a top force ef fec t  versus time relation due 

to  the r e s i s t a ~ c s  forces. The advantage a f  t h i s  choice w i l l  become 

apparent when such difference curves are  analyzed. 

To understand t h e  meaning of the above described top force 

effect  the boundary conditions have t o  be examined. The free p i l e  

solution is defined t o  have the prescribed measured velocity a t  the 
e 

top .and zero forces along its length and bottom end. The actual 

p i le  has the same velocity a t  the top  and the real resistance 

forces acting a10 

. .difference between the measured top force of the actual ~ i l e  and t h a t  

"of 'the f ree  pile w i l l  be the top force fo r  a p i l e  whose top has 

'fixed end condi tions bei ng subjected t o  the actual resistance forces. 

This  difference w i  11 be referred t o  as the Measured i)el ta  Curve. 

The advantage of dealing w i t h  the Measured Delta curve rather 

than w i t h  e i ther  measured force or acceleration is the fac t  that  the 

effect  of t h e  actual resistance forces on the force a t  the pi le  top 



has been separated from the forces due to the applied velocity. The 

measured velocity or force show very different characteristics 

depending on the hammer properties. Properties of the Measured 

Delta curves are independent of these harmer characteristics and, 

therefore, can be compared even i f  obtained under different driving 

conditions . 
I t  i s  next supposed, that the resistance forces acting on the 

actual p i  1 e can be represented by concentrated equi val ent forces. 

The Measured Delta curve can then be thought of' being the result of a 

superposition of top force effects from each o f  these concentrated 

forces. Each of these top fcrce effects is due to the actson of 

only the one particular force acting on the pile w i t h  fixed top. 

-such a top  force effect w i l l  be called a Resistance Delta curve. 

In case of a pile having only a resistance force acting a t  one 

station, the Measured Delta curve would be equal to the Resistance 

Delta curve for t h i s  station if  the resistance force versus time 

relation i s  the same i n  both cases. 

The Resistance Delta curve i s  a theoretical force versus time 

relation. I t  can be obtained for each force acting on the pile as 

a function of t;m. Since resistance forces acting on the pile depend 

on displacement and velocity a t  the point o f  action the Resistance 

Delta curve i s  to be computed by f i r s t  computing the top force for 

a pile w i t h  the actual top velocity and the considered resistance 

force acting. Then the free p i  1e solution has to be subtracted as 

i n  the case of the Measured Delta curve. I t  must be kept i n  mind, 

however, that obtained t h i s  way the actual resistance forces 



influence the pile displacements and velocities so t h a t  the 

Resistance Delta curve computed i n  the above described way can 

only yield an approximation of the real top force effect. Examples 

for both Measured and Resistance Delta curves w i l l  be given below 

after a discussion of how resistance forces are functions of dis- 

p? acernents and vel oci t ies,  

3. Relations Between Delta Curves and Soil Resistance 

In the previous section a way was illustrated of identifying 

the soil reaction forces. The soil behavior will be thought  of as 

being dependent on the pile displacement and velocity assuming that 

the soil motion i s  negligible during the short time considered. The 

knowledge of p i l e  top velocity and force makes it possible to predict 

the velocity of any other point along the pile allowlpg conc1usions 

on the soil resistance. The Measured Delta curve w i l l  be used to 

determine the magni tiides and locations of soil model parameters. 

( i )  Shear Resistance a t  a Point Along the Pile 

tance forces which are independent of the rate of loading. Thus, shear 

resistance parameters of soils or of the pile soil interface can 

be determined i n  a s ta t ic  test. Aithough the type of soil failure 

is a t  the pile bottom very different from t h a t  a t  the pile skf l :  no 

differentiation w i l l  be ztttempted. Furthermore, the tern shear 

resistance w i l l  be used independent of the nature of  these s ta t ic  

forces. They might be either due to  cohesion or due to internal 



f ri c t i  on. 

Triaxial t e s t s  on sands and clays show basically the same 

tendency of shear versus displacement behc~ior .  The shear strength 

can be represented i n  first approximation by a s t raight  line u n t i l  

a load value - herein called the ultimate shear resistance - is 

reached. While i n  clays i t  is usually not possible t o  reach higher 

values of shear stress even for large deflections sands usually 

show a strength increase a f t e r  the ultimate strength has been 

reached. Since t h i s  strength increase goes w i t h  a much smaller 

modulus i n  the beginning of the curve i t  migh t  not be essential 

for considerations deal i ng w i t h  re1 a t i  vely small dynamic displace- 

ments. However, some special considerations can interpret  the 

results obtained from such an assumption. This w i l l  be discussed 

i n  Chapter 111. 

The ultimate shear resistance is reached a t  a p i l e  deflection 

value which js usually called "quake" i n  the p i l e  dynamics l i terature .  

Thus, the s t i f fness  of the soi 1 fo r  deflections small e r  than the 

quake is the ultimate shear strength divided by t h e  quake. I t  can 

be assumed that  the s o i l  has the same st i f fness  during unloading. 

See Figure (2.2) fo r  an example. 

The value f o r  t h e  quake was found not t o  be c r i t i ca l  fo r  pi le  

d r i  wing analysis. Smi th  (9), for example, recomnends a value of 

0.1 inches. I t  was found i n  analyzing actual records tha t  the 

displacement reached a t  the time o f  maximum velocity is usually 

i n  the neighborhood of t h i s  value. Choosing that  displacement 

as the value f o r  the quake has the advantage tha t  the quake w i l l  



always be exceeded by'the pile displacements. T h i s  i s  a necessary 

condition for obtaining a final se t  under the hammer blow and for 

reaching the ultimate capacity. Also, the number of unknowns w i l l  

be reduced since the knowledge of ultimate shear strength is now 

sufficient to describe the shear versus displacement behavior 

completely. Table (2.1) lists the quake values used for some of 

the piles analyzed. As an upper bounc! .12 inches had been used. 

Because o f  the action of resistance forces the displacements a t  

maximum velocity are usually smal ler a t  the lotrer parts of the pile 

than a t  the* top. Thus, the quake w i l l  not be constant throughout 

the depth of the pile. 

The force versus t ime  relation of a shear resjstance force 

i s  easily described when the displacement of the pile a t  the point 

where the resistance acts i s  known. The displacement a t  the point 

where t h e  force acts w i l l  be zero as long as the stress wave due to  

the -impact d id  not arrive a t  t h i s  section. A t  a time, given by the 

distance from the top divided by the wave speed, the displacement 

w i  11 s t a r t  t o  increase and a reaction force w i  I1 be exerted on the 

pile. This force w i l l  send aut two reacticn wav 

direction along the pile according to  the previously discussed 

conditions of equi 1 ibrium and continuity . The total reaction force 

w i l l  be directed upwards and consequently the stress i n  the upwards 

traveling wave w i l l  be compressive, that i n  the downwards moving 

wave w i l l  be tensile. Because of the choice of quake discussed 

above the quake w i l l  be reached a t  the time when the particle 

velocity a t  the considered section becomes a maximum. After t h i s  



time no further increase i n  reaction force can be observed, i .e. 

the reaction force stays constant u n t i l  the displacements s ta r t  to 

decrease. Then unloading will s tart .  

In order t o  describe the Resistance Delta curve for a shear 

resistance a t  some point, say a t  a distance xi below the top, a 

hypothetical case is considered: The pile i s  fixed a t  the top ,  the 

bottom i s  a free end (except i f  the shear would be acting a t  the 

boticom end i t se l f )  and the shear force is assumed to be known as a 

function of time as developed above. For the discussion here t h i s  

relation can be simplified by assuming that the shear resistance 

force is zero u n t i l  a time xi/c and equal to the ultimate shear 

resistance thereafter (Figure (2.3a)). . This assumed resistance 

force versus time relation is .realistic as long as no unloading 

occurs. 

The stresses i n  the two generated waves are equivalent to one 

half the ultimate resistance force. F i i s t  the upwards moving wave 

is considered. I t s  stress is compressive. A t  a t i m e  Zxi/c it w i l l  

reach the fixed top causing there a reaction force of twice the 

force i n  the wave - i .e. a force equal to the ultimate shear 

resistance. The reflection wave, travel i n g  now downwards, w i  11 

also have a compressive stress equivalent to one half of the. ultimate 

shear resistance. T h i s  reflection wave w i l l  be a second time 

reflected a t  the pile bottom. Here a free end condition i s  encountered 

causing a new reflection wave w i t h  tension stresses. A t  a time 

ex i  + 2L)/c this new reflection wave w i l l  again reach the top b u t  

t h i s  time w i t h  opposite stresses. The top force effect, therefore, 



becomes zero a t  t h i s  time. Figure (2.3b) i l lus t ra tes  the action 

of t h i s  i n i t i a l ly  upwards moving s t r e s s  wave. 

Turning now the attention t o  the in i t i a l ly  downwards moving 

s t r e s s  wave which has a tensi le  s t ress ,  again equivalent to  one 

half of the ultimate shear resistance, i t  is observed that  a t  a 

time L/c t h i s  wave reaches the f ree  bottom end causing a reflection 

wave of compressive stress.  T h i s  wave reaches the top a t  time 2L/c. 

The ef fec t  a t  the fixed top w i l l  be a reaction force of twice the 

force i n  the wave, i .e. -3 force equal to  the ultimate shear resis-  

tance. A reflection wave caused a t  t h i s  instant w i  11 return not 

before time 4L/c. No cor?sideration w i l l  be given t o  effects a f t e r  

t h i s  time. Figure (2.3~) shows the way the i n i t i a l l y  downwards 

moving wave travels along the p i l e  and finally Figure (2.3d) is a 

plot  o f  the Resistance Delta curve fo r  the shear resf stance obtained 

from superimposing t h e  top force effects  of both waves. Summarizing, 

t h i s  Resistance Delta curve reaches a value equal to  the ultimate 

shear resistance a t  time 2xi/c twice tha t  value a t  time 2L/c and 

n to  one times the ultimate shear resistance a t  t' 

2(xi + L)/c. If the shear resistance force would act  a t  the bottom 

end of the p i le  then the two waves would act  as one wave moving 

together upwards w i t h  a s t r e s s  equivalent t o  the ultimate 

shear resistance. Examples of these Resistance Delta curves w i  11 

be demonstrated i n  the next section of th i s  chapter. 

(i i ) Dynamic Resistance Forces 

Dynani c resistance forces are usual ly assumed t o  be proportional 



t o  the p i l e  velocity a t  the location of the resistance force. T h i s  

can be modeled by a l inear viscous damper and, therefore, dynamic 

resistance forces are  also called damping forces. The 1 inear 

force ve1 oci ty re1 ation is the feature whi ch distinguishes dynami c 

from shear resistance forces. Thus,  dynamic forces change magnS tude 

while shear resistance forces stay constant a f t e r  the quake is 

reached. 

In order t o  construct a Resistance Delta curve for  a damper a t  

a distance xi below the top the force versus time relation must be 

found. I n  the case of a 1 inear damper this  means tha t  the velocity 

of the p i l e  section where the damper acts must be known, Waves due 

t o  the damping forces, however, w i l l  influence t h i s  velocity and 

the computation amounts t o  a rather d i f f i c u l t  bookkeeping of 

reflection waves. Eximples are discussed i n  Appendix A3. For 

obtaining an understanding of the main features of a Resistance 

Delta curve for  a damper the assumption w i l l  be made that  the damping 

forces are sniall as compared to the forces applied a t  the top of the 

pile. If t h i s  is the case then the velocity a t  the location of the 

damper is  equal to  the p i le  top velocity a t  a time xi/c earlier.  

T h i s  is valid until  the wave applied by the hammer has been 

reflected and reaches the damper a second time. Since the reflection 

was a t  a free end the velocity i n  the reflection wave w i l l  have the 

same s i g n  as the applied wave t h u s  increasing the velocity a t  the 

damper. Without giving more detail about further changes of the 

velocity a t  the damper the Resistance Delta curve for t h i s  damper w i l l  

now be investigated, Again the top force ef fec t  due to  the damper 
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w i l l  be the result of a superposition of the effects of the two 

waves generated by the damping force. One of both waves w i l l  move 

upwards to the top so that the damping force can be observed a t  the 

top  i n  equal magnitude at  a time xi/c later. The second wave w i  11 

arrive - after reflection a t  the bottom end - w i t h  a time delay of 

(2L - xi)/c. Together w i t h  this wave, however, the wave which is 

traveling upwards is arriving a t  the top. The damping force 

causing this wave will be increased by the bottom reflected . 

impact wave so that a maximum force effect a t  the top w i l l  

result From superposition of both arriving waves. Since i n  most 

of t h e  cases of  pile d r iv ing  the impact applied velocity w i l l  

decrease immediately after its maximum also the effect a t  the top 

w i l l  decrease after its maximum which is different from the 

Resistance Delta curve for a shear resistance. 
- -  -.-- 

4. . Discussion of Computing Delta Curves' and Their Meaning 

In the preceding sections two different kind of  Delta curves 

Both have i n  common that they represent resistance forces, acting 

along the pile and a means of separating their effect on the pile 

top from the effect which tine harmer applied force has on the top. 

If Resistance Delta curves are found so that their total sum is 

equal to the Measured Delta curve then the resistance forces are 

known which were actually acting on the pile when acceleration and 

force were recorded. 

In order to  obtain either a Measured o r  a Resistance 
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Delta curve two other curves must  be found. Firs t ,  t h e  "free 

p i le  solution", i.e. the force on top of a pi le  whose top i n p u t  

velocity is the prescribed record b u t  has no other external forces 

along the rest of the pile,  Second the force effect  on top of the 

pf l e  m u s t  be found whose top has again the prescribed velocity b u t  

has resistance forces acting along the pile. In the case of 

Measured Delta curve t h i s  second curve i s  the force curve measured 

i n  the f ie ld.  In the case of Resistance Delta curve t h i s  second 

curve is determined analytically as explained i n  the next paragraph. 

The f i r s t  curve which is the free pile solution is obtained 

ei ther  by performing a lumped mass analysis or by using Equation 

(A3-18)- This equation computes the exact solution by accounting 

for the effects of the applied forces as well as those from reflection 

waves. Equation (A3-18) can be applied without t h e  use of a digital  

computer. A disadvantage i n  using a closed form solution arises 

i n  that  i f  i t  is subtracted from a solution obtained by lumped mass 

analysis then differences due to  inaccuracies i n  the numerical solution 

might be introduced which can d is tor t  the appearance of the desired 

Delta curve. For obtainirlg the second curve - a pi le  top force due 

t o  a resistance force acting on the pi le  and'the measured velocity a t  

the top - a lumped mass analysis has to  be employed because the force 

versus time relation depends on the pi le  motion. As indicated 

above i n  the case of the Measured Delta curve t h i s  second solution - 
where the resistance forces ac t  along the pi le  and the measured 

velocity is prescribed on top - is t h e  recorded force i t s e l f .  

Figure (2.4) shows the "free p i le  solution" as obtained from 



Equation (A3-IS). The velocity fr~m which t h i s  solution was derived 

is also plotted af te r  having been mu1 tip1 ied by the proportionality 

factor  EA/c. (A is the cross sectional area of the pile,  EA/c 

re la tes  par t ic le  velocity t o  force i n  a s t ress  wave). 

Three Measured Delta curves are presented i n  Figures (2.5,6,7). 

The records were obtained on a special test pile. Figure (2.5) 

shows the measured force and velocity and the derived Delta curve 

from records taken when only half of a 50 foot p i le  had been driven 

in to  the ground. The soi l  offered almost no resistance t o  driving. 

The curves ih Figure (2.6) are results obtained a f t e r  the pile had 

been driven t o  a depth of 48 feet .  A load t e s t  performed after this  

record showed an ultimate strength of only 47 kips. Later, the p i le  

was extended and driven t o  a depth of 58 feet .  A t  t h i s  depth the 

p i l e  t i p  h i t  a hard layer. Figure (2.7) shows results obtained 

f r o m  records taken under these conditions. A load t e s t  was again 

performed and carried* up t o  a load of 180 k ips .  A t  t h i s  point 

no higher loads could be applied because of instabi l i ty  i n  the test 

A1 1 three Measure 

a steep increase a t  a time 2L/c a f t e r  impact due t o  the  returning 

impact wave which has been changed under the a c t i ~ n  of resistance 

forces. For the pi le  which was only part ia l ly  driven into the 

ground i t  was not possible t o  obtain higher impact velocities than 

shown i n  Figure (2.5) because .of t h e  relation between resistance 

and applied energy i n  case of Diesel hammers, one of which was 

used t o  drive this 7ile.  



However, the f a c t  that  the top velocity increases .again a t  a time 

2L/c a f t e r  smpact indicates that  the resistance forces were sending 

out waves of smaller magnitude than the applied wave. The Delta 

curve i t s e l f  stays zero (smaf 1 values both positive and negative, 

due to  measurement inaccuracies, were s e t  t o  zero until the point 

where the Delta curve s t a r t s  definitely t o  increase) u n t i l  a short 

time before the steep increase. After the maximum i t  decreases 

again w i t h  a steep slope. The l a t e  onset of positive Delta values 

indicates no resistances along the upper portion of the p i l e  skin 

and the rapi'dly decreasing nature of t h e  curve can be explained 

wf t h  mainly dynamic resistance forces . 
The Delta curve i n  Figure (2.6) shows somewhat different 

features. Already a short t ima aftsr impact positive Delta values 

are observed corresponding to  the fac t  tha t  resistance forces are 

acting along the upper portion of the pile. The behavior of the 

curve displays again a sharp decline a f t e r  the maximum bu t  holds 

some constant value u n t i l  time 4L/c. Thus ,  1 a r p  dynamic forces 

and small shear resistance forces are present. 

A very different Delta curve is  obtained from those records 

taken a f t e r  t h e  p i i e  has h i t  the hard layer shown i n  Figure (2.7). 

The resistance encountered by the shorter p i i e  along the skin can 

again be observed before the steep increase. T h i s  time, however, 

t h e  maximum of  the Delta curve is much larger as compared to  these 

s k i n  forces. Also the amount of decrease of Delta a f te r  the.maximum 

is relatively smaii. Anot~er interesting observation can be made on 

the measured force recora i n  Figure (2.7). . T h i s  force shows a 
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definitive increase a f t e r  a time 2L/c a f t e r  impact. Clearly t h i s  

increase must  be due t o  the reaction waves sent out by t h e  high 

resistance forces acting a t  the t i p  of the pile.  

The negative values in  the Measured Dei t a  curves occuring 

af te r  4 i i c  and before 6L/c are due t o  the f a c t  that  the resistance 

forces do not stay constant b u t  decrease i n  magnitude. Simplified 

examples i n  Appendix A3 w i  11 clar i fy t h i s  fact .  

FGT obtaining an insight into the meaning of the Resistance 

Delta curves f ive different combinations of resistance forces have 

been used and applied on the p i l e  and the top force computed for  the 

case where the velocity of Figure (2.7) is prescribed on top of the 

pile. Then the f ree  pf le solution obtained from lunped mass 

analysis was subtracted. 

F i r s t  a shear resistance force having an ultimate of 75 k i p s  

was placed a t  the p i l e  t ip.  Figure (2.8) shows that  the resistance 

Delta curve for t h i s  case obtains a value of 150 k i p s  a f t e r  a time 

2L/c a f t e r  impact. Subsequent oscil lations are due t o  the f i n i t e  

number of elemects i n  the lumped mass analysis. 

of 

of 0.6L below the top of the pile. Figure (2-9) shows tha t  in  t h i s  

case the Resistance Delta curve first reaches a value equal to  t h i s  

shear force a t  a time 0.6(21/c) a f t e r  impact and a value of twice 

that  much a t  2L/c (always a f t e r  maximum velocity). I t  is expected 

B a t  the Delta curve decreases again to  50 k i p s  a t  (1 + 0.6) 2L/c, 

hmever , because of unl oadi ng (the applied velocity has decreased 
. .  .-... 

considerably) the Delta curve actual ly decreases &'even small e r  



val ues . 
Two shear resistance forces of 25 kips ultimzte each were 

placed a t  the pile a t  a distance 0.4L and O.Ki below the top. The 

result i s  plotted i n  Figure (2.10). Corresponding to the distances 

from the top a t  which these forces act the Delta curve shows a value 

of 25 k i p s  a t  0.4(2L/c) and 50 kips a t  9.8(2L/c) after impact. Finally, 

a t  2L/c after impact the Delta curve increases to  two times the 

acting ultimate resistance forces (100 kips) due to  the return of 

the bottom reflected waves. The decrease, thereafter, i s  again 

due to both returning tension waves and un l  oadi ng . 
Simi 1 ar investigations were performed w i t h  dynamic resistance 

forces. Figure (2.11) shows the Resistance Delta curve for a damper 

a t  the pile t i p ,  The damping coefficient i s  O.Z(EA/c). Using 

Equation (A3-31) the magnitude of the generated damping forces can 

be ca1 cu1 ated using wave considerations and compared w i t h  the result 

from lumped mass analysis. The Delta curve is i n  this case an 

image of the applied velocity shifted over a time 2L/c and multiplied 

by a factor 0.2(EA,c)2, 

A damper located a t  0.6L below the top having the same coeffi- 

cient exhibits a Delta curve value greater than zero already a t  a 

time 0.6(2L/c). This i s  shown i n  Figure. (2.12). However, the 

proportional i ty between Delta curve and velocity cannot be observed 

anymore after time 2L/c after impact since the Delta curve becomes 

here the result sf a superposition of two waves: The wave reaching 

d i  rectly the top and the wave i n i  ti a1 ly moving towards the bottom 

of the pile where it had been reflected. When the lat ter  wave reaches 



the damper on the way upwards it i t se l f  will influence the damping 

force. Together w i t h  t h i s  wave reaching the damper the hammer applied 

velocity w i l l  arrl've a second time a t  the damper a f t e r  having been 

reflected a t  the pi le  t i p .  T h i s  velocity w i l l  superiinpose t o  the 

ve1 oci ty  appl i ed by the hammer and reaching the damper di rect l  y . 
The damping force a t  t h i s  instant,  therefore, w i l l  increase, i t s  

effect  w i l l  be carried t o  the top by the directly upwards moving 

wave ail4 i n  addition, the previously generated damping force w i l l  

increase the Delta curve a second time due to  t h e  arrival and 

reflection of the i n i t i  a1 ly  downwards moving wave. The absolute 

maximum of the Resistance Delia curve i n  Figure (2.12) is the 

result of t h i s  superposition. 

5. Proposed Prediction Scheme for  Computing Soi 1 Resistance 

The considerations on stress waves due t o  resistance forces 

indicated tha t  from the early portion of the Measured Delta curve 

concl usions could be drawn on the locati on and magni tude of 

resistance forces and that  from the variation of th i s  Delta curve a 

cr i ter ion could be derived for  separating dynamic from shear 

resistance forces. 

The first s tep to be undertaken i n  devising an automated 

routine f o r  prediction of these reactson forces is t o  compute the 

Measured Delta curve which is possible i n  closed form by using 

Equation (A3.18). From t h i s  an estjmate of the total  maximum 

dynamic and total  shear resistance force may be calculated using the 

Phase 111 scheme o f  predicting the s t a t i c  bearing capacity which 



also gives an estimate on the maximum damping forces. This prediction 

scheme will  be disc~lssed both i n  Section 6 and i n  Appendix 0. 

Next, an assumption has to  be made about the distribution of 

these dynamic resistance forces. Since i t  is not possible to  obtain 

c r i  t e r i  a whi ch would indicate 1 ocati ons of dynamic forces several 

djstributions w i l l  be attempted and then a f inal  selection taken. 

In a f i r s t  t r i a l  t h e  total. dynamic resistance is .assumed to ac t  

only a t  the bottom end of the pile. I t s  influence on the top force 

can be thought of being proportional to  the top vel oci ty w i  t h  a 

tine delay of 2L/c as  it is demonstrated i n  Fl'gure (2.11). T h i s  

gives a means of reducing the Measured Delta curve by the dynamic 

ef fec t  so tha t  a Reduced Delta curve ref lects  the effects of shear 

resistance forces only, For ease i n  predicting t h e  shear resistance 

forces t h i s  Reduced Delta curve can be reduced further to  cancel 

out the effects b f  the ref1 ection waves arriving from the bottom, 

f n  t h i s  case a Resislance Delta curve for  one half of the total  

shear resistance force placed a t  the p i l e  t i p  is subtracted, 

The reason f ~ r  th is  is tha t  such a Resistance Delta curve which i s  

subtracted approximates the top force effects  of a l l  bottom end ' 

reflected waves due to  shear resistance forces including the imnediate 

reflection effect  of the toe shear resistance. I t  includes, 

therefore, the quake effect .  I t  i s  nm assumed tha t  the Resistance 

Delta curves for  the various resistance forces to  be determined are 

zero u n t i l  2xi/c a f te r  impact and equal t o  the ultimate shear 

resistances, thereafter, if they are acting a t  a distance xi below 

the top. Then requiring that the sum of t h e  individual Resistance 



Delta curves is equal to  the !?educed Delta curve leads to the 

magnitude of the u1 timate shear resistances a t  a l l  locations xi by 

successively solving starting w i t h  the upmost resistance forces. 

Thus, the bottom shear resistance w i l l  be determined from the 

Reduced Delta curve a t  2L/c af ter  impact. If the predictions and 

the soil model accurately reflect the real physical behavior then 

after  the shear resistance forces had been computed from the 

record dr iv ing  2L/c after impact then the second time period 

2L/c - < t - c 4L/c ( t  = 0 a t  impact) should also be matched. For 

further details see Appendix A3, Section 5. 

In order t o  complete the prediction the damping coefficient 

for the bottom damper has t o  be computed. Since the  maximum pile 

t i p  veloci ty can be approximately predi cted using both Measured 

Delta curve and measured top velocity, as shown i n  Appendix A3, 

Equation (A3.58) the damping coefficient can be calculated by 

d i  viaing t i e  maximum 'total dynamic resistance by the maximum pile 

t i p  velocity . Only wave  consideration^ have' been used for predi cf - 
i n g  the com 

assumptions , however, were used since the effects of resistance 

forces on pi!e,displacements and velocities can i n i  ti a1 ly only be 

estimated. Thus, a check and refinement on the predicted forces has 

to  be made. Placing the predicted slrear resistance forces and 

the bottom damper as determined above a t  corresponding elements of a 

lumped mass pile model and performing an analysis w i  11 yield a 

new predicted top force and the velocities and displacements 
t '  

along the pile. Subtracting the new predicted top force 



from the measured one gives a new difference curve which can again 

be thought of being a Delta curve. Errors i n  the prediction of 

soil resistance forces causing this new Delta curve - which will 

be referred to as an Error De1 ta curve - can arise i n  part from 

inaccurately estimating the pile t i p  velocity so that damping 

coefficient times maximum velocity w i l l  not amount to the maximum 

damping force necessary. Other errors may be introduced due to the 

neglected portions of the shear resistance Delta curves before the 

u'i:imate shear resistance is reached. This error w i l l  be larger for 

longer rise times a t  impact, i .e. the longer i t  takes for the 

displacements to reach the quake. If this time i s  longer than twice 

the time i n  which two consecutive elements reach the quake then 

the effect of the increasing resistance force on the next lower 

element w i l l  add to the prsd$cted top force. These errors w i l l  

cause a deviation of the predicted from measured force over the 

f i r s t  2L/c after impact. Deviations i n '  the later  portion of the re- 

cord w i  11 be corrected after the f i w t 2L/c: match sufficiently we1 1. 

Improvements on the new prediction can be obtained f i r s t  by 

computing a new damping coefficient using the pile t i p  velocity 

detemined by the lumped mass analysis and then by computing 

correcti ons on the previ ously predi cted shear resistance forces by 

using the Error Delta curve as a Measured Delta curve. By repeating 

t h i s  process i t  i s  usually possible to obtain finally an Error 

Delta curve which 5s small over the f i r s t  2L/c of the record-after 

impact. (see also Appendix A3 f i r  a computation example). A 

criterion on the quality ~f the match can be established by 



integrating the Error De1 t a  curve over certain intervals , say from 

0 to 2L/c and from 2L/c to  4L/c, and dividing the integrals by the 

time intervals used. I t  was found that the requirement of making 

an average value small is sufficient for obtaining a good match. 

The only time that rapid changes i n  the predicted top force can 

occur i s  a t  2L/c after impact. A t  t h i s  time reflection waves from 

hammer applied velocity and resistances forces reach the top. Other- 

wise Resistance Delta curves show a smooth behavior. Special 

consideration i s  given to  their match a t  2L/c (see' Appendix A3). 

Once the absolute value of the average error of the4-first 2L/c 

does not  anymore improve or once i t  i s  small enough tne attention 

has to  be directed to the la ter  portion o f  the record (2L/c to 

4L/c). In this portion a difference between measured and predicted 

force can arise due to a wrong prediction of total dynamic 

resistance forces. Comparing the :.Resistance Delta curve obtained 

for a damper a t  the pile t i p  as i n  Figure (2.11) w i t h  that for a 

shear resistance force, Figure ( 2 .8 ) ,  i t  is found that the shear 

damper. Thus, i f  the Error Delta curve i s  natched over the f i r s t  

2L/c but  becomes positive af ter  2L/c, i.e. the predicted top force 

is smaller than the measured, then the shear resistance force a t  the 

t i p  has t o  be increased 2nd the dynamic resistance has to be decreased. 

O f  course, for a negative Error Delta curve after 2L/c the opposite 

has to be done, namely shear resistance has to be replaced by damping. 

The match over the la ter  portitin, therefore, i s  dependent on the 

di  s t i ngu l sh i  ng features between dynamic and shear resistance 



behavi or. 

Once a best match is obtained fo r  a model w i t h  one damper 

a t  the p i le  t i p  two other approaches are used for  d i s t r i b u t i n g  

the dynamic resistance forces. In these two predi c t i  ons damping 

. is first distributed along the pile s k i n  so  tha t  the f i r s t  portion 

of the record (2Lfc a f t e r  impact) i s  matched by the effects of the 

dynamic forces only, o r  if  the damping forces are too small, a 

uniform damping distribution is used together w i t h  shear resistance. 

In a t h i r d  t r i a l  one damper is placed a t  the location where the 

maximum s k i n  shear resistance force was determined i n  tne f i r s t  

distribution method. Another damper - if the total  dynamic 

resistance force is  larger than the replaced skin shear resistance 

force. - is  again placed a t  the pi le  t ip .  In both cases of damping 

d i s t r i b u t i  on the damping coefficients are determined from the re- 

quirement tha t  the sum of the Resistance Delta curves for  a l l  

dampers equals a t  2Lfc af ter  impact twice the value of total 

damping comput~d from the Phase I11 method a t  this  time. 

Since the maxima cf the velocities along the p i l e  during the 

first L/c a f t e r  Impact, i .e. before the Impact wave is reflected 

a t  the bottoq are dependent on the magnitude of resistance forces 

and not on the kind of resistance forces' acting (as long as no 

reflection waves are  superimposed i t  is possible t o  obtain an 

estimate on the maximum velocsties from Measured Delta curve and 

measured velocity) the velocities obtained from the best match i n  

the f i r s t  method can be used for computing the damping coefficients 



f o r  the dampers distributed according to the two t r i a l  distributions. 

Obtaining a match for  these distributions m u s t  be done under 

consideration of the variation of the ~esi$tance Delta curves for  

dampers along the s k i n .  Thus, i t  is  best for ease i n  computation 

t o  s e t  up a influence matrix which contains nurnbers reflecting 

the top force effects a t  a time j of a damper a t  some location i .  

A similar matrix can be set up f o r  the,influence of shear resistance 

forces. These two matrices which zctual ly contain the information 

which Resistance Delta curves provide only for  a d is t inc t  numbers 

of points are discussed i n  Appendix A3. 

Once a final  Error Delta curve has been obtained fo r  a11 three 

damping distributions a final  resu l t  for  estimating shear resistances 

and damping can be obtained by using a linear combination of a1 1 

three results. A m i n i m u m  of t h e  f inal  Error Delta curve can be 

obtained by performing a l eas t  square analysis on the previously 

obtained smallest Errbr Delta curves, for  the three types of 

damping distribution. 

Again, as i n  a11 for 

the soil-  resistance parameters can be allowed as an outcome of t h e  

l eas t  square analysis. Thus, the minimum Error Delta curve might not 

be permissible and a recalculation needs t o  be performed i n  order to  

make negative values a t  l eas t  zero. Details on the computations 

and a computation example are given i n  Appendix A3. 

6. Deri vati on of Sinpl i f ied i*iodsls ,?or Predicting Stat i  c Bearing 
Capacity 



In t h i s  section a short discussion w i l l  be given about existing 

and newly developed schemes for  total  s t a t i c  bearing capacity. 

In Appendix D more detail i s  presented. The need for  a reliable 

prediction of s t a t i c  bearing capacity was the reason for  taking 

measurements of force and acceleration on top of the p i le  as 

outlined i n  Chapter I. I t  was hoped t h a t  a simple force balance 

a t  the time when the top velocity reaches zero would give a good 

correlation t o  the s t a t i c  load t e s t  result obtained imedi ately 

before or  a f te r  s t r i k i n g  the pile. Such a prediction method has 

advantages if d speciai purpose computer should be employed for 

displaying the resul t  during the driving operation. Experience 

with t h i s  Phase I prediction (the predicted s t a t i c  capacity was cal- 

culated from force p lus  total  pi  l e  mass times deceleration 

a t  the time of zero velocity) showed tha t  more consistent results 

were obtained by using a deceleration value which was averaged 

over some time. I t  was found tha t  t h i s  new prediction scheme 

which is referred t o  as the Phase I I  model gave good results for  

f u l l  scale  piles driven i n  well drained so i l s .  The predictions 

were not reliable,  however, fo r  short piles and pil%s driven i n  

highly cohesive so i l s .  One major task i n  studying pi le  

phenomena was to  f i n d  out about justif ications and limitations 

of these simple prediction schemes. 

Fbr doing so the veloci ty of the pi l e  top is expressed as a 

function of both s t a t i c  resistance forces and measured top force. 

Then computing a velocity difference yields an equation from which 

the to ta l  shear resistance along the pi le  can be calculated. T h i s  



equation proves that the Phase 11 model was a sound approach for 

computing s ta t ic  bearing capacity. Since only few changes i n  the 

Phase 11 model are necessary the new computation scheme which can 

replace Phase I1 also w i t h  respect to simplicity is called Phase 

If -A.  The Phase 11-A model also works for short piles since it 

now accounts for the effects of pile elasticity. Cohesive soils 

still  can lead to generally h igh  predictions since some of the 

dynamic forces qre s t i l l  acting a t  and after the time of top 

zero vel oci ty  . 
In order to  obtain an estimate o f  dynamic resistance forces 

encountered during the hammer blow tne idea of a Delta function 

was used. The disadvantage of this method - which separates 

damping from shear by considering the part of the Delta function 

when the impact wave returns - i s  the complexity of computations 

involved. Therefore, a special purpose computer needs to have 

storage capacity. In' cohesive soils the results from t h i s  method 

might  still be h igh  as i n  the other methods bu t  the magnitude of 

ampi ng forces usually i ndi cates the re1 i abi l i ty of 

t h e  s ta t ic  capacity computed. Thus, more information is obtained 

than from the other models. Appendix D describes derivations 

and formulations of a l l  of these methods. 



CHAPTER 111 

Results and Correlation 

Experhental data were obtained from both Full scale and 

reduced scale piles. For each of these two pi le  types 24 complete 

sets of data were available fo r  analysis. A descri p t i  on of the 

tested piles i s  given i n  Table (3.1) and (3.2). 

Several results can be' obtained from a single data s e t  when 

applying the methods discussed i n  Chapter 11. These results can 

be summarized as follows: 

(i  ) Pile top force during driving as a function of time. 

(i i ) Stati c bearing capaci ty  . 
(i ii ) Shear resistance distribution along the pile. 

(i v) Force i n  p i  1 e and vel oci ty a t  the pi 1e t i p  dur ing driving . 
In addition, the predicted shear resistance forces can be used fo r  a 

s t a t i c  load-di splacement analysis as discussed i n  Appendi x A2. Such 

an analysis produces a pi le  top force versus displacement relation 

w h i c h  can be compared w i t h  the same curve from the actual f i e ld  load 
-c. tes t .  ~ n u s ,  a further ,.x.esu7t i s  

(v) Pile top force during s t a t i c  load t e s t  as a function of 

pi le penetration. 

Load versus deflection curves obtained i n  a s t a t i c  load t e s t  often 

shw high strength gains w i t h  large s t a t i c  pi le  top deflections 

which are not reached under a hammer blow, Thus, the prediction 

of s t a t i c  bearing capacity mus t  be the dynamic displacements of the 

pt le  under the blow. A question arises,  therefore, as t o  what the 



"expected" bearing capacity w i l l  be under a blow. Using an example, 

t h i s  question is discussed i n  Section I .  

In Section 2 t h e  r e s u l t s  (i),  ( i i) ,  ( i i i )  and (v) a11 a s  

obtained from wave analys is  are presented and i l l u s t r a t e d  w i t h  

Figures . 
Section 3 is  devoted t o  t h e  discussion o f  predictions of s t a t i c  

bearing capacity from simpl'ified models. The corre la t fsn  scheme 

developed i n  Section 1 using p i l e  e l a s t i c  considerations i s  applied. 

Finally, i n  Section 4 measured and analyt ica l ly  predicted p i l e  forces 

and veloci t ies  a r e  compared. 

I , Proposed Scheme f o r  Correlating Predicted GIith Measured Pile 
Bearing Capacity 

The considerations i n  this section are  undertaken using data  

set No. 3 as an example. The description of the corresponding pile 

is given i n  Table (3.1). T h i s  da ta  set was applied t o  wave analysis  

and botn damping and $hear res is tance  forces were predicted. The 

predicted shear  res is tance  forces were then used f o r  a s t a t i c  analysis  

a s  described i n  Appendix A2. The load versus- 

curve resul t ing  from t h i s  analysis  and t h e  corresponding curve 

measured i n  the  f i e l d  s t a t i c  load test a r e  both p lo t ted  on t h e  left  

hand s ide  of Figure (3.3). Both L.P. curves shw s imi l z r  behavior 

up t o  a point  where' t he  predicted curve suddenly l eve l s  o f f .  T h i s  

is the point where t h e  theore t ica l  load curve reaches the  predicted 

u l  ti mate bearing capaci t y  , The measured L.P . curve, however, shows 

fu r t he r  increase without an indication t h a t  an ultimate bearing 



capacity can be reached. If i t  is assumed t h a t  the sot 1 resistance 

forces are only dependent on the pile displacements, i .e. increases 

of resistance forces w i t h  t ine are neglected, then the questi bn. 

arises as t o  what bearing capacity must  be compared w i t h  the 

predicted value. T h i s  question is  now studied i n  some detai I .  

In a s t a t i c  1 oad t e s t  a load is  applied on top of the pile. 

This load compresses first the pile and then the soi 1. The e l a s t j  c 

deformations of the pi le  are considerable f o r  a11 the piles 

considered i n  t h i s  study. (The pi le  531-76 for  example compresses . 
0.57 inch under a uniform load of 100 kip. )  Because o f  t h i s  p i le  

e l a s t i c  deformation the pi le  t i p  moves a t  a much smaller rate than 

the p i l e  top. In general, the pi le  t i p  w i l l  be the l a s t  point 

at ong the pi i e  t o  reach the quake penetration. If the s t a t i c  soi 1 

resistance law o f  Figure (2.2) were valid then the ultimate capacity 

were reached a t  tha t  pi le  top penetration which produces a pi le  t i p  
.-- - 

penetration equal t o  its quake. B u t  t h i s  is the case only i n  theory. 

In rea l i ty ,  the soi 1 resistance forces increase even af ter  the quake 

penetration is  exceeded now only a t  a smaller rate. Since the pi le  

penetrations during driving are usually small the assumed el  as to- 

p l  as t i  c re1 a t i  onshi p es tab1 ishes a good approxi mat? on for  the dynami c 

case. It can be expected, however, tha t  w i t h  higher dynamic penetra- 

tions a h ighe r  shear resistance is reached. Consequently, the dynamic 

displacemnts of the pi l e  have to  be considered i n  more detail.  In 

Figure (3.4) the displacemnts a t  the top, the middle and the t i p  of  

the p i le  have been plotted as obtained from the wave analysis. The 



pile  top reaches a maximum deflection of 0..77 inches while the pile . . .  

t i p  only penetrates t o  a maximum of 0.29 inches into the soi l .  The 

expected bearing capacity resist ipg the motion of the pi le ,  

therefore, corresponds t o  pi l e  deflections of 0.77 inches a t  the 

top and 0.29 inches a t  the t i p ,  I n  general, the s t a t i c  load t e s t  

w i  1 1 not reach these two penetration values si mu1 taneously . Thus, 
an exact correlation between dynamic prediction and s t a t i c  load 

test is not possible, 

In  order t o  f i n d  a sensible way of comparing the s t a t i c  load 

t e s t  resul t  with the dynamic prediction assumptions have to  be 

made. The f 01 1 owing corm1 ation scheme is proposed: 

Find the maximum dynamic deflection of the pi le  

top under the hammer blow and obtain the cor- 

responding load value from the L.P. curve of 

the f i e ld  s t a t i c  load tes t .  Call t h i s  load 

the "bearing. capaci ty  a t  maximum dynamic 

deflection, RdM. 

An explanation why i t  is reasonable to  correlate the dynamically 

d cap 

is given now. 

The maximum dynamic deflection, max dA, i s  reached when the 

pile top velocity, vA(t), reaches zero. Neglecting the influence 

of dynamic resistance forces allows to  assume tha t  

where FA($,,) is the hamr applied force a t  the-time o f  maximum 



velocity. Equation (3.1) is usually sa t i s f ied  i n  practice for the 

following reascns. I f  FA(tm) were less than Ro/2 then no permament 

s e t  could be obtained. under the hammer blow sfnce the waves due t o  

the resistance forces would be larger than applied waves. Thus, a 

negative vet ocity would be obtained a t  some point along the pile 

before the quake deflection were reached. If FA( tm)  were greater 

than Ro t h e n  the zero velocity would be reached only af te r  ~ ~ ( t )  

has decreased sufficiently. In such cases the maximum dynamic 

deflection becomes so large that  i t  is comparable t o  large deflections 

j n  the load t e s t  where the load increases only a t  a small rate. The 

proposed correlation scheme w i l l ,  therefore, work even better fo r  

such exceptional cases. 

However, if as i n  the usual case, then the inequalities (3.1) 

w i l l  hold. Consequently, the waves generated by Ro (which may be 

distributed along the pi 1e) w f  11 have parti cles velocities greater 

than max v, = (c/EA)F&(~,,,) so  that  zero velocity i s  reached a t  the . . 
pi le  top as soon as the resistance waves reach tfrs top i n  f u l l  

magnitude. T h i s  i s  usually not  much l a t e r  than a t i m e  2L/c a f t e r  

tm. Under these ci rcunstances an approximate valoe can be calculated 

for tne maximum displacement a t  the top of. the p i  1e , namely 

max dA = 1/2(2L/c)max vA + ql (3.2) 

where i t  is assumed that  the applied velocity decreases linearly 

a f t e r  maximum velocity and that  the quake ql was reached a t  the 

time of maximum velocity. The inequality (3.2) can be expressed 

i n  terms of the applied force FA(t) by virtue of the proportionality 



relation between stresses and velocities i n  a wave, hence 

max dA (L/c)(c/EA)FA(t,) + q l  (3.3) 

Now us ing  the inequality (3.1) max dA can be se t  between bounds 

Generallx i n  s t a t i c  pile loading the force distribution i n  the pile 
1 is such that t h e  e las t ic  pile deflection i s  between q LR,/EA 

(uniform resistance distribution) and LR,/EA (pile t i p  resistance 

only). Adding ql to  the elastic deflection gives the top dis- 

placement necessary to just reach the quake a t  the pile t i p .  

The bounds given i n  t h e  inequalities (3.4) are relatively 

wide. However, since i n  most cases the L.P. curve is already f l a t  

a t  max dA the error introduced i n  the correlation w i l l  not be 

seri ous . 
In the present example Equation (3.4) yields 

.57 - < max dA - < lg02 (inch) 

Using these limits and obtaining the corresponding pile capacity from 

132 Rd - < 170 (k ip)  

Using the maximum deflection during dr iv ing  (dA = -77) gives 

Rd = 154 (kip) 

The best correlation between the dynamic value and, the stat ic load 

tes t  would be to .use the elastic deformation computed from 

the predi cted distribution and t o  add the pile t i p  quake. The 

resulting deflection which i s  marked by an arrow i n  Figure (3.3) 



would yield 

Rd = 150 (kip) 

2. Results From Wave Analysis 

In th i s  section the results from applying wave analysis t o  

a71 data se t s  l i s ted  i n  Table (3.1) are  discussed and s t a t i c  

predictions compared w i t h  results of the s t a t i c  load t e s t .  

Exceptions were data se t s  No. 1, 2 and 4. The wave analysis could 

not be applied t o  these data since the r i se  t i m e  of force and velo- 

city was longer than 2L/c so that  reflections waves returned from 

the ~ i l e  bottom before the maximum velocity was reached a t  the p i l e  

top. Ar! example record i s  shown in Figure (3.1). The reason for  

such records is probably a too early combustion i n  t h e  hammer which 

cushioned the blow excessively. 

For p i l e  531-76 (data s e t  No. 3) the same hammer was used, 

however, a single record was obtained having the usual impact 

properties. Figure (3.2) is a plot of the top forces both predicted 

by wave analysis and measured. Also the velocity meesured a t  the 

pi le  top (used as i n p u t  f o r  the analysis) is  plotted a f t e r  being 

multiplied by EA/c. A l l  three curves differ. i n  the beginning of the 

record where the proporti onal i ty between force and ve1 oci ty should 

hold. This difference i s  due to  a relatively slow response of the 

s t ra in  signal conditioning equipment; this amounts t o  the lag 

between the two measured .curves. Then also a phase s h i f t  between 

input velocity end output force arises from approximating the 

continuous p i l e  by t e n  f i n i t e  elements. These differences, however, 



do not present a serious problem since only the portion of the 

record a f t e r  maximum velocity i s  studied where phase shifts have 

small effects  (the curves change a t  a smaller ra te  than a t  impact). 

Phase s h i f t s  of t h i s  kind can be observed also i n  the records dis-  

cussed oelow. I n  some cases where the force transducer was mounted 

a t  a considerable distance above t h e  accelerometers .:the force record 

might show an e a r l i e r  rise than the velocity. The effects w i l l  be 

neglected. 

Another remark concerning p i  l e  531-76 seems appropriate. T h i s  

pile was tapered, i .e. its cross sectional area was decreasing over 

one t h i r d  of its length. In the present analysis effects of a variable 

cross section cannot be cazsldcred and pi 1e No: 3 was the only pile 

analyzed w i t h  this property. I t  was assumed tha t  the effects of 

variable s t i f fness  are small i n  t h i s  case since only a short portion 

of the p i le  was affected. In  Figure (3.3) resul ts  from wave analysis 

and s t a t i c  1 oad t e s t  are graphically summarized. As discussed already 

i n  Section 1 the graph a t  the l e f t  hand side represents the two 

dicted. The dotted l ine indi cat  

the maximum dynani c deflection. Rd i s  found where tne dotted l ine 

intersects w i t h  the measured L.P. curve. 

On the r i g h t  hand side of Figure (3.3) the distribution of 

predicted shear and predicted maximum damping forces is represented 

i n  form of a plot of t h e  forces i n  t h e  p i l e .  In case of the shear 

resistance forces these are the predi ctea forces i n  the pi le  when 

R, is applied a t  the pile top. (Ro is the ultimate bearing 



capacity predicted) . The meaning of the dyn3mi c force distribution 

is related t o  the s t a t i c  curve. For plotting this curve the maxima 

of the damping forces from each element are used. I t  is  assumed 

t h a t  these forces occur a t  the same time and act s ta t ical ly  along 

t h e  pile,  balanced by a pi 1e top force which is equal to  the i r  sum. 

Thus, a curve similar t o  that  f o r  shear resistance forces is 

obtained. The sum of a l l  maxima of dynamic resistance forces f s 

called max 0. T h i s  value is l i s t ed  i n  Table (3.3) together w i t h  

other important analysis resul ts  t o  give an indication of the 

re1 ati  ve magk tude of damping forces as compared t o  shear. 

The shear resistance forces predicted f o r  p i le  No. 531-76 

are acting a t  the lower pile half distributed rather u n i f o n l ~ .  

Since th i s  p i l e  was an actual construction p i le  no force measurements 

were obtained from locations below grade. However, theblow count 

(number o f  blows per u n i t  p i le  length penetration) gradually 

increased w i t h  depth. Dynamic resistance forces predicted were 

small and acting concentrated a t  the pile t i p .  Agreement between 

predicted bearinp capacity Ro and measured capacity Rd was good. 

lhis corre'iation f s df scussed i n  more detail i n  Section 3. 

Figure (3.5) presents the measured and predicted pile top 

force and the measured velocity of data s e t  No. 5. This data 

s e t  was obtained on a special t e s t  pile (13) . The pi le  was only 

33 f e e t  long and equipped w i t h  s t ra in gages a t  both pile top and 

bottom. ?)IF! hammer force was larger a t  impact than  the pile 

resfstance, thus, i t  is not surprising that zero velocity was not 



reached wi th in  4L/c. fjecause of the short length of the pi le  

(one m i  1 11 second corresponds to  approximately 1/2c) the rise time 

is re1 atively long and the accuracy of predicting the resistance 

force locations is, therefore, affected. The match between the 

predicted and measured p i l e  t o  force is poor a t  time 2L/c af te r  

maximum velocity and l ater. Because of the relatively constant 

behavior of the top velocity i t  cannot be expected tha t  dynamic 

resistance force decrease imnedi ately a f t e r  t h e i  r maximum, Both 

shear and dynamic resistance forces, therefore, show a similar 

behavior and do not provide the necessary force time relation t o  

separate them out and improve the match. 

I n  Figure (3.6) the predictions f rom wave analysis are compared 

w i t h  the s t a t i c  load test. Agkement is good between Ro and Rd 

(see dotted l ine i n  L.P. curve). A deficiency of the predictions 

can be found i n  the distribution of shear resistance forces. 

Apparentl* the wave ~ t h o d  fai led to  predict the proper p i le  t i p  

resistance force. However, a s h i f t  of the predictions over one 

analysis element is equivalent t o  a time s h i f t  of on1 

seconds (the time necessary fo r  the wave t o  travel a tenth of the 

p i le  length). The accuracy of both the measurements and the method 

seems not t o  be sufficient to  distinguish forces acting a t  sucn small 

distances. An explanation is given now. 

A re1 atively arbitrary criterion fo r  choosing the quake was 

adopted. I t  is described i n  Chapter 11 and i n  Appendix A3. 

The quake of a point along the pile Mas assumed t o  be equal to  the 



d i  spl acemen t a t  gaxi mum ve1 oci ty  . Thi s as sumpti on a1 1 owed t o  compute 

the shear resistances So from the Measured Delta curve a t  time 
i 

t,,, + 2xi/c. Suppose, another quake, say a larger one would be 

assumed. Then the SOsi would have t o  be obtained from ~ ( t )  a t  

another time. Since the total  amount of shear resistance acting on 

the p i l e  is independent of the quake magnitude such another qi i~ka 

would, therefore, merely s h i f t  the force predictions t o  some other 

point of the pile. I t  can be understood now that  such a s h i f t  i n  the 

force prediction occured a t  the pi le  under discussion. T h i s  p i  1e 

had a relati;ely slow r i se  time, thus ,  the shear resistance f o r  some 

element was already large before the quake was reached. The force 

actually acting a t  the pi le  t i p  could, therefore, not be distinguished 

from t h e  force acting a t  the element above. 

I n  Figure (3.7) and (3.8) results are presented from data s e t  No* 

6 .  ~ 0 t h  data s e t  No. 6 and No. 5 were obtained a t  the Same ~ i l e  

but at  different  times'. Although a strength gain was observed 

a f t e r  $he waiting period t h e  hamner applied forces were s t i  17 1a.rger 

than the resistance force so  that  i n  both cases essentially the 

same match was found. 

ksul ts from data s e t  No. 7 are  presented i n  Figures (3.9) and 

(3.10). The p i le  [F-50) was the above discussed 33 fee t  long p i l e  

extended by a p i le  section of 18.5 feet .  Strain records were taken 

a t  three locations along the p i le  during the s t a t i c  load t e s t s ,  

The match of the measured w i t h  . analyti cal ly predi cted p i  1e top force 

shows differences a short time af te r  maximu: velocity. These d i f -  



fesences must  be due t o  measuring inaccuracies (the velocity 

mu1 t ip l ied  by EA/c i s  greater than the fake which, if  true,  means 

that  negative resistance forces act  near the top of the pile).  

Also, i n  the l a t e r  part of the record differences i n  the match can 

be otserved which must  be due to  an inadequate soi l  model* 

The shear resjstance distribution shows more p i l e  t i p  resistance 

i n  the prediction than i n  the measurements. However, t h e  fac t  tha t  

the p i l e  had basically point bearing properties is brought out i n  

both measurement and prediction. 

The resul ts  shown i n  Figure (3.11) and (3.12) fo r  data set 

No. 8 are again similar t o  those f o r  s e t  No. 7. The t e s t  p i l e  was 

the same b u t  the time of t e s e n g  was different. T h i s  time the 

prediction Ro = 230 k i p  was too high as compared t o  Rd = 200 kip .  

Probably, damping forces were predicted too small . 
The same t e s t  pi le ,  F-50, was extended by a nine foot p i l e  

section to  give a t o t d  p i l e  length of 60.5 feet  (F-60). Records 

were taken again before and af te r  a waiting period. The analysis 

su1 ts for  one blow of each data set are shown i n  Figu 

t o  (3.16). The match fo r  data set No. 9 is poor f o r  a short  time 

af te r  the maximum velocity. Again, as i n  the case of Figure (3.9) 

t h i s  must be due t o  masuri,ng inaccuracies since the proportional 

velocity is greater than the force, 

Data s e t  No. 11 was obtained on an actual construction pile. 

Measurements were taken only a t  the pile top. The match shown i n  

Flgure (3.17) i s  f a i r  u n t i l  timEi 3L/c af ter  maximum velocity. 



After this  time the analytically predicted pile t o p  force decreases. 

I t  was found that the match could not be improved by replacing 

damping forces w i t h  shear resistance since unloading occured. In 

studying Resistance Delta curves (Chapter 11) i t  was found .that the 

behavior of both damping and shear forces i s  simj 1 ar after  the 

velocity has become zero. Therefore, the match cannot be inproved 

after  this time (see also Appendix A3, Section 6 ) ;  

The prediction of s ta t ic  bearing capacity, Ro, is higher than 

Rd (~ igu re  3.18). Comparing both L.P. curves, the predicted and 

the measured, throughout the examples given, i t  is observed that the 

predicted curve shows usually a steeper slope. Two reasons can be 

responsible for this deficiency. First the static'quake is larger 

than the dynamically predicted' and second the soi 1 creeps under the 

applied load during the relatively long lasting load test.  

Certainly, the second reason w i l l  always yield an effect. Thus, 

ma% dA is smaller than necessary for  an accurate correlation and, 

consequently, Rd i s  smaller than the ultimate strength to  be 

predi cted. 

Special problems were encountered i n  matching the measured pile 

top force for data se t  No. 12. She pile was an actual construction 

pile driven into s t i f f  s i l t  and clay. The p i l e  was tested after a 

waiting period after  dr iv ing .  The special feature of the record 

shown i n  Figure (3.19) is a continuous increase of the pile top 

force. Also unusual i s  the behavior of the pile top velocity. After 

the f i r s t  local maximum this velocity decreases only slightly and 



reaches, thereafter, a second maximum which is higher than the f i r s t  

one. Thls phenomenon was observed for  a l i  blows i n  this  data s e t  

but  for  no other pile. Reasons f o r  such a record can be so f t  cushion 

properties or hammer self  cushioning by early ignition. I n  addition, 

a very high precompression force of 66 k i p  had t o  be subtracted. 

Even a f t e r  subtracting t h i s  force from the record the rise time was 

relatively long, The l a t e  occurance of the first local maximum 

velocity produces slowly increasing resistance forces which , 
therefore, have already relatively large effects  before the quake 

is reached. The automated prediction routine, however, requi res 

a short impact and, therefore, failed t o  produce a good match. 

(See also discussion of data s e t  No. 5). Figure (3.20) shows the 

predicted pi le  top force f r o m  the automated routine. A large 

difference (35 kips) can be observed between measured and predicted 
' 8 top force a t  time t,, (tm / 2+/c) a1 though no resistance force 

was assigned fo r  the e i g t h  element. However, shear resistance 

forces of 65 and 73 (kips) were predicted for the n i n t h  and tenth 

top force effect  a t  e a r l i e r  times than expected due t o  the slow 

r i se  time a t  impact) . To correct the maich 35 k f  ps rest  sterrce were 

subtracted from the predicted force f o r  the n i n t h  element and a 

lunped mass analysis performed. The pi le  top force obtained from t h i s  

analysis was now smaller than measured a t  t8. T h i s  is reasonable 

since bottom reflected waves effect t h e  p i le  top force already a t  

tl'm~t t8. Adding now 10 kips t o  t h e  resistance of the eight element 



(now 40 kips) produced the match shown i n  Figure (3.19). Thus, 

the prediction of bearing capacity was 25 kips lower when obtained 

"by inspection" rather than from the automated routine. A short- 

coming of the satch i n  Figure (3.19) i s  the very low predicted 

pile top force for  t > t, + 2L/c. The solution obtained by the 

computer program shows differences of equal magnitude before and 

a f t e r  tm + 2L/c. Both predictions, however, show a similar steep 

decrease i n  the l a t e r  part of Ehe record because of an inadequate 

so i l  modeling for  unloading. The results corresponding t o  both 

matches are, given i n  Table (3.3). 

Results from data s e t  No. 13 are shown in  Figures (3.22) and 

(3.23). The pile was one of the special test pfles described i n  

Chapter I. The soi 1 was a si i ty clay. A low s t a t i c  capacity of 

69 kip was found i n  the load t e s t  imnediately af te r  driving. The 

. velocity was increasing a t  time 2L/c a f t e r  impact, indicating the 

1 ow driving ~ s i s t a n c e .  The precompression force subtracted frcx the 

force record was 26 kipsr a large force compared t o  the ultimate 

capacity. The measured and predicted p i l e  top force are both shown 

i n  Figure (3.22). T h i s  match was obtained by spplying more damping 

forces than resistance forces. Better agreement between the analytical 

and the measured force could not be obtained because of the relatively 

constant velocity. Thus, the soi 1 ride1 i s ,  again, not able t o  

describe the soi 1 behavior correctly. The predi c t i  ons, however, are 

good as shown i n  F i g u r e  (3.23) and sumnarized i n  )'able (3.3). 

A much better match was c5t:tir;ed fo r  the same pi le  tested af te r  



a waiting period. Figures (3.24) and (3.25) present the results 

for  t h i s  data set No. 14. Here, however, - the s t a t i c  capacity 

prediction was too high. From force measurements taken during the 

load t e s t  along the p i l e  it was found tha t  relatively large 

resistance forces were acting along the s k i n  of the pile.  T h i s  

f ac t  was clearly recognized by measurements and analysis. An 

interchange of s k i n  damping forces w i t h  s k i n  shear resistance forces 

would improve the prediction t o  some degree. 

Data s e t  No. 15 and 16 were obtained from the second special 

t e s t  p i l e  a t  the s a m  si te  as the p i l e  just discussed. The p i l e  

was longer, however, i ts  ultimate bearing capacity was smaller than 

f o r  t h e  shorter pi le .  Very similar observations as i n  No. 13 and 14 

can be made on t h e  results of both data sets. The predictions and 

measurements are plotted i n  Figures (3.26) t o  (3.29). 

Data s e t  No. 17 was from an actual construction p i l e  without 

special instrumentation. The soi l was gravel ly  sand. Predictions 

and measurements were i n  good agreement as shown i n  F i g u r e s  (3.30) 

Another constructi on pi l e  was tested bt;t t h i s  time drtven 

into clayey s i l t  (Data Set No. 18). The s t a t i c  resistance of the 

pi le  was small although the blow count indicated sufficiently high 

soi 1 resistance forces. The match between predicted and measured 

pi le  top force during driving was almost perfect. However, t h e  

prediction of bearing capacity was too high.  Thus, the damping 

forces determined for  obtaining the match were actually too low. 



F i g u r e s  (3.32) and (3.33) present the results. I t  should be 

mentioned tha t  t h i s  p i l e  gave the poorest prediction f o r  s t a t i c  

bearing capacity among a1 1 piles tested. 

Data set No. 19 was obtained a t  the same p i le  a f t e r  i t  was 

extended and driven t o  a depth of 74 feet. T k i s  t i m e  the maximum 

bearing capari ty determined i n  a load t e s t  a f t e r  a waiting period 

was 160 kips. Both Figures (3.34) and (3.35) show matches f o r  the 

p i l e  top force during driving. Both matches are of the same quality 

but different a t  time 2L/c af ter  impact and la ter .  The match i n  - 
Figure (3.34) which was obtained from the computer routine shows 

f a i r  agreement throughout the record. The p i l e  top force (shown 

i n  Figure (3.35)) predicted by subtracting 10 kips from the predicted 

toe shear force agrees very well w i t h  the measured top force up t o  

time 2L/c b u t  deviates largely thereafter. These results indicate 

the d i f f icu l t ies  in  obtaining a match satisfying the matcning 

c r i t e r i a  introduced i n  Appendix A3. Here, as well as i n  a l l  other 

cases where the match was only f a i r  these c r i t e r i a  were not sa t i s f ied  

and the i teration was stopped a f t e r  the eight cycle i n  each damping 

distribution tri a1 . The predi c t i  on from the second match agrees 

bet ter  w i t h  the load t e s t  resu l t  (see Table (3.3)). Figure (3.36) 

shows the s t a t i  c resul ts both predicted automati cal ly and measured. 

A great portion of shear resistance forces were predicted t o  act  

along the s k i n  of the pile. T h i s  result is not surprising f o r  a 

p i l e  driven into cohesive soil.. 

Another construction p i le  (data se t  No. 20) i n  coarse, grained 



so3 1 was tested. Figures . (3.37) and (3.38) srrmari ze the analysis 

results. The match of the dynamic forces .is, good and the prediction 

of s ta t ic  bearing capacity agrees well w i t h  the load test  result. 

The blow count was low u n t i l  the pile was driven t o  a ueptn of 

40 feet when driving suddenly became hard. Thfs  observation agrees 

well w i t h  the prediction that most of the resistance forces act a t  

the pile t ip.  - .. 
. - 
Figures No. (3.39) t o  (3.46) present the analysis results for 

the second tes t  p i l e  described i n  Chapter I. As l't was outlined the 

pile was driven and tested i n  two steps. First the pile was driven 

to a depth of 50 feet (Ri-50). This pile was embedded i n  s i l ty  and 

clayey soi l .  Later the pile was driven u n t i  1 a s t i f f  soi 1 layer was 

reached and dr iv ing  became very hard (Ri-60). The two data sets 

(No. 21 and 22) fo r  t h e  shorter pile gave resglts similar t o  the 

test piles To-53 and To-60 (Data sets No. 13 t h r ~ u g h  16). The 

difference was that the waiting period did not influence the so i l  

properties as much as i n  the case of the To - piles. Figures (3.39) 

tJ'WW he t i o n  between measurements and 

predictions. Again as i n  other cases of piles i n  cohesive soils 

relatively h igh  dynamic and s k i n  resistance forces were observed. 

A remark on the measured force curve in Figure (3.39) is appropriate. 

This force record did not show negative (i  .e. tensile) forces befop 

the precompression force was subtracted. Due t o  the small resistance 

forces, however, the top  force decreased t o  very small values a t  t i m e  

2L/c after impact. Thus, after subtracting the precompressi on force, 



- 

s~ = 26 k i p s ,  negative values appear i n  the force curve. 

The top force matches f o r  Ri-60 are not very good. A reason 

f o r  t h i s  can be found i n  the inadequate soil  model. Velocity and 

force measurements were taken a t  the t i p  of t h i s  p i le ,  examples of 

which w i l l  be presented i n  Appendix C, Predictions of shear force 

distribution and bearing capacity are good i n  t h i s  case even though 

the predicted top for-:z f s .rio~uood. A discussion of th i s  point is 

given i n  Chapter IV, The analysis correctly reflected the strength 

gain of shear forces along t h e  pile s k i n  during the waiting period. 

T h i s  can be seen by comparing the force distributions along the p i le  

in  Figures (3.44) and (3.46). 

Attempts were also made f o r  analyzing the reduced scale pi le  

data of Table (3.2). However, .simi l a r  t o  the data se t s  No. 1,2 and 

4 of Table (3.1) most of the reduced scale p i le  data had force ri se 

times longer than 2L/c. Figure (3.47) shows both the measured force 

and velocity (multiplied by EA/c) and a160 a predicted top force 

obtained by assuming soi l  parameters and checking on the resul t  by 

performing a lumped mass analysis. Then corrections were made 

and the process repeated. Data s e t  No. 12 was here used as an 

example. The maximum ve'loci ty occurs only a t  a time 3L/c. Thus, 

the wave analysis method is not applicable. 

I t  was t r ied  t o  obtain data for reduced scale piles such that  

the maximum velocity occurs a t  an ear l ie r  t i n # .  This was done by 

reducing the cusbfon between hammer and pi le  head and resulted i n  

the measured force record shown i n  Figure C3.48). Due t e  the veW 



short r i se  time the differences i n  the signal conditioning equipment 

produced now such 1 arge deviations of the necessary proportional i ty 

between pile top force and velocity tha t  a meaningful analysis cannot 

be performed. I n  Figure (3.48) also a predicted force curve is shown 

obtained from us ing  the s t a t i c  resistance of the pi le  as a pi le  t i p  

resistance force. No ef for t  was made, however, t o  improve the match. 

3. Prediction of Stat ic  Bearing Capacity 

I n  the previous section resul ts  from wave analysis have been 

presented by using only one blow as an example. Important results 

from each of these blows are 1 i sted i n  Table (3.3). However, more 

than only one blow was usually analyzed. In addition the simplified 

methods presented i n  Chapter I1 and i n  Appendix D were applied t o  a l l  

data se t s  fo r  predicting s t a t i  c bearing capacity . The predi ct'l' ons 

are l i s t e d  i n  Table (3.4) for  f u l l  scale piles and i n  Table (3.5) 

f o r  the reduced scale piles. (Reduced scale pi le  data were only 

used f o r  analysis by simplified methods). 

In  most cases a number of blows has been analyzed. Since the 

orrelation scheme - developed i n  Section 1 - requires comparing t h e  

measured bearing capaci ty  a t  the maximum dynamic di s p l  acement of 

the blow each individual prediction is t o  be compared w i t h  the proper 

load test value, Rd. However, i t  was observed that  the predictions 

for  different blows are usually quite uniform (except for the resul ts  

from Phase I). Furthermore, the maximum dynamic displacement usually 

changes only s l ight ly  from blaw t o  blow. I t  seems, therefore, 

justified, to  cornpark t h e  averages of the predictions. Ro, w i  t i 1  the 



Rd values used t o  correlate the analysis results i n  Section 2. 

The predictions listed i n  Table (3.4) and (3.5) clearly indicate 

the improvement of the results by applying any of the met5ods derived 

from wave considerations as compared to  the r i g i d  pile models (Phase 

I and 11). Best results were obtained using the wave analysis. 

For application i n  a field special purpose computer, the Phase IIA 

method seems as we1 1 suited as any of the earlier methods. A1 so 

the Phase 111 method can be applied if some storage capacity can 

be provided i n  such a computer. Thus, the two early methods are 

discarded i n  'further cons? derati ons . 
A brief s ta t is t ical  investigation of the Phase IIA and the 

Phase I11 simplified method together w i t h  the results from wave 

analysis is now presented. Only f u l l  scale pile results are 

considered. In studying the predictions obtained from wave analysis 

i t  was found that the differences between measured and predicted 

s ta t ic  bearing capaci t y  depend mainly on the magni tude cf dynamic 

resistance forces. Dynami c resistance forces , however, depend on 

the soil properties and not on s ta t i c  bearing capacity. For 

pi les w i t h  h i g h  damping errors i n  dynami c predi ct i  ons can, therefore, 

wsul t i n  re1 at i  vely 1 arge differences betxeen measured and predicted 

s t a t i c  bearing capacity. This is one reason to compare the absolute 

magni tude of predi ctions rather than present differences. In 

addi tian, a reasonable safety factor can be developed from such a 

s t u Q  taking into accc~unt the uncertainties i n  the predictions for 

plles w i t h  low capacity. 



Consider Figure ,.(3.49). I n  t h i s  di,agram the differences 

Ro - Rd were plotted for  the three methods under investigation. 

The differences were arranged i n  the same order as i n  Table (3.4), 

however, the results obtained from modifying the solution from the 

automated routine were omitted. Also, the results from data ' s e t  

No, 12 were .oii t ted because o f  the unusual records which needed 

special consideration. Thus, 20 se t s  of predictions remain for 

analysis. Figure (3.49) displays an interesting trend namely 

w i t h  a few exceptions the differences are ei ther  a1 1 high  or a1 1 

law. Thus, these differences must be e i the r  due to  assumptions 

inherent i n  a l l  three methods o r  due t o  a lack of information i n  the 

records. The largest  differences were found i n  the predictions f o r  

pi 1e W-56 (Data s e t  No. 18). T h i s  p i l e  was driven into a clayey 

silt. The match between predicted and measured pi le  top force 

dur ing  driving was very good (Figure (3.32)). Thus, the so i l  model 

adopted seems not t o  be suff ic ient  t o  describe the behavior of such 

a cohesive so i l .  However, t h i s  s o i l  model was the basis i n  deriving 

a1 1 three mthods . 
The variety of soi 1 conditions re 

f u l l  scale piles chosen i n  Figure (3.49) is a f a i r ly  representative 

s t a t i s t i c a l  sample. The computation is done the same way as suggested 

by Olson and Flaate (16) f o r  the treatment o f  results from enqrgy 

fomulae. Accordingly, the measured capacity, Rd, is thought of 

being a function of the predicted capacity, \. A best f i t  s t ra ight  



Rd = mRo + b (3.51 

3s then determined f o r  each s e t  of predictions by the l eas t  square 

method. The results are shown ir: Figures (3.50), (3.51), and (3.52) 

f o r  the Phase IIA, Phase I11 and the wave analysis, respecti vefy. 

As  a measure of t h e  precision i n  the predictions also the variances, 

am2 and ad2 of m and b are calculated. For i 11 ustrati on t h e  lines 

Rd = (m ' a m )R 0 + (b A q,) (3 06 

are plotted together w i t h  the best f i t  lines. Table (3.6) f inal ly  

1 ists a1 1 pacameters cal cul ated together w i t h  the correlation 

coefficient for  the three methods under investigation. Also t h e  

results of s t a t i s t i ca l  investigations on energy formulae results 

from 93 piles i n  sandy so i l s  given i n  (76) are shown f o r  comparison. 

The best predictions can be expected from the wave analysis 

method. B u t  even t h e  simplified methods, Phase IIA and Phase 111, 

yield a bet ter  correlation coefficient than any of the energy 

formulae. I t  should be observed tha t  from the 20 se t s  of data under 

investigation 9 were taken on pi les  i n  cohesive soi 1s while the 

data in  (16) were a l l  from pi les  i n  sandy soi ls .  

Coinpared t o  the two e a r l i e r  methods the predictions fo r  reduced 

scale piles l i s ted  i n  Table (3.5) were considerably improved only 

by the application of the Phase IIA method. The Phase 111 method 

did  not y ie ld  improvements because - w i t h  a few exceptions - no 

short  tfm impact was measured under the blow. Exceptions were 

data se ts  No. 21 through 24 in  Table (3.21 where the agreement 

between R, and Ru was much better.  I t  is not necessary fo r  



correlating t h e  reduced scale p i l e  predictions to  f i n d  the value 

of Rd since the p i l e  e l a s t i c i ty  of these piles is small and the slope 

of the measured L .P. curve was always small a t  ultimate. 

4. Forces and Velocities Along the Pile During Driving 

For the &o special test piles described i n  Chapter I dynarni c 

force records were obtained on various locations along the pile.  

Pile t i p  velocities were also obtained on piles Ri-50 and Ri-60. 

I n  t h i s  section exanples w i l l  be given as t o  how such measurements 

compare w i t h  the results from analysis. 

On the r i g h t  hand s i d e  of Figure (3.53) the discreti zed pi le  

is shown as applied in  the lumped mass analysis. Also, the locations 

where forces were recorded are indicated. On the l e f t  hand side 

of the same f i g u r e  t h e  forces are plotted that  were recorded a t  the 

three different locatigns below the top. For comparison the force is 

shown i n  the spring between element 5 and 6 and the force i n  the 

lowest spring. Since the t e s t  p i le  (Ri-50) was 50 feet  1 ong one 

element length is 5 feet .  However, the force i n  the p i l e  was 

one foot above t h e  pi le  toe. Thus, the f o r c e  predi cte 

by the analysis cannot be equal t o  thel measured pile t i p  force. I t  

can be seen that  the predicted curve (10) stqys between the measured 

curves (fIX] and (LV). 

The force measurement taken a t  a distance of 29 fee t  above the.  

toe plate (11) agrees well w i t h  the spring force between element 

5 and 6. The effects of the precompression force and a tjme lag 

due to  masuring inaccuracies give some devi a t i  ons . 



A similar comparison f ~ r  mssured a n d ' g ~ d i c t e d  forces a t  t h e  

middle and the  bottom end of the p i l e  are shown f o r  Ri-60 i n  Figure 

(3.54). This time the d i f f i c u l t i e s  a r i s i ng  from d i f fe ren t  locations 

i n  analysis and measurement are avoided by plot t ing the  p i l e  toe  

resis tance force as. given by soi 1 model. The agreement o f  these 

forces is as good a s  f o r  t h e  forces a t  the middle of the p i l e .  

In Figures (3.55) and (3.56), f ina l ly ,  measured and predicted 

p i l e  t i p  ve loc i t i e s  a re  plotted. Good agreemnt is found f o r  both 

p i l e s  Ri-50 and Ri-60. 



CHAPTER IV 

Discussion of Methods and Results 

The studies presented i n  t h i s  paper lead t o  results on two 

levels. First, an analysis method f o r  impact driven piles is 

p trsented which provides i nformati on about both soi 1 response and 

pi le  behavior. Second a contribution i s  made t o  the development of 

a dynamic testing method fo r  piles.  Both the analysis and the 

dynamic testing method are based on force and acceleration records 

taken during a hammer blow. 

While the dynamic testing method can be uti l ized i n  construction 

control as a replacement f o r  the s t a t i c  load t e s t  the wave analysis 

method i s  also able t o  determine t h e  so i l  resistance distribution 

which i s  needed f o r  pile s e t t l e m n t  analysis. However, i t  i s  also 

possible t o  use the basic approach of wave considerations for  other 

problems associated wi th  p i  l e  d r i  ving. Such applications w i  11 be 

discussed i n  Section F of t h i s  chapter. 

Several assumptions were made i n  developing both analysis and 

ing meth s and resulting limitations of - 
these approaches are discussed i n  Sections 2 and 3. 

Section 4 is devoted t o  a summary o f  observations regarding 

measurement techniques and re1 ated questions of accuracy. 

1. Possible Appli cations of Wave Analysis Method 

( i )  Sumnary of Ana .ysis Process 

The approach used i n  this paper f o r  analyzing pi le  behavior 

and so i l  response under a hammer blow can be summarized as follows: 



Force and acceleration are measured a t  the pi le  top during 

driving. These two records have been used above t o  separate the 

impact s t ress  waves from the waves due to  tf-ie soi l  action. The 

s t ress  waves due t o  the sdi1 actior! are then interpreted regarding 

t h e i r  locations along the p i  1e and the i r  respective magnitudes . 
From the so i l  force versus time behavior, thus determined, conclusions 

are drawn about the type of resistance force, whether shear or 

viscous. (The type of resistance force is meant here i n  the l igh t  

of a rheol ogi cal model ) . 
In separating impact from soi l  action waves the concept of 

Delta curves proved helpful. An important f ac t  i s  that  a Measured 

De1 t a  curve can be  obtained i n  closed form from a force and velocity 

record even without a high speed computer. Measured Delta curves 

are shawn i n  Figures (2.5,6,7). After some experience i t  i s  possible 

t o  estimate soi l  response properties from such Measured Delta curves 

even without the further use of a complex analysis. Resistance 

De1 t a  curves were developed t o  assi s t  i n  interpreting the Measured 

De1 t a  curve. As an example consi der Figure (2.6). A t  time 2L/c 

a f t e r  impact the Measured Delta curve has a maximum of approximately 

300 (kip). With in  a short t i m e  a f t e r  the maximum the curve decreases 

l o  about one half  of the six< Thus, approximately half of the 

total  resistance seems t o  be damping. Also the fac t  that  s k i n  forces 

ac t  a t  :the pi l e  i s represented i n  the record. 

( i i )  Pile and H a m r  Selection 

In developing an automated routine f o r  the prediction of soi 1 



resistance forces a number of equations were derived which can be 

u t i  1 i zed i n  appl 7'cati ons other than the prediction of soi 1 resistance 

forces. As an example the selection of a satisfactory p i l e  is 

i 11 ustrated. 

Example 1: 

Suppose, a pi le  of known material such as steel  or concrete 

has t o  be driven by a hammer whose maximum impact velocity, max vA, 

is  known. Then Equation (A3.43) can be modified to  yield 

max vn = 2 max vA - c/EA Sn (4.1) 

where i t  is assumed t h a t  no dynamic resistance forces act  on 

the pile. In the presence of s k i n  shear forces Equation (4.1) is 

still valid by replacing S, by So, i .e. the s u  ~f a l l  shear forces 
3 3 

acting. Therefore, if i t  is desired t o  drive a pi le  such tha t  i t  

has an ultimate bearing capacity of S$ then for  the pi le  t i p  t o  

exceed the quake and have a permanent s e t  the following condition 

has t o  be sat isf ied 

2 max vA > (c/EA)s,* (4.2) 

which  r e q u i  res tha t  

A > (c/ZE)~~*/max vA 

3tn these considerations damping was not considered. However, f o r  

the condition of just reaching a positive velocity this was not 

necessary because dynamic resistance forces are small fo r  small 

velocities. If i t  is intended t o  r e q u i r e  t h e  pile t i p  t o  reach a 

certain velocity, max vn, then Equation (A3.43) has t o  be used i n  i ts  

original form together w i t h  an estimate for  t h e  maximum damping force, 



dn max v,, (which can be assumed depending on the so i l  properties). 

Thus, 
. S . * . + . d .  max.v, 

' C  o n 
A = E 2 nax vA - nax vn 

The reverse approach can be used to  f ind the necessary hammer impact 

velocity by prescribing the p i l e  cross sectional area and solving f o r  

max vA. Estimates on pi l e  s e t  can be obtained by integrating Equation 

(A3.43) over time u n t i l  v n ( t )  reaches zero. 

( i i i )  Interpretation of Pile Force Records 

In a d d i t l ~ n  t o  producing a useful se t  sT analycl's equhtions wave 

considerations a1 so lead to 3 thorouak; understanding of p i  l e  behavior. 

In  another example i t  w i  11 now be explained why pile  driving records 

(force c r  velocity) seldom gi1.e. a clear indication of the t i m e  when 

the impact wave returns frcm the bottom as was discussed by Tomko (13) 

Example 2: 

I t  was observed tn Chapter I11 that  damping forces exerted by 

the soil  are ,?ctir.g mainly a t  the pi le  t i p .  For the case o f  only a 

damper a t  t h e  p i le  t i p  Equation (A3.41) gives the damping force 

D n ( t )  from the applied velocity vn,,(t). The reflection of the 

impact wave plus the effect of the damper causes a wave t o  travel 
L - x  upwards w i t h  a c le  velocity v ( t  - - ) a t  time t and a t  

U P  C 

a distance x below the top. 
L - x  , cdn 2vn ( t )  ,a vup(t - ?) - v " , ~  (t) - T 7 + (c~,)/EA 

or using again the definition (A3.50) Equation (4.4) can be written 



"L L X C v (t --) = v  (t?C1 - 2anml 
UP. n,a 

(4.6) 

Suppose, a pulse i s  applied a t  the free p i  l e  top a t  a time 

zero f o r  a p i l e  wi th free bottom end condition. If the pulse has 

duration A t  and a pa r t i c l e  ve loc i ty  vA* then f o r  no damper a t  the 

bottom the p i l e  top veloci ty i s  given by FA* f o r  o - < t _ < a 

vto,(t) = 
2L 2L iVA* for - < t - < - c + A t  

r = 1,2,. . . , . i ndi cates the time in te rva l  consi dered. Equation (4.7) 

i s  p lo t ted  i n  Figure (4.la). 

If a damper i s  act ing a t  the p i l e  toe then due t o  the re f lec t ion  

o f  the upwards travel ing wave (whose par t i c le  vef oci ty i s  given by 

Equation (4.6)) a t  the p i l e  top 

FA* f o r  G - < t 2 AE 

C f o r  2L/c 5 t 2 ~ L / c  + A t  

- - 
- - 12vA*(1 2anm) r f o r  r 2 ~ / c  - < t - < ~ Z L / C  + ~t 

In Figure (4.lb,c,d) t h i s  pile-.top veloci ty i s  p lo t ted  f o r  values 

C b  of ,a, = 0.1, 0.5, 0.9, respectively. It can be observed tha t  

a = EA/2c, i .e. % = EA/c, gives the solution' f o r  an i n f i n i t e l y  n 
long p i  'le. No bottom re f l ec t i on  waves reach the top. This damping 

coeff i cien t  , dn = EA/c, can be thought o f  as a c r i t i c a l  value. 

I f  the soi  1 would act  l ike  a tanper having th i s  c r i t i c a l  damping 

coefficient then i n  absence o f  a l l  other resistance forces 



max Dn = max vA(EA/cl 

But because of the proport ional i ty between p i l e  top force  and 

veloci ty (which holds a t  time tm, the time of  maximum veloci ty)  

max Dn = Fn(tm] (4.10) 

Ibi t h i s  context i t  is in te res t ing  t o  study the damping coeff ic ients  

obtained from analys is  f o r  d i f f e r en t  s o i l  types. A l is t  of  such 

parameters is given i n  Table (4.1). The damping c a f f i c i e n t s  l i s t e d  

i n  t h i s  t ab l e  a re  non-dimensionalized by dividing dn by EA/c. 

"Cri t ical  damping" , therefore, corresponds t o  a value 1.0 i n  Table 

(4.1). I t  can be observed t h a t  only two data sets (No. 1 8  and 19) 

which were obtained on the same p i l e  are  grea ter  than unity. 

Relatively often,  however, values i n  the neighborhood of 1/2 can be 

observed. 

3f course, damping values non-dimens i onal i zed with respect  t o  

p i l e  e l a s t i c  propert ies  can not  be used f o r  comparing the behavior 

of  d i f f e r en t  types of s'oils. Table (4.2) lists t h e  natural 

coeff ic ients  dn. These parameters must be considered w i t h  respect  

t o  their dimensions. Thus, element surface o r  the t o t a l  cross 

sect ional  area of  the p i l e  toe must  be considered when comparing 

t h e  damping coef f i c ien t s  determined f o r  d i f fe ren t  p i l e s .  A .. 
commonly employed method of r e fe r r ing  t o  damping coeff i  c i  ents  (1 0)  

is i n  r e la t ion  w i t h  ultimate shear  resistance. This procedure was 

not  adopted i n  developing t h e  predictor method s ince  i t  was intended 

t o  obtain damping and shear  parameters independently. However, f o r  

fur ther  applicat ions of predicted soi  1 parameters t h i s  method could 



leqd to  comparable values f c r  di.fferent pi le  and so i l  types. 
. . . 

Further 3nvest:gattons are needed, however, t o  distinguish more 

accurately bettqeen s k i n  and toe damping a t  the battom element. 

A shear resistance force acting a t  the p i l e  t i p  and having a 

magnitude equal t o  FA(tm) w i l l  also produce a wave such tha t  a t  

time t,,, + 2L/c no e f fec t  of the impact wave reflected a t  t h e  pi le  

bottom can be observed. In fact ,  any combination of resistance 

forces produces t h i s  e f fec t  if  forces of the i r  respective waves 

sum to  FA(tm). Tnese observations can be applied t o  t h e  interpre- 

tation of t h e  three-dimensional force plots shown i n  Figures (1 .I ,2,3), 

(Three or four force measurements were avail able, The graph was 

completed by interpolation). 

I n  Figure (1.2) a p:ot is shown !.+here FA(t,) = 165 k i p s  and 

So + max D = 107 k ip s  fron wave analysis. Thus, there is less  force 

than necessary t:, cancel out the effects of the reflected impact wave 

a t  tm + 2L/c a t  t h e  top. Accordingly, a decrease i n  the p i l e  top 

force can be observed when the reflection wave arrives a t  the top. 

ressicn as t o  how the waves travel through 

the pile. 

Figbre (3  -3) shows the plot of force measurements taken on a 

p i l e  w i t h  high toe resistance. FA(tm) = 290 k i p s  and So + wax D = 

280 kips. This  means that  not much change should be observed i n  the 

pi le  top force a t  time tm + 2L/c. Indeed, t h e  force record a t  

this time proves t h i s  statement. The steep top force increase 

3n the record a t  a l a t e r  time is due t o  the rapid decrease 



o f  impact force immediately a f t e r  the  maxlmun. Since So remains 

on unt3l zero velocity ?ts effect  on t h e  top is t o  cause an increased 

force . 
Figure (1.1 ) resulted from measurements on a pile w i t h  

relatively high s k i n  resistance forces (To-60, data s e t  No. 16). 

FA(tm) = 155 and So + max D = 200 (kip) were obtained from 

measurement and analysis, respectively. This  case shows a top 

force increase already a t  a short  time a f t e r  time t,. A t  time 

tm + 2L/c a drop of pile  top force can be observed. I n  this  case 

h i g h  dynamic forces were found by wave analysis so that the f u l l  

e f fec t  of t h e  maximum resistance forces does not anymore affect  

the p i l e  top a t  the t ime when t h e  bottom reflection wave returns. 

Hwever, both hamner and resistance forces were not of very 

different magnitude so t h a t  no wave r e t u r n  can be observed i n  the 

force behavior. 

considerations of the force record alone cannot yield any 

quantitative informati on. For obtaining accurate results about t h e  

magnitude of resistance forces the p i l e  top velocity m u s t  also be 

considered. Th is  point i s  quite important since previous 

investigators have restricted thei r records t o  ei ther  force or  

acceleration alone, (e.g. Buchnell ) . 
(iv) Prediction of Pile Stresses 

Since the force' and acceleration records taken a t  the p i le  top 

predict the soi l  resistance force distribution i t  must be also 

possible t o  compute the stresses i n  t h e  p j l e  during driving. This 



problem is faci l ia ted by the fact  that a distinction between dynamic 

and shear resistance forces i s  not necessa7y. Hence, estimates 

can be obtained from the Measured Delta curve without performing 

a complete predi c t i  on analysis . 
Compression stresses reach, i n  general, extreme values only a t  

the pile top or pi le  bottom. Along the pi le  s k i n  only distributed 

forces act  which cause a compression wave above and a tension wave 

below their  respective locations. The ef fec t  of a superposition 

o f  such compression waves can be observed a t  the pile. top. 

A bound on the maximum toe compression s t r e s s ,  o,(t), can be 

given by assuming a l l  resistance forces t o  a c t  a t  the p i l e  t i p .  

B u t  since the maximum total  resistance force is given by the Measured 

Delta curve, i t  is possible to estimate the p i l e  t i p  stress: 

Tensile stresses which can be cr i t ica l  i n  d r i v i ~ g  of concrete piles 

eccur only i n  the case 'of small resistance forces and are due t o  the 

decrease of t h e  impact velocity. In the.absence of resistance forces 

which follows from a superposition of the applied wave (having 

particle velocity vA(t) a t  the pi le  top a t  time t )  w i t h  its own 

reflection wave. Thus, tension stresses can occur when the particle 

veioci ty of the bottom r2f lect i  on wave is  1 arger than that  of the 

dawnwards traveling impact wave. The largest  tension s t ress  to  

occur i n  the ;qiie is, therefore, given by the maximum difference i n  



p i l e  top velocity during the f i r s t  2L/c time interval ( a f t e r  maximum 

velocityf . Compression stresses due to  resistance forces below 

x = xi reduce t h i s  tension s t ress  such that  from the Measured Delta 

curve an estimate on t h i s  stress can be (ri ven. ~ h u i  f o r  xi f L 

Such investigations on the stresses i n  piles suggest tha t  the hammer 

and cushion properties have t o  be selected w i t h  respect t o  the p i l e  

strength. In order t o  prevent tensile stresses i n  concrete piles 

cushioning has to  be added for  obtaining a uniform pile top velocity, 

v,,(t). Excessive compression stresses i n  the pile can be prevented 

by keeping the hammer impact velocity so tow that  the corresponding 

s t ress  is one half of the yield s t ress .  

fmplications of t h i s  k i n d  are known t o  hammer manufacturers 

but records and wave considerations as outlined can give valuable 

infcrmation for  certain combinations of hame.rs, piles and so i l s .  

2. Discussion of Soi 1 Force Predi c t i  on Analysis . 
The wave considerations i n  Chapter I1 and i n  Appendix A3 were 

limited t o  a time 4L/c af te r  impact. T h i s  time'interval may not 

always be suff ic ient  as when L is small (as for  reduced scal piles] 

i n  order for  the so i l  response to  develop fully w i t h i n  t h i s  time 

period of 4L/c. Since a resistance force distribution along the 

p i l e  is usually of minor interest  for  short piles no serious l i m i  ta- 

t i o n  seems t o  r e s t r l c t  the app'licabili t;l of the present method 



from t h i s  point. Clearly, a r i g i d  body, 3.e. a pile of zero length, 

cannot be analyzed regarding w s i s  tance force distribution. 

A related problem is encountered when the pi le  is sufficiently 

long b u t  t h e  impact i s  too "slow". In  such  a situation only 

approximate solutions are found. A match of p i l e  top forces migh t  

be obtained by using t h e  lumped mass analysis and assigning so i l  

resistance parameters i n  a t r i a l  and e r r o r  fashion as indicated 

above. However, the results t h u s  obtained depend mainly on 

assumptions regarding the soi 1 st iffness and t o  a smaller degree on 

the actual so i l  properties since these factors can be found from the 

record due t o  the numerous reflections occuri ng during buildup.  

Two extreme situations may clarify what is meant. A "very slow" 

impact is  the s t a t i c  load t e s t  which a1 lows a match between 

measured and predicted p i le  top force from the assumption that  a1 1 

resistance forces are concentrated a t  one point. A correspondin9 so i l  

s t i f fness  - necessary fo r  the match - can be computed, bu: the 

resistance distribution along the p i le  can not be determined from 

the top record. The "fastest  possible" impact exhibits a step shaped 

displacement function (the velocity is applied as an impulse) i n  which 

case the force distribution can be predic:ed independent of any 

knowledge regarding the quake. The l a t t e r  case is ideal fo r  the 

present method. 

In t h i s  context the  choice of the quake shoul d be discussed. 

Frequently, i n  the analysis quake values are used which are relatively 

small compared t o  values comnonly recomnended. Foehand and Reese 



(1 11 give quake values up t o  0 -30 inches for  certain so i l  types. 

Also t h e  tnvestl'gations i n  Appendix C showed tha t  the quake might  

be larger f o r  so f t ,  cohesive so i l s  than the displacement a t  maximum 

dynamic deflection. There are several reasons, however, why the 

adopted method sti 11 gives good results.  

A first reason is tha t  i n  a l l  records analyzed a precompression 

force was acting upon the pi le  and was imposjng displacements such 

that  the so i l  structure was already compressed before the impact 

wave arrived and caused the soi 1 t o  yield. 

Second, the sum of the ultimate resistance forces, Si ,o, is 

determined di rectly from the Measured Delta curve, independent of 

the choi ce of quake. Wrong assumptions i n the quake w i  11 , therefore, 

mainly resul t  i n  errors i n  the shear resistance force distribution. 

T h i s  , of course, is true only for small errors i n  the quake and does 

not apply t o  cases where the quake was not reached i n  the considered 

time interval. I n  such cases the r a t io  of shear to  damping forces 

w i l l  be affected a t  2L/c a f t e r  impact i n  the Measured Delta curve. 

In  the analysis quakes were used w i t h  only small differences 

between neighboring elements. I t  can be assumed that  also i n  rea l i ty  

t;?e.;qttakes do not vary strhstanti calf y w i  t h  depth. Erroneous 

assumptions i n  these quakes w i  11 , therefore, produce a s h i f t  of a1 1 

resistance forces along the pi le  length. The results shown i n  

Figures (3.6 and 8) exhibit such a force s h i f t  over one element length. 

Other errors i n  resistance force distribution can ar ise  where 

large damping and large skin resistance forces are present. I n  



such cases an incorrect damping distribution w i l l  necessarily result  

i n  shear resistance forces a t  locations other than measured i n  the 

s t a t i c  load test. (The total  amount of resistance forces is de- 

pendent on the Measured Delta curve, only). An example t o  such 

erroneous results is given i n  Figure (3.25). Here a large damping 

force was assigned t o  a point where actually a relatively large 

shear force was acting. Note, however, that  the character of the 

shear resistance distribution was. sti 11 preserved. Errors of th i s  

kind occur since no indications as t o  the damping distribution were 

found i n  the records. Because of t h i s  lack of information i t  was 

decided t o  use a damping distribution which yields the best match. 

T h i s  approach solves the problem only approximately since even a 

perfect match does not necessarily give a correct solution. 

A remark on the uniqueness of a solution obtained by matching 

the measured force is appropriate. Certainly, a match.uith zero 

differences between prhdi cted and measured forces is not possible , 
however, w i t h i n  the accuracy of the discussed method i t  is possible 

t o  obtain several solutions w i t h  an equivalent match quality. For 

di  s tri bu ti ons can 

lead t o  almost identical p i le  top forces. To obtain a solution for  

t k  2n parmeter, pi, which describe ei ther  the damping or  the shear 

force behavior a t  l e a s t  2n simultaneous equations have to  be 

sa t i s f ied  



where the t. are suitably chosen times, e..g. 
J 

~ ( t ?  is the Measured Delta and ci ( t )  i s  the Reststance Delta 

curve associated w i t h  pi .  

O f  course, the t. can be chosen arbi t rar i ly  over the domain such 
J 

tha t  actually an inf ini te  number of equations is available. However, 

. the smaller a t  becomes i n  Equation (4.15) the smaller differences 

occur between consecutive equations. Thus, i f  n i s  too large 

an i l l  conditioned s e t  of equations can resul t  which a1 lows several 

possible solutions. I t  can be concluded that  t h e  information 

contained i n  ~ ( t )  is not sufficient f o r  obtaining a unique solution. 

A further complication is tha t  another soi l  model could be 

chosen whi ch would yield another s e t  of ai (t ) , accord4 ngly a . 

different s e t  of pi. 
. . 

I n  cases where a good match was obtained w i t h  relatively poor 

predi c,ti ons of s t a t i  c bearing capaci ty the use of another, more 

real is t ic , .  soi l  model would add the information necessary f o r  

obtaining a good match together w i t h  good predictions. Sandy s o i l s  

do not present problems of t h i s  kind,  since the chosen soil  model 

is appropri ate. 

Several results were obtained w i t h  a relatively poor dynamic 

top force match. (See Figures (3.22,26,39 and 41) f o r  data sets 

No. 13, 15, 21 and 22, respectively) . A better match cannot be 

obtained when employing the present so i l  model. Even a quake valiie 

different from the one assumed would not I'mprove the situation as  



can be seen by inspection . f r o m  Figures (C.2 and 3). (The theoretical . . 

damptng forces do not decrease a t  a sufficiently high rate). By 

choosl'ng somewhat smaller shear resistance forces than used for  t h e  

matches i n  Figures (C.2 and 3) the error  i n  the match of dynamic 

p i  1e top forces is spread over some time before and a f t e r  time 2L/c 

a f t e r  impact. As a resul t  the prediction of total  s t a t i c  bearing 

capacity is relatively good b u t  errors i n  the match of dynamic pi le  . 

top forces are  made already before the time when the reflected impact 

wave returns. 

Piles w i t h  relatively small resistance forces (the impact force 

i s  larger than the sum of a l l  resistance forces) usually show l i t t l e  

vari a t i  on i n  the p i  l e  top velocity . Therefore, Resistance Del t a  

curves do not exhi bi  t the characteristi c di  fferences between shear 

and dynami c resi stance which usually a1 low t o  d i s t i n g u i s h  these 

forces. For predi cting the maximum dynamic resistance forces the 

analysis uses here t h e  observation made i n  Appendix C on cohesive 

so i l s  namely a damping force drop independent of the pile velocity. 

The Phase 111 simplified method of predicting s t a t i c  bearing capacity 

use fo r  piles w i t h  small resistance. Sinc 

Phase I11 prediction scheme is used as a first guess on the amount 

of damping forces i n  the wave analysis a reasonable final  result 

is obtained. In such cases the c r i t e r i a  fo r  a good match cannot be 

sa t i s f ied  since t h e  predicted force i s  always too la,rge af te r  

tm + 2L/c. The analysis routine is programed i n  such a way that 

f h t  attempts are made t o  improve the l a t t e r  region of the match 



by addfng more damping and reducing shear resistance forces. I f  

no improvement can be obtaZned then the matching c r i t e r i a  are relaxed 

such tha t  the i te ra t ion  terminates w i t h i n  a few more cycles. T h i s  

way some more damping is predicted than computed by the Phase 111 

scheme, which means a more conservative resul t  f o r  the s t a t i c  bearing 

capacity predi c t i  on. Certai nly  , predi c t i  ons obtai ned i n  such a way 

can only be considered an estimate on the s t a t i c  bearing capacity 

and further studies on soil  models particularly with regard to  t h e  

damping are necessary t o  devise a better basis for  wave analysis of 

so i l s  driven in to  such soft  cohesive soi Is .  

Entirely different problems were encountered or piles driven 

again into cohesive so i l s  b u t  tested a f t e r  a waiting period 1 ong 

enough t o  a1 low the.  pore water pressure i n  the soi 1 to  dissipate, 

(Only the f i  rs t few b1 ows a f t e r  the wai ti ng peri od can be expected 

t o  ref lect  a situation different from that enrcrg~ntered irmnedi ately 

af te r  driving). I n  su;h cases the wave analysis produced a very 

good match between predicted and measured dynamic p i  1s top force. 

Figures (3.24, 28, 32) show such good matches. However, the 

predictions of ultimate shear resistance were much higher than 

determined i n  the s t a t i c  load tes t .  T h i s  surpr is ing resul t  can 

be explained if s t a t i c  and dynamic measurements are obtained and 

analyzed i n  a manner similar to  those shown i n  Appendix C. I t  is  

suggested that the present soi l  model does not distinguish 

sufficiently well betkeen s t a t i c  and dynamic resistance forces, i n  

cohesive soi ls .  In other words, the l inear  relationship between 



pi.le velocity and damping forces does not hold f o r  a l l  s o i l  types. 

FShPle dynamic analysis of  piles driven into cohesive s o i l s  

presents problems regarding a proper so i l  modeling predictions of 

s t a t i c  capacity and the s t a t i c  force distribution are reliable fo r  

piles i n  sandy soils.  Frequently, i t  was found that  the match was 

not good i n  the l a t t e r  portion of the record. However, as discussed 

in  Appendix C, the soi 1 mode1 is very sensitive t o  small differences 

i n  e i ther  the quake value or  t o  the p i l e  displacement accuracy 

a f t e r  zero v e l ~ c i  ty (during unloading). Figure (C.4) shows a case 

where the measured pi le  resistance force behaved much smoother than 

the force determined from u s i n g  the soi l  model. Thus,  oscil lations 

i n  the pi le  top force which are not present i n  the measured record 

can be expl ained from t h i s  soi 1' model sensi t ivi ty  . However, since 

t h e  unloading portion of the record is not considered f o r  predictions 

of resistance forces and thei r di stri bu t i  on no er ror  is introduced 

i n  the result. 

3. Simplified Prediction Schemes f o r  aynami c Testing Method 

As out1 ined i n  Chapter I a dynamic test ing method was proposed 

(t12) f o r  predicting p i le  bearing capacity. In t h i s  method the time 

of testing is delayed f o r  a few. days so  tha t  soi 1 relaxation a f t e r  

driving cannot affect  the result. A detailed discussion of the 

problem of s o i l  relaxation a f t e r  driving i s  given by Yang (18). 

That dynamic records i n  f a c t  re f lec t  the change of soil  properties 

during a waiting p e r i ~ d  is shown i n  Appendix C. Records obtained 

t h i s  way are then used t o  predict s t a t i c  bearing capacity from any 



of the simpltfied computation schemes discussed i n  Appendix D. A 

special purpose computer is t o  perform the computation and display 

the resul t  immediately a f t e r  the blow. 

Differences between predi cted and actual s t a t i  c bearing capaci t y  

can ar i se  from wrong assumptions about both pi le  and soi l  behavior. 

The investigations i n  Appendix D clearly show the errors made by 

assuming the pi le  t o  behave .like a rigid body i n  the Phase I and I1 

method. The Phase IIA prediction scheme is a modification of the 

Phase I1  method where the p i l e  e las t ic i ty  has been taken in to  account. 

T h i s  computation scheme is easily programmed i n  a special purpose 

computer, Results seem more reliable than from the best o f  the energy 

formulas. D i  fferences between measured and predi cted s t a t i  c bearing 

capacity ar ise  from an uncertainty about the magnitude of damping 

forces. Since the Phase IIA method uses an average slope approach 

similar t o  the Phase I1 scheme also average damping forces can be 

included i n  the s t a t i  c .prediction. The choice of the time a t  which 

this average is  taken insures, however, that  the influence of 

dynamic resistance forces w i  3 1  be small. Numerical d i f f icu l t ies  i n  
- 

analyzing digi tized records require a modification of the method. 

The higher accuracy of data directly processed i n  a special computer 

can lead to  an essential improvement of t h i s  method. 

A Phase I11 method was developed using the idea of Delta curves. 

This method has the advantage of predicting both maximum damping forces 

and s t a t i c  bearing capacity. Figure (4.2) shows a plot  of differences 

between the measured and predicted s t a t i c  bearing capacity versus 



maximum damping forces predicted from t h e  Phase I11 method. The 

data s e t  used ts the same as fo r  the s t a t i s t i ca l  investigations i n  

Chapter 111. I n  t h i s  figure relative differences and relative damping 

forces were used f o r  showing t h e  t rend  more clearly. The conclusion 

can be drawn that  a h igh  percentage of predicted damping force induces 

more uncertainty about the accuracy of the s t a t i c  result.  As can be 

expected cohesive so i l s  are responsible f o r  the largest errors i n  

the method. Thus,  t h e  predictions of s t a t i c  capacity of piles i n  

sandy so i l s  can be considered very reliable. The only exception was 

F-30 which is a relatively short pile. 

A disadvantage of the Phase 111 method is the complexity of 

the computations involved. However, i t  i s  hoped that  simplifying 

assumptions (e.9. as t o  the time of toe zero velocity) can possibly 

lead t o  a computation scheme more suitable for  a s?cciel purpose 

computer application. More studies are necessary i n  t h i s  d i  mction. 

4. Measurements 

Comparisons between predicted and measured pile top force i n  

hapter I I I showed frequently 

inaccuracies. Most comnonly d i f f e x x e s  i n  the response of si gnai 
P 

conditioning equipment for s t ra in  and acceleration Ite;;t to  time 

lags. Such differences are serious when short  piles are analyzed. 

(The time 1 ag i n  F l  gure (3.48) corresponds t o  0.3 L/c) . Another 

e r ror  souvce is the difference i n  the locations of force and 

acceleration transducers. Sometimes t h e  time l.ags ar i s  isrg f ;.on 

stgnal condtttoni ng and recording 1 ocati on can cancel 1 out. 



Acceleration measurements were performed w i t h  piezoel ectr i  c 

accelerometers, For measurements a t  the pile t i p  an accelerometer 

was used having a buijt-in amplifier. T h i s  reduces the effects of 

cable noise. A disadvantage of this  accelerometer is the low record- 

able minimum acceleration (negative accelerations t o  ac t  away from 

the base of the transducer). Thus, mounting the ins t rument  u p r i g h t  

onto the pile  toe plate results i n  an acceleration cut  off a t  a 250 

t o  350 g-level . However, a cutoff of a recorded peak val ue of 100 

g 's  w i t h  a duration of 1 millisecond amounts t o  a velocity error  of 

1.6 ft/s. Toe accelerations can become very large - positive zlnd ne- 

gative - depending on the soi l  resistance forces. Thus, i n  records 

where the above mentioned level was reached uncertainty exists as 

t o  the actual p i le  toe acceleration and velocity. Two figures were 

presented i n  Chapter I I I comparing measured w i t h  predicted pi 1 e t i p  

veloci ty . Good agreement was obtained i n  these cases because the 

accelerati ons d id  not exceed the recordable i i m i  t. 

Another di f f i  cul ty  for  comparing acceleration measurements a t  

the pi l e  toe w i t h  analysis results from a lumped mass system is the 

di fference i n  1 ocati on between recorded and computed results , For 

short r i se  times w i t h  respect t o  the pile element length only an 

average value can be expected f rom the analysis wh i  le the measurement 

records the extreme toe bottom behavior. 

Force records present another pmblem. Usually i t  is assumed 

that  no residual forces act  on the pile. While this  assumption might 

hold for the f rwt  blow af te r  a waiting period errors might be made 



f o r  a1 1 subsequent blows. Neglecting such residual soi 1 forces 

wtll affect  the soil  force distribution only since a t  the onset of 

each new blow a state o f  equilibrium ex i s t s  for the pi le  so i l  system. 

I t  also can be expected that  the time lag between successive blows 

is suff ic ient  t o  release most of such residual forces by creep. 

For analysis of piles driven by vibratory hammers t h i s  point w i l l  

requi re a more detai led study . 



CWTER V 

Conclusions and Recommendati ons 

The methods for  p i le  analysis presented above use measurements, 

an exact wave theory and a 1 umped mass analysis i n  con junction w i t h  

an assumption regardirrg the functional relation between soi 1 forces 

and soi 1 motion. The analysis a1 1 ows t o  compute the l ocati on and 

magnitude of dynamic and s t a t i c  so i l  resistance forces acting on 

the p i l e  under a hammer blow. The s t a t i c  soi l  resistance forces 

correspond to  those forces acting on the pile dur ing a s t a t i c  load 

t e s t .  Another facet of the presented work is the development of a 

simple prediction scheme for  s t a t i c  bearing capacity based on 

pS?e e?es t i c  t h e o e .  

The f ie ld  measurements of force and acceleration proved t o  be 

accurate enough f o r  comnonly encountered f u l l  scale pi les.  The 

information contained i n  the records was sufficient t o  predict the 

magnitude and d i s t r i  buiion of the soi 1 resistance forces as long 

as the soi l  model was adequate. Distinction of soi 1 force types 

regardf ng thei r velocity or  di spl acement dependency was very success- 

f u l  f o r  p i  1es i n  sandy s3i 1s and yielded re1 atively good approximations 

i n  cohesive soi ls .  

The present method bypasses a major shortcoming of other pi le  

dynamic analyses found i n  t h e  1 i terature, namely the uncertainty o f  

hammer input and soi 1 parameters. In fac t ,  the results obtained from 

the automated predt'ction scheme can be used to  give information 

on soi l  behavior which i s  i n  contrast to  the usual procedures o f  



first obtaining the so i l  properties by laboratory testing and then 

performipg the p i l e  analysis . 
The predictions of s t a t i c  bearing capacity show a correlation 

better than those obtained from existing methods (13, 17). Improve- 

ments can be expected when further soil  investigations are performed 

i n  a manner as i n  Appendix C. Thus, different from the usual soil  

mechanics approach of obtaining soi 1 properties i n  the 1 aboratory , 
i t  is recommended t o  obtain knowledge about the gross soil  response 

t o  a certain p i l e  type (the cylindrical pi les  which were used 

throughout t h e  experimental work reported h e r e i n  are very common, 

however, other p i le  types m i g h t  possibly show different behavior due 

t o  a p i l e  shape influence. I t  is possible t h a t  an H-pile, fo r  example, 

w i l l  behave very different from a pipe pi le) ,  I t  is hoped tha t  such 

an e f f o r t  would lead to  an iinproved soi l  rheological model which 

equal ly  we1 1 describes both non-cohesi ve and cohesi ve soi Is. (A 

more r e a l i s t i c  model than presently used i s  discussed i n  (19)). 

Then derived from such an improved so i l  model a classification of 

complete the prediction 

of p i le  s t a t i c  behavior by jndicating the so i l  creep and strength 

gain behavi or. 

The computer program was devised f o r  the case of a uniform 

pile. In  order t o  minimize the input data ten elements were always 

used and a time increment of one half of the cr i t ica l  time (see 

Appendix A1 1. These assumptions might not hold f o r  long and non- 

un-ifom piles. For generalizing the present routine a study on 



Measured Delta curves for  piles w i t h  variable st iffnesses and the 

revision of the lumped mass analysis is recommended. 

I t  was found that  damping forces usually ac t  i n  a large amount 

a t  the p i l e  t i p  while smaller magnitudes of dynamic resistance 

forces ac t  a t  the pi le  s k i n .  In order to  simp1 ify the program and 

t o  save computing time i t  can be recommended t o  decide on the 

damping distribution a prior? and t o  obtain '0n?y'0n Sohtion. . 
Another important facet of p i le  driving is the selection of 

hammers, p i les ,  and cushions. In  Chapter IV h i n t s  were given on 

how to approach such problems, by means of wave considerations. The 

objective of such investigations would be a closed form method for  

estimating the necessary properties of piles and pi le  driving 

equi pmen t. 

Regarding the measurements of pi le  top force and acceleration 

t h e  following recommendations can be made: 

(i) The transducer cushion (i .e. t h e  cushioning between hammer 

and force transducer, i n i  ti a1 ly added for obtaining smoother records) 

has to  be reduced if not completely eliminated t o  obtain a fi;st~r 

impact , 

( i t )  Another type of signal conditioning equipment for  s t rain 

has t o  be used for  smaller time lags between force and velocity 

record. 

As discussed i n  Chapter V care.has to  be taken i n  

recording p i l e  toe accelerations for piles w i t h  low resistance 

since i t  is possible that  here up t o  twice the top accelerations 



occur and thus, exceed the accelerometer caljaci ty  . 
The results obtained from the present method were very 

encouraging. This method seems well suited t o  be 'employed i n  

subsurface soi 1 explorations. A related study is reported by Tsai , 
Schmid (19) where an instrumented penetrometer is used f o r  data 

collectian. However, the present method has the advantage of 

providing a1 so knowledge about resistance forces acting along the 

p i le  s k i n .  

Another important resul t  of the studies presented i n  t h i s  

paper was t h e  improvement of an existing simp7 i f  ied prediction 

scheme f o r  s t a t i c  bearing capacity. A further step to  a r e a l i s t i c  

dynamic p i l e  testing procedure w i  11 be to  incorporate t h e  Phase IIA 

scheme i n  a special purpose computer and t o  t e s t  the method a t  a 

suff ic ient  number of piles i n  the f ie ld  where common p i l e  materials 

l ike timber and concrete should be included. Also, tes t s  on piles 

of greater length and 'of variable cross section should be performed. 

The Phase 111 method should be modified such that  a relatively 

tations. This new 

computer should yield as an output the predictions of both maximum 

damping force and the s t a t i c  bearing capacity. With more results 

from piles tested under different conditions a s t a t i s t i ca l  analysis 

should then be performed so tha t  an answer about the re l iab i l i ty  

and precision of ti.2 method can be obtained. I t  would t h e n  be possi- 

ble t o  recomnd w i t h  confidence a design load for  a certain 

dynami c predi c t i  on o f  s t a t i  c bearing capacity . 



APPENDIX A1 

Lumped Mass Analysis 

1. Numerical Procedure 

The problem is t o  f i n d  the displacements dur jng dynamic loading 

of a11 p i le  elements into which the continuous pi l e  was modeled. 

Given are e i the r  the force acting on the top element or i ts 

acceleration, both as a function of time, and various passive force 

boundary conditions fo r  each element. These passive forces can be 

regarded as functions of displacement and velocity. In Appendix C 

a study will be presented on the physical mcdel of resistance used, 

and its 1 i m i  tations . 
The pi les  encountered during t h i s  projert  were, w i t h  only a 

few exceptions, s tee l  pipes o f  constant ci-GSS section. The program 

therefore was s e t  up for  uniform cross section and steel  e l a s t i c  

properties. However, the changes t o  a more general pi le ,  for  example 

tapered pi les  or s tee l  piles f i  1 led w i t h  concrete, could be easily 

accomplished and examples on how to  do i t  are given i n  the references, 

e. g. Ref. (9). The frequency of  the top boundary condition is an 

important factor  for  the choice of t h e  time increment, ~ t .  I t  is 

important tha t  no extreme values of these functions are missed. I f  

b t  is small enough, errors w i l l  be negligible (see FSg. A1-4). I t  

is  then possible t o  approximate the continuous boitndary function by 

a sequence of s t raight  1 ines. Consequently, i t  should be sufficiently 

accurate t o  express accelerations of p i l e  elements as a sequence of 

straight l ines  as well. T h i s  leads t o  velocities and displacements 

being pol ynomi a1 s of second and t h i  rd order. 



Consider F i g ,  (A1 .I ) . A continuous pile i s  replaced by n mass 

elements and n-1 interconnecting springs. The boundary conditions , 
either acceleration o r  force, are supposetl. ',a be measured a t  the 

middle of the top element. Then it  can be justified to assign 

s ti ffnesses : 
EA k = - n  L (A1 .I) 

t o  al l  the springs and masses: 
1 M = ALP 

to a1 1 elements. 

Some resistance force ri acts on the ith element a t  time 
, j  

= j .at. Displacements, velocities, and accelerations of element . .. 
i a t  time t = j . ~ t  are ui 

j ,jy 'i.j 
and ui 4' respectively. The top 

element is acted upon by an active force fj. Velocity and displace- 

ment are obtained from the p i  ecewi se I i near acceleration us ing  : 

and 

Here a comparison w i  t h  the method developed by Newmark ( I  4) can be 

made. 

Newnark proposed to use instead of Equation (A1.4) the following 

equation for computing the displacement 



Comparing t h i s  equation w i t h  Equation (A1.4) i t  can be observed 

t h a t  B is  t h e  coeff ic ient  obtained by twice in tegra t ing  a 
' .. 7. l i n ea r l y  increasing accelerat ion (e.g . u = a t  -+ u = bat3). 

.i*.i The fo r ce  i n  the i - t h  spring a t  time t. is 
J 

and applying Newton's Second Law t o  t h e  i - t h  element, one obtains 

a t  a given time j: 
.. - 

Mxi ,j - k(ui+l,j ui, j) - k(ui , j  - " ? - I , ~ ) -  ri,j 

o r  .. 1 
'i,j = $ k ( ~ ~ + ~ ,  j - 2ui , .j + ui-l j) - ri ,. 3 (A1.6) 

Then ui+l ,j3 'i ,j and ri ( a  function of ui and ui .) w i l l  be 
,j yj ,,I 

unknown i n  t h i s  equation, therefore, Equation (A1.4) i s  applied on 

both uiil and ui t o  obtain: , j ,j 

Now, the only unknown lef t  i s  Gi+l yj i f  we determine r 3 A by vcSvn, 

'i ,j-1 instead o f  ui . j and ui ,j-1 A t  instead of ui ,j. Except f o r  the 

top and bottom element Equation (A1.7) can be  used t c  compute ui d o  

For the first predict ion ui+, is s e t  t o  zero. For any l a t e r  
.. , 3 

i t e r a t i o n  step uiil can be used a s  obtained i n  t h e  previous 
,j 



calculation, while ri is always computed using the previous results 
,j . 

for ui and ui 
,j 

Both ui and ui are readily obtained usi.ng 
,j ,j ,j 

Equations (A1 .3) and (A1 .4) 
. . 

For the n- t h  element, i . e. the pile bottom (A1.7) reduces to: 

where r i s  the only unknown. 

A t  the pile top the force f .  may be prescribed and the 
J 

acceleration has to be computed, then: 

.. 
where the only unknown is. x p  since a passive reaction is not , j 
assumed t o  act on t h e  top element. If the acceleration ii' is 33 
given as a boundary condition thri: :he fcrce has to be calculated 

f ram: 

-. 
where again up can be 'set  to zero for the f i r s t  step and equal. - ,j -..- 

t o  the previously calculated value for all  later iteration steps. 

Convergence w i  11 be reached when the re1 at i  ve difference 

between successive results 3s smaller than a chosen number E. (The 

influence of the magnitude E w i  11 be studied i n  the next section 

of t h i s  Appendix). I t  i s  possible t o  compare displacements, 

velocities or accelerations. Certainly acceleration w i l l  be the 



most sensit ive variable b u t  i t  was found that  a velocity controlled 

i teration yields, good results. In case of an acceleration i n p u t  

condition on top of the pile,  a check has t o  be performed on the 

cal culated top force. Thus, the convergence cri terion which has 

t o  be sa t i s f ied  f o r  a l l  j can be written as 
. 

new(ui . - old (ui .) 
1J Y ' < IZ i = iy2,..,n 

new(ui rJ -1 

where u might be replaced by fj. 
1 ,j 

2. Analysis Parameter Study 

2.1 Number of Elements 

The numerical method chosen can a t  best be expected t o  give the 

solution for  t h e  p i l e  modeled as an N-degree of freedom system. 

The question, therefore, i s  how many elements are  necessary to  

accurately represent the continuous pi  1 e. For purposes of comparison, 

using the same accelekati on i n p u t ,  time interval and convergence 

cri terion, a pi le  without reaction forces was analyzed divided into 

5, 10, and 20 elements. The exact solution f o r  the continuous 

pi le  i s  easi ly  obtained for  this  case {see Appendix A3) and i s  

given together w i t h  the lumped mass soluticn i n  Figure (~1 .2) .  

I t  should be noted that the actual pi le  length is not involved i n  

t h i s  comparison because i t  is not a factor i n  the number of elements 

needed. A s  can be seen, while 5 elements represent a poor model, 

the 10 element system i s  already a good approximation to  the actual 

solution. 20 elements give noticeable differences only where there 

are rapid changes of force. I t  can be deduced that  20 elements 



w i l l  yield a very accurate solution while 10 elements give good 

qua1 i ta t ive results. 

2.2 Time Increment 

Once the number of elements has been determined t h e  choice of 

a time increment is constrained. The reason for  this  is t h e  

occurence of i n s  tabi 1 i t y  of solution whenever the distance traveled 

by the s t ress  wave i n  one time increment is constrained. Investiga- 

t ions into t h i s -  phenomenon have been undertaken and are discussed 

by Crandall (17). The suggested l i m i t  imposed on .at i s  
L ~t g- 
C 

o r  since 

Latroduci ng 

AL + = -  
A t .  c 

as used by Smi-th ( 9 )  then + > 1 w i  11 always yield a stable 

solution. Figure (A1.3) shows again an exact solution and 3 

solutions using 4 = 1/2 (unstable), + = 1 and 4 = 2. A1 1 3 

solutions were obtained f o r  n = 20. The differences between 

+ = 1 and 4 = 2 are very small and can be accounted f o r  by observing 

tha t  the inpu t  condition is not exactly the same when more time 

increments are placed on the sequence of s t raight  lines. Figure 

(A1.4) shows what happens t o  the acceleration i n p u t  data when used 



w i t h  different lengths of time increment. 

2.3 Convergence Cri terf on 

Various calculations were performed using different c and also 

calculations without any i teration. I t  is seen i n  Fig. (A1.5) 

that ,  whenever enough elements are  chosen, say greater than 10, 

a number E < .1 w i l  I be sufficient and tha t  the i teration s t a r t s  

only t o  improve the solution a f t e r  2L/c. These comparisons, however, 

might  yield quite different results when the solutions i s  carried 

forward over a longer time interval. 

2.4 Co~putati on Time 

In order t o  draw conclusions about the accuracy and feasi bi  l i  ty  

of the lumped mass analysis method the computation time has t o  be 

considered. The ca? culations 1i  sted i n  Table (A1 .I ) were performed 

on a Univac 1108 Computer. The program was written i n  Fortran V. 

The computer time i n  seconds is an approximation because time is l i s t ed  

only i n  half seconds. However, it can be seen that  solutions 

using less than 3 seconds are not satisfactory. Using 30 elements 

did not give much improvement while computati on time increased 

considerable (9.5 seconds!) The tlse of 20 elements together w i t h  

4 = 1 (A$ = .227 milliseconds i n  th is  case) gave a satisfactory 

resul t  and used only 3 seconds. The resul t  could not be much 

improved by halving the time increment which resulted i n  almost 

doubling the computation time. Note tha t  the only, good resul t  f o r  

a pure prediction analysis took 2.5 seconds while the result  between 

2L/c and 4L/c is s t i l l  quite erroneous as compared t o  the i te ra t ive  



computation on line 2 which took only 3 seconds. The method of 

analysis has the advantage of accuracy and stab1 1 i ty  w i t h i n  the time 

domain considered. Only a few rules must be observed i n  choosing 

the necessary parameter, 3.e. QI > 1, n > 10 and E 5 . I .  The 

application of a predictor-corrector iteration seems justified 

when considering the increased accuracy i n  the time region after 

2L/c. 



APPENDIX A2 

Stat i  c Analysis 

The resistance parameters obtained from dynamic analysis 

permits' the computation of a load deformation curve t o  compare t o  

a s t a t i c  load test .  The so i l  parameters descrSbe t h e  shear 
/ 

resistance i n  the p i le  so i l  interface as a function of deformation. 

Actually, such an analysis should take into account the deformations 

o f  underlying so i l  s t ra ta .  However, t h i s  would make necessary a 

much be t te r  knowledge of s t a t i c  soil  behavior than can possibly 

be obtained from dynamic measurements. The analysis described 

below w i  1 i give only resuf t s  which can be used for  correlating 

dynamic predi c t i  ons t o  s t a t i  c measurement. I t  w i  11 . however, 

provide a valuable tool t o  obtain an estimate on the pi le  

defomati ons t o  be expected. ~i r s j  the p i le  i s  divided into n 

elements as it was done f o r  the purpose of dynamic analysis i n  

Appendix A1. The s t a t i c  so i l  resistance acting on the i t h  element 

is assumed t o  be directly dependent on the absolute pi le  displace- 

ment and is  modeled again by an e las t i c  p las t ic  spring w i t h  

s t i f fness  ksi = S ./qi, where SoSi i s  the ultimate soil  resistance 
0 9 1  

and qi  the quake of f h p  rhsar resistance a t  the element. 

Under these assumptScns the load versus deformation curve of 

any p i le  element w i  11 be a piecewise l inear function. Once a1 1 

displacements are larger than the quake the ultimate bearing 

capacity has been reached and no more load increase can be obtained. 



Mathematical Fomul a t i  on 

Consider the i - t h  element i n  Figure A-1. !!s$ng the same nota-.. 
- .- 

i t o n  as i n  Appendix A1 i t s  equi l ibr ium condition can be wr i t ten as: 

k(ui .. - ui) + k(ui+l - ui) = k SI -u i * 

where 

f o r  ui q i  
ui* = 

qi f o r  ui > qi 

Thus, f o r  ui 5 qi Equation (A2.1) can be wr i t ten  as 

- u ~ - ~  + (2 + ks/k) ui - ui+, = 0 (A2.2a) 

and a f t e r  the displacement has exceeded the quake 
"si - u ~ - ~  + 2ui ui+, = qi (A2.2b) 

For the f i r s t  element on which no reaction forces were assumed to 

act  (Appendix A3) the equi 1 i b r i  urn equation becomes 

~ 4 - ~ 2 = P / k  . (A2.3) 

where P i s  the load applied a t  the top of the p i l e .  - A t  the t i p  

o r  

-Un-l + Un = (k,/k)qn etherwise. (A2.4b ) 

Thus, a system of n equations wfth n unknowns i s  obtained which has 

t o  be solved for any interval  between two consecutive y ie lds of 

shear resistances. Since shear resistances are acting on n-1 

elements t h i s  means solving n-1 times. 



The p rocedure  fo l lowed here uses  t h e  same approach as  would 

be f o l l o w e d  i n  a s t a t i c  load  tes t  namely first some l o a d  P1 is 

a p p l i e d  on t h e  t o p  and t h e n  t h e  d e f l e c t i o n s  ul. a r e  c a l c u l a t e d  for  

a11 elements .  The n e x t  s t e p  i s  t o  d e t e r n i n e  which o f  t h e  springs 

w i l l  y i e l d  first, t h i s  can be  done by i n v e s t i g a t i n g  t h e  r a t i o s  

Ui l / q i  If t h e i r  maximum happens t o  b e  u l/q t h e n  t h e  first s p r i n g  
j 3 

t o  y i e l d  w i l l  be l o c a t e d  a t  the j - t h  element.  Because of l i n e a r i t y ,  

t h e  d i sp lacements  f o r  t h e  i n s t a n t  when t h e  j - t h  u l t i m a t e  s h e a r  i s  

r eached  can b e  c a l c u l a t e d  from p r o p o r t i o n a l i t y  

and the force on top o f  the p i l e  

T h i s  way t h e  f irst  p o i n t  o f  t h e  l o a d  d e f l e c t i o n  curve  is  o b t a i n e d  

when p l o t t i n g  P. ve r sus  ui , j. 
3 

A new system of e q u a t i o n s  has  t o  be set up now by w r i t j n g  the 

j - t h  e q u a t i o n  us ing (~2 .2b)  i n s t e a d  o f  (A2.2a). The new sys tem can 

be s o l v e d  when us ing  P2 = P 3 . + AP where AP 5 ;  an a r b i t r a r y  load in -  

crease and fo l lowing t h e  same r o u t i n e  as dec r ibed  above. 

T h i s  was n-1 systems o f  l i n e a r  e q u a t i o n  each having n unknowns 

and n e q u a t i o n s  have t o  be so lved .  Th i s  can be done convenient ly  

by means of i t e r a t i o n  always u s i n g  rhe previous  r e s u l t  a s  an 

i n i  ti a1 guess.  



Results from this analysis were used and are demonstrated in 

Chapter 111 for correlating soil resistance predictions with results 

from actual static load tests. 



APPENDIX A3 

Wave Propagation i n  a Pile Under Impact 

1. Force and Velocity Relation i n  a Stress Wave 

If u(x,t) is the displacement of a particle i n  a uniform and 

e l a s t i c  rod a t  dixtance x from some fixed coordinate origin a t  time 

t then the. governing differential  equation - the so-called wave 

equation - is 

where c2 = EJp. 

E and p 2re the Young' s Modulus and mass density of the p i  1e materi a1 , 
respectively. The general solution of the equation i s  

u(x,t) = f ( x  + c t )  + g(x - c t )  (~3.2) 

which is easily checked by back substitution. The general solution 

can be interpreted physically by ~ i v i n g  t a fixed value tl . Then 

u is a function of x only and can be s p l i t  in to two components: 

f ( x  + ct,) and, g(x - ct1). A t  a l a t e r  time t2 

f ( x  + c h )  = f ( x  + c ( t2  - t l )  + c t l )  and 

If, therefore, a distance c( t2  - t l )  is subtracted from x then the 

s ta t ion is found a t  which f has the value a t  t ime  t2 tha t  i t  had 

a t  x a t  time tl; g w i l l  have the same value a t  x + c ( t2  - tl) 

a t  t i m e  t, which i t  had a t  time t, a t  x .  In other words, i f  f and 

g are considered t o  be displacement waves then f travels 

i n  the negative x-direction and g travels i n  the positive x-direction, 

bot having speed c. 



Dif ferent ia t ing Equation (A3.2) wi th  respect t o  time leads t o  an 

expression f o r  the veloci ty v(x,t) o f  a pa r t i c l e  

where n= x + c t  and IJ = x - ct. Equation (A3.3) can be wr i t ten as 

v(x.t) = vf(x + c t )  + v ( X  - c t )  
9 (A3.4) 

thus, v can also be described by two waves vf and v which t ravel  
. 9  

i n  opposite d i  r e c t i  ons . 
Now, suppose tha t  the shape o f  the functions f and g and, 

therefcre, uix,t) i s  known a t  a certain time t. Then the strain, E 

i s  obtained by d i f ferent ia t ing u(x,t) wi th  respect t o  x 

au - = E(x ,~)  = ax 
a ( f ( x  + ct.) + g(x - c t ) )  

- af@ + a g ( d  
4 ~ Y t )  - a,, at! 

The advantage of using derivatives wi th  respect t o  r~ o r  p becomes 

apparent since these derivatives express the behavior of the deriva- 

t i v e  wi th respect t o  both x and 't. Using the rod 'cross sectional 

area A and taking compressive forces posit ive, the force F(x,t) 

i n  the wave can be calculated 

F(x,~)  = (A€/C) (-vf(x + c t )  + v (X - c t ) )  
9 

(A3.6) 

Thus, there ex is ts  a simple re la t ion befxeen p a r t i c l e  veloci ty and 

force i n  a stress wave, the force being proportional t o  the veloci ty 

by a fac to r  AE/c. The force w i l l  be compressive when the veloci t ies 

of par t i c les  and wave propagation have the same d i rect ion and i t  



w i l l  be a tension force otherwise. 

2. Boundary Condi t i  ons 

So fa r ,  only the homogeneous differential  equation has been 

considered and nothing has been said about boundary conditions 

or external forces. Si nce the di fferenti  a1 equation is linear, 

superposition is valid, so that  a case of complicated boundary 

conditions can be s p l i t  into several basic types of easily solvable 

problems. If the boundary conditions were nonlinear then a resul t  

can be obtained by assuming piecewise 1 inear boundary conditions 

and superinposing their  effects. A wave reaching the end of the 

rod m i  ght encounter e i ther  prescribed force or  d i s p l  acement 

conditions. T h i s  problem can be spli t  in to  the case where the wave 

travels i n  a rod w i t h  homogeneous, i .e. zero force o r  displacement, 

bcundary conditions p l u s  the case where no wave i s  present b u t  non 

zero end forces or  displacements. The case where external forces 

are acting along the rod may also be treated separately and then be 

superimposed t o  the homogeneous solution. Prescribed displacements 

have t o  be considered a t  the end of the rod only. Therefore, four 

bas i c condi t i  ons m u s t  be treated 

( i )  Wave approaching a f ree end, 

( i i )  Wave approaching a fixed end, 

( i i i )  Prescribed force acting a t  a point along the rod, 

( iv) Prescribed displacements a t  the end of the rod. 

Case ( i )  Wave i n  a Rod w i t h  Free End .... 

consider Fig. (A3.1) where on the l e f t  a wave, g(x - ct)  is  



shown approaching the free end (x = L) of the rod. Connected t o  

i t  on the r i g h t  i s  an imaginary rod along which f(x + c t )  t ravels 

i n  negative x-direction chosen so 

f(2L - x + c t )  = g(x - c t )  (A3.7) 

Therefore, 

Both waves w i l l  arr ive a t  x = L a t  the same time. From superposition 

the displacement and s t ra in  can be calculated 

u(L,t) = f (L  + c t )  + g(L - c t )  = 2f(L + c t )  

Thus the boundary condjtion o f  a f ree end i s  satisf ied. The wave 

f (x + c t )  w i  11 now travel  i n  negative x-di rect ion through the rod. 

It i s  cal led a ref lect ion wave. As compared t o  the i n i t i a t i n g  wave 

g(x - c t )  i t  w i l l  cause displacements o f  the same sign but forces 

o f  opposite sign. The displacement a t  the free end w i l l  be twice 

tha t  o f  the approaching wave. 

Case (ii ) Wave Approaching a Fixed End 

The method of choosing an imaginary rod i s  used again for-the 

case where the displacement o f  the end o f  a rod has t o  be zero. I n  

t h i s  case, however, the wave t ravel ing i n  the negative x-direction 

i s  chosen so tha t  

f(2L - x + c t )  = - g ( x  - c t )  (A3.8) 

and, therefore, = g. As a resu l t  o f  superposition tile force 

a t  the f ixed end w i l l  be doubled while the displacements cancel. 



The re f l ec t i on  wave w i  1 I prop,agate displacements o f  opposite d i rect ion 

but forces of the same sign as the i n i t i a t i n g  wave. 

Case (iii) Prescribed Force Acting a t  a Faint  Along the Rod 

If a force i s  applied a t  x = x* along the rod then t h ~  cont inui ty 

condition requires 

This can also be wr i t ten i n  terms o f  veloci ty 

 he^ x * ~  and x * ~  are on the l e f t  and the r i g h t  side of the loaded 

cross section, respectively (Figure A3.2). 

. Also the condition of equi 1i brium has t o  be satisf ied, i .e. 

where FA(x*,t) i s  the applied force a t  x = x* and time t. Now 

reca l l  ing  Equations (A3.3) and (A3.5) , Equations (A3.10) and (A3.11) 

can be sa t is f ied  by choosing 

and 

Substi tut ing these two conditions i n  Equation (A3.10) leads t o  

c ~ + ~ ( . x * , t ) / ~ ~  + 01 = C ~ O  + +,(x*,t)/~~] 

thus, satisfying the cont inui ty cond4 t i  on. 

Simi l a r l y  i t  proves t h a t  the equi 1i brium condition i s  sat is f ied.  

Figure (A3.2) shows tha t  both waves carry a force o f  one h a l f  o f  



the applied force while t h e  velocities are i n  both.waves the same 
. . 

having the same dtrection as the applied force and magni'tude 

The case where the force i s  acting a t  the end of the rod can 

be deduced since one of the half-waves i s  immediately reflected and 

superimposed t o  the other one. Therefore, a wave w i l l  travel away 

from the end w i t h  par t ic le  velocity 

and s t r a in  

E ( x , ~ )  = ~ ~ ( t  - (L - x)/c)/AE 

Case ( i  v )  Prescri bed Displacements a t  the End of the Rod 

The case of a displacement condition a point along the rod w i l l  

not be discussed since t h i s  is equivalent t o  a rod of shorter length 

w i t h  prescribed end di s p l  acement. A displacement prescribed a t  the 

end of a rod is equivalent t o  a prescribed velocity: vA(L,t). 

From the force vel oci ty  proporti onal i ty  re1 a t$  on t h i  s can be considered 

a force condition where the force has t o  be chosen as F ~ ( L , ~ )  = 

)EA/c. Thus Cas lied. 

3, Superposition of Waves 

In t h i s  section certain special cases w i l l  be treated where 

the findings of Section 2 have t o  be applied. These special cases 

w i l l  be needed i n  treating problems where external forces act  along 

the pi le together w i t h  prescribed end conditions . 
(i ) Free Pile Under Known Velocity a t  the Top 

Suppose a velocity vA(t) which is  zero fo r  t c 0 acd imposed 



on the top of a pile of length, L, and i t  is desired t o  know the top 

force necessary to  maintain t h i s  velocity when no other forces are 

acting along the pile.  

As long as the wave created by vA(t) has not ye t  reached t h e  

free end (i .e. f o r  t < L/c) a pile particle a t  a point has velocity 

vi(t) = vA(t xi/c). 

A t  time t = L/c the wave reaches the free end o f  the pi le  and 

case ( i )  of Section 2 holds. Thus, a reflection wave having 

velocities of the same s i g n  b u t  opposite forces wS 11 travel back up 
2L +.xi 

the pile. The velocity a t  a station x - xi becomes fo r  t 

A new reflection wave w i  11 be generated when t h i s  "up"-traveling wave 

reaches the top since here thc velocity is prescribed. Case ( i f  ) of 

Section 2 describes t h i s  situation of a fixed end, This second 

reflection requires a force; therefore, the proportionality between 

applied velocity aad top forces w i l l  not hold any longer. The force 

a t  the top of the free pi le  may be denoted by Ff( t ) ,  then for t<ZL/c 

F~ ( t )  = vA(t)EA/c 

and for  2L/c - < t e 4L/c 

Ff (t) = [vA(t) - 2vA(t - ZL/c)IEA/c 

A t  a time t = 3L/c t h e  wave w i l l  be again reflected a t  the bottom end 

( I t  .had been reflected a t  the top of time 2L/c.) A t  time t = 4L/c the 

wave has to  be reflected again a t  the top b u t  t h i s  t i m e  i t  has the 

opposite s t ress  due t o  the previous reflection a t  the free end. In 



2Lr '2L general for ,  T.2t .t-5 -$r + 1)  

where r = 0,1,2,. . . , stands for  the time interval considered. 

Equation (A3.18) gSves the exact solution for  a, given top velocity 

and no reaction forces. Th i s  equation can be used as a check on 

the lumped mass analysis. Comparative results of t h i s  k ind are shown 

i n  Appendix A1. Furthermore, i f  t h i s  solution is  subtracted from 

the measured force then the Measured Delta curve is obtained as 

defined i n  Chapter 11. 

Equation (A3.16) gives an expression f o r  the velocity a t  some 

point i n  the p i le  f o r  times t c (2L - xi )/c. The equation can be 

2Lr < t < extended f o r  times 7 - 2L(r+ , r = 0,1,2, ... 
C 

( i  i ) External Force Acting on a Pi l e  M i  t h  Fixed Top and Free Bottom 

The force denoted by Ri ( t ) ,  i s  assumed t o  a c t  upwards. If i t  

is ccting a t  x = xi then the resu 

apply. Thus, two waves are caused traveling i n  both directions and 
' C having parti  c le  vel oci t i e s  ( a t  x = xi and time t )  vr(t)  = - Ri ( t )  

and the force i n  t h e  waves F,(t) = + 1/2R(t), i .e. a compressi on 

i n  the upwards and tension i n  the downwards traveling wave. The 

reaction force F ( t )  on the fixed top of t h e  p i l e  due to  this  
top 

velocity w i  11 be a compression force of twice the magnitude of the 



force i n  the wave (Case (ii) Section 2). The upwards traveling wave 

will arrive a t  the top a t  a time xi/c af ter  it was applied, hence 

Ftop (t) = Ri(t - Xi/=) (A3.20 ) 

which is valid for  a time as long as i t  takes the i n i t i a l l y  downwards 

traveling wave t o  reach the top af te r  reflection a t  the bottom. T h i s  

reflection a t  the free bottom end causes the i n i t i a l l y  downwards 

travel i ng wave t o  change the s ign  i n  force (Case (i ) Section 2)  and 

therefore, is also a compressi on wave af te r  reflect3 on. Reaching 

the top a t  a time (2L - xi ) /c  a f t e r  i t  was generated by thc resistance 

force this wave also w i  11 produce twice the force a t  the top which 

i t  was propagating . The next wave. to  arrive a t  the top w i  11 be the 

i n i t i a l  ly upwards traveling wave, i ts  sign w i l l  be converted so t3at  

a tensi on wave ar r i  ves . 
This way the reaction a t  the fixed pile top due t o  Ri (t) can be 

calcuf ated f o r  0 < t .C 4L/c - . Xi 2L - Xi 2 L  + Xi 
( t )  = Ri ( t  - + R i ( t  - ) - R i ( t  - FtoD C C 1 

For l a t e r  times i t  can be observed that  a l l  the waves which arrived 

a t  a time t, a t  the top have i n  the mean tim changed the i r  sign 

twice thus arriving again w i t h  the same s i g n  a t  a time tl + 4L/c. 

T h i s  result can be expected since a pile of length L has a lowest 

natural frequency of c/4L, i t s  meaning is  that  i n  absence of external 

forces a harmonic behavior can be observed. Therefore, fo r  times 

r 4L/c - .  < t < (r + 1) 4L/c 



(A3.22) 

and r = 0,1,2,. .n indicates the time interval considered. 

Somewhat more complicated is the problem' t o  obtain t h e  par t ic le  

velocit ies a t  a point x = xh when the load, Ri ( t )  i s  acting a t  x = xi .  

The problem can be spf i t i n  two parts first considering the wave 

which is  i n i t i a l l y  moving upwards and t h e n  second the wave which 

i n i t i a l l y  moves downwards. Both of these waves have a par t ic le  

velocity -c/2EA R+ ( t ) .  In order to  f a c i l i t a t e  the derivation i t  is 

further assumed tha t  xh > xi. Then the velocity vh ( t )  a t  x = xh 
9 P 

due t o  the upwards traveling wave obtains its first contribution af te r  

a time (xh + xi) /c , ' i  .e. the time necessary for the wave t o  reach the 

top and upon reflection the station x = xh. The - wave w i  11 again be 

reflected a t  the bottom end w i t h  no s i g n  change i n  velocities and 

reach x = xh a second time w i t h  the same sign i n  velocities. Thus, 

when observing the wave's action a t  x = xh fo r  a time t < 4L/c then 
- - -  -- x + Xi h 2L + xi - 

V h s u ~  (t) = $ ~ ~ ( t  - c ) + Ri(t - c xh) 

Similarly one can find how the i n i  ti a1 ly downwards traveling wave 

influences t h e  velocity a t  x = xh 



Observing that the waves arrive w i t h  the same sign of force and 

velocity after  every 4L/c then superimposing the results from 

Equation (A3.23) and (A3.24) the velocity vh(t) due to Ri(t) becomes 
4L ' 4L f o r y l t ~ ( r +  I)? 

where again r = 0 1  2 . .  indicates the time inteival considered. 

( i i i  ) Free Pile With Known Force a t  the Top 

In this case a force FA(t] i s  prescribed a t  the top and no forces 

act along the pile. I t  is desired to obtain an expression for the 

velocity a t  the pile top v ( t )  , due to this force. The reflections 
top 

of waves at both ends of the pile have force b u t  no displacement 



restrictions.  Thus, If the applied wave app1i.e~ compressive 

s t ra ins  then a1 1 the reflection waves w i  11 .have tensile velocities.. 

Thus, reflections w i l l  always add t o  the top velocity on every wave 

arrival a t  the top. From proportionality and due t o  the discussed 

reflections the result  can be readily .obtained, 

v ( t )  = '&(~~( t )  + 2FA(t - ~ L / c )  + 2FA(t - ~ L / c )  +. . . ) (A3.26) 
top 

4 ,  

or  using the notation as above Equation (A3.26) can be rewritten 
2L 2L t o  y ie ld  f o r  9 c  - t - c (r + 

r- . '2L v ( t )  = ' & ( ~ ~ ( t )  + 2 2 ~ ~ ( t  - 
,top ~~1 -. 

(i v) External Force Acting on a Pile w i t h  Free Top and Bottom 

The external force may again be denoted by Ri(t) and act  a t  

x = xi.. The reflections w i l l  again be of such a nature tha t  the 

waves arriving a t  the top a'lways add t o  the top velocity vtop(t) 

if Ri ( t )  does not change sign. Hence f o r  0 - < t < 2L/c 

'i 21 - Xi 
v (t) = - $ ~ ~ ( t  - + Ri(t - 
top C 

11 

and for r 2L/c - c t - < ( r  + 1)2L/c 

r . 2L . 2L T Xi ZL 
v ( t )  = $1 { ~ ~ ( t  - y- jT) + Ri!t - 

C 
- jT) I (A3.29) 

top j = O  

4. Soi 1 Resistance Forces 

T h i s  section w i l l  derive the relation between the vsloci ty on 

top of the p i le  and the magnitude of reaction forces which are assumed 

t o  depend on the pi le  displacements and pi le  velocity, A discussion 



of t h i s  soi 1 model i s  given i n  Appendix C. For ease in  computation 

t h e  resistarce forces are assumed t o  ac t  a t  a f in i t e  number o f  

s t a t i  ons a t  uniform spacing so that  the i r  application i n  a 1 umped 

mdss analysis is possible. The mode1 s p l i t s  the so i l  resistance 

force Ri (t) , forces acting a t  time t and x = xi t o  two components: 

a s t a t i c  component called the shear resistance Si( t )  dependent upon 

the pi le  displacements and a dynamic component Di (t) referred t o  as 

the dynami c o r  damping resistance which is dependent on the vef oci ty  

a t  x = xi. 

( i  ) Shear Resistance Forces 

The shear resistance force acting a t  x = xi and t i m e  t whose 

force displacement reiation i s  i l lustrate4 i n  F i g u r e  (2.2) can be 

expressed as 

for ui ( t )  qi fa) 

f o r  ui ( t )  > qi ,  vi ( t )  > 0 (b) 

Si ,O - k i  (max ui - u i )  fo r  ui ( t )  c max ui (c) 
( ~ 3 . 3 0  ) 

where ki . i s  the so i l  st iffness,  Si i s  t h e  ultimate shear resistance, 
9 0  

ui ( t ) ,  vi ( t )  are pi le  displacement and velocity, respectively and 

max ui 5s the maximum displacement before o r  a t  time t. As a 

theoretical example how a shear versus time relation can be developed 

i t  is now assumed that  only one shear force is  acting, that  i t  is  

caused by a velocity vA(t) which i s  applied a t  t h e  pi le  top and tha t  

a t  the p i le  bottom is a free end. This example w i l l  demonstrate 

the main features of wave propagatiort e f fec t  of a shear force. 

Subsequent quanti t a t i  ve results , hawever, w i  11 be much easier 



obtained by a lumped mass analysis. The shear versus displacement 

re1 ation requires the ind iv idua l  treatment of the three different 
. . . . 

laws described f n  Equations (A3.30 a, b, .c). 

Suppose the wave caused by the hammer blow is described by a 

p i l e  top velocity vA(t). Then a t  a time xi/c t h e  wave w i l l  arrive 

a t  x = xi . Thus, vi ( t  ) , ui ( t )  the vel oci t y  and di  s p l  acemnt of the 

p i le  are zero a t  x = xi before xi/c. When the wave arrives t h e  shear 

resistance force Si ( t )  w i l l  tend t o  wsist t h e  motion of the pi le  

and reduce the applied velocity by sending out waves i n  both directions 

along the pile. T h i s  reduction i n  velocity is proportional to  the 

acting shear resistance force Si (t) which i n  t u r n  is proportional 

t o  the actual displacement. Thus, if xi i s  f a r  enough from the ends 

of the p i le  so that  no reflection wave w i l l  arrive w i t h i n  the time 

interval now considered then t h e  actual velocity vi( t )  a t  x = xi 

is  given by'  

vi (t) = v,(t - x,/c) - c/PEA Si ( t )  

For the actual displacement ui (t) being smaller than the quake qi the 

shear resistance i s  gSveii by Equation (A3.30a). 

dui (t) 
but  vi ( t )  = dt sc that  Equation (A3.31; can be written as 

By introducing an integration vari able s and i n i t i  a1 condition 

u i ( t  - X i / =  ) = 0 and by defining r = t - xi/c then the solution of 

Equation (A3.32) yields the actual displacement x = xi 



Defining ti, as the time when ui(t) becomes equal to  qi then Equation 

(A3.33) is valid f o r  xi/c - c t - < til. A t  t i m e  til the shear force 

reaches its u1 timate value. Therefore, from Equation (A3 -31 ) 

vi ( t )  = vA(t - xi/c) - c/2EA S ' 

i ,o (A3.34) 

and 

This equation is valid u n t i l  a time t when the maximum displacement io 
is reached. Th is  happens when v i ( t )  becomes zero, thus, from 

Equation (A3.34) 

"A(% ,o - xi/c) = c/2EA Si  s 0 (A3.36) 

These equations assume no reflection waves have reached x = xi. 

In most of the cases the velocity vA(t) stays greater than one 

half of the proportional resistance forces for  a t i m e  u n t i  1 the 

first reflection wave returns from the bottom end. Also t h s  i n i t i a l  

portion of the reflection wave whi ch carries the effects o f  Si ( t )  < 

S. has usually passed the station x = xi before ti is reached. 
1 9 0  ¶O *7 ' 

Then the above condtions (A3.36) becomes 

Here the f i  rst term on the 1 e f t  hand side is  due to  the directly 

a r r i  ving wave caused by the impact wave, the second i s  a1 so due to  

the impact wave b u t  a f te r  reflection a t  the bottom and the term on 

the r i g h t  hand side is due t o  the effects of both the ultimate shear 



resi.stafice a t  time ti,, p lus  the shear acting a t  a time . .  . .  . . 

2(L - xi)/c earlier. 
, . 

After t = tii0 unloading w i l l  s t a r t  . i  .e. the shear resistance 

force will decrease by virtue of Equation (A3.30~). Unloading 

effects w i l l  be investigated i n  the later section using a sinple 

exampl e. Thei r effect a t  the top of the p i  le  wi 11 , in general , 
be observed a t  a later time and are, therefore, not considered i n  

detail here. 

Examples for shear resistance forces and their effects on the 

pile top w i l l  be g.iven below and in Chapter 11, 

( i i )  Dynamic Resistance Force Acting a t  the Pile 

The dynamic resistance law i s  assumed to follow the law of a 

linear viscous damper. If  the damping constant a t  a point x = xi 

is denoted by di and the actual velocity by vi ( t )  then the dynamic 

resistance force Di (t), defined t o  be a concentrated force, i s  

Di ( t )  = di vi (t) ' (A3.38) 

The actual velocity a t  x = xi is determined by the particle velocities 

f the two waves i n  the pile vf and v (Equation (A3.4)) travelins 
9 

i n  negati.ve and positive x-di recticn: respectively. Further, the 

effect of the damper i t se l f  has to be superimposed. The particle 

velocity a t  x = xi due to the dynamic resistance is again determined 

from Equation (A3.12). Thus, if the velocities of the waves 

arriving a t  x = xi a t  tine t add up to vi it) then t h e  actual ,a 
velocity i s  



and af ter  i nse r t i ng  Equation (A3.'38) t h i s  becomes 

(t)/(l + dic/EA) v j  (t) = Y i  ,a 

Therefore the damping force can be calculated from 

Dl (t) = di (vi (t)/ (1 + di c/EA) ,a 
(A3.39) 

This dynamic resistance force sends out  waves i n  e i ther  d i rec t ion 

1 having p a r t i c l e  ve loc i t y  - $Ii(t)c/EA. While f o r  times xi/c < t e 
2L - .x ,  

I 

C 
o r  xi/c c t c 3xi/c a f t e r  one o f  the waves resu l t ing  from 

Di (t) o r  the impact wave reach again x = xi a f t e r  having been 

re f lec ted a t  top o r  bottom end o f  the p i le .  I f  the damper i s  

located a t  the bottom end of the p i l e  then simpler superpositions . 

occur. I n  t h i s  case the i n i t i a t i n g  wave, v (t), w i l l  be re f lec ted  
n ,a 

a t  the same time when the damper reacts, thus 

znc! th9 damping force exsrted by a damper located a t  the bottom end 

having damping coe f f i c i en t  d, i s  determined by 

I f  the only wave a r r i v i n g  i s  t h a t  due t o  the impact then 

(iii) Dynamic and Shear Resistance Force Together 

An important r e s u l t  can be obtained for the specif ic case where 

a shear resistance force Sn(t) and a damper having coe f f i c ien t  dn 

m s i s t  together the motion a t  the p i l e  bottom, For c l a r i t y  no 

other resistance forces are assumed t o  act  along the p i l e .  



Considering only a time af ter  the bottom . . . displacement has 

become, greater than the quake and only before a time 3L/c, i .e. 

before the impact wave arrives a second time a t  the bottom, then 

the only one wave arrivting is due to  the ' impact. Thus, because 

of immedi ate  ref lect i  on alone 

( t )  = 2vA(t - L/c). 

Due t o  the shear a reaction wave will be sent upwards having 

parti  cl e ve1 oci ty 

vs(t) = - '& Snao 

and due t o  the damper 

vd(t)  = - Dn(t) 

But  

Dn(t) = dnvn(t) 

where vn(t) is  the actual pi le  toe velocity given by superposition 

of a l l  waves. Thus, 

vn(t) = 2vA(t - L'/c) - c/EA(Sns0 ' dnvn(t)) 

which leads t o  

and the damping force D, ( t )  , therefore, becomes 

5. Resistance k l t a  Curves 

In Chapter11 Delta curves here introduced as a means of studying 

the effects of the actual resistance forces a t  the pile top by 



means of the Measured Delta curves here referred t o  as ~ ( t ) .  The 

effect  of resistance forces acting a t  x = xi due t o  the chosen 

so i l  model were investigated by means of Resistance Delta curves, 

called bi ( t )  . 
A11 Delta curves are defined to  be'the effects of the acting 

resistance forces (depending on p i  l e  d i s p l  aceinents and vel oci t i  es) 
. . . ' 

at 'a . f ixed 'pi1e ' top when the'pi7e'tip'is'a'ff%!eeend. 

In the previous section the resistance forces had been derived 

for  specif ic  cases as a function of time, depending on the impact 

vcloci ty vA(t). In  the following paragraphs examples w i  11 be given 

using e i the r  a theoretical resistance ve'rsus t ine relation or 

based on a simplified top i n p u t  velocity vA(t). Since a resistance 

Delta curve, ( t ) ,  for a force Ri ( t )  acting a t  x = xi i s  the force 

on t h e  fixed top of a p i le  underhaction of Ri(t) only, the Delta 

Curve is expressed by Equation (A3.22) as derived i n  Section A3.3. 

Thus 

for  r4L/c - c t - c (r + 1)4L/c where r, therefore, indicates the time 

interval considered. 

Suppose a shear resistance force acting a t  x = xi i s  given by 
. xi 

Si(t)  = H ( t  - -)S. c 1 ,O (A3.46) 
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T h i s  shear resistance force has zero magnitude u n t i l  t = xi/c and is 

constant thereafter, as described by the u n i t  step function 

H ( t  - xi/c). Using Equation (~3.45) 

Both shear resistance force and the corresponding Delta curve are 

plotted i n  Figure (A3.3 a,b) for two cases of shear resistance 

namely xi = L/2 and xi = L ,  respectively. In comparing Figures 

(A3.3 a,b) w i t h  Figures (2, 8,9) i t  can be observed that the 

simp1 ified resistance law as expressed by Equation (A3.46) gives 

a good approximati on of the actual circumstances. In order t o  study 

the effect which unloading has on a shear resistance Delta curve a 

second example w i l l  now be given for a shear resistance acting 

a t  x = xi given by 

T h i s  wans t h a t  a t  time 2L/c the resistance force i s  assumed to 

decrease to half i t s  ultimate value, Figure (A3.4a) shows the 

shear versus time relation f o r  xi = L/2 and x = L. The resistance 

P-curves obtained from applying Equation (A3;45) are shown i n  F igu -e  

(A3.4b) . The terms resulting from applying Equation (A3.45) are 

individually shown before they are added. Worth noting i n  t h i s  

figure is the fact that negative resistance Delta values are obtained 

for 4t/c < t < 6t/c and i t  can be concluded that negative values 



i.n the Measured Delta curve, as for  example i n  Figures (2.5,6,7), 

w i l l  arise from decreasing resistance fcirces , e i the r  shear or 

dynamic. Somewhat more compl i cated is obtaining a dynami c 

resistance force as a function of time even i f  an idealized 

velocity 3nput is used. 

I n  order t o  compute Di ( t )  the velocity of the pi l e  particles 

a t  x = xi has t o  be found. This velocity mu1 t ip l ied  by the damping 

coefficient di yields the damping resistance force. I f  the sum of 

the parti  c le  vel oci t i e s  of the two waves arriving from ei  ther 

direction a t  x = xi a t  time t is denoted by vi (t) then the actual 
s a 

velocity of the particles a t  the damper, Gi(t) ,  can be cowuted by 

use of Equati on (A3.39). 

vi( t )  = di die * v ?.a (t) = aivi ,a( t )  

I + T  

I t  should be noted tha t  the waves arriving from e i the r  direction a t  

x = xi can be the resul t  of a superposition of various other waves. 

A general derivation of Di ( t )  becomes very involved and amounts t o  

a complicated bookkeeping of a l l  the waves traveling through the 

pile. Therefore, two special cases w i  11 be presented as an 

i l lus t ra t ion  of the main features of dynamic resistance forces. A 

damper a t  x = L/2 and a damper a t  x = 1 w i l l  be chosen as examples 

and the computation limited t o  times t < 4L/c. 



I n  order t o  f i n d  out the magnitude o f  the ve1 oci t i e s  o f  the 

ar r i v ing  waves applied ve loc i ty  and velocit ies due t o  the damping 

force w i l l  be considered separately. If a veloci ty vA[t)  i s  

appljed a t  the top o f  the p i l e  a t  times t then due t o  t h i s  veloci ty 

alone the veloci ty a t  x = L/2 f o r  times t - < 4L/c can be computed 

from Equation (A3.19) which leads t o  

vi ,A(t) = vA( t  - L / ~ c )  + vA(t  - 3L/2c) - vA( t  - 5L /2~ )  

If a damping force Di(t) i s  act ing a t  x = L/2 a t  time t then two 

waves are generated t ravel ing upwards and downwards away from the 

location o f  the damper both having the same pa r t i c l e  veloci ty 

-cD, (t)/2EA. Due t o  the i n i t i a l l y  upwards travel ing wave the p i  !e 

a t  x = L/2 i s  subjected t o  the veloci ty 

The three terms on the r i g h t  hand side are due t o  G f lec t i on  waves 

arrivtng. The f i r s t  coning from the top a f t e r  the f i r s t  ref lect ion,  

the second a r r i v i ng  from the bottom a f te r  the second re f lec t ion  and 

- the- tf,i rd- 
s- -- -- -' - 

again 3 u e  -to- a  wave arr iv ing a f te r  a ref:ecti on a t  the 

top, t h i s  time having been ref lected a t h i r d  time. 

The e f fec ts  of the i n i t i a l  ly  downwards moving wave on the 

veloci ty a t  the damper locat ion can be expressed as 

"i ,down = a - o i  (t - L/c) + Di (t - ~ L / c )  - Di (t - ~ L / c ) ]  

(A3.53) 



Summing up a l l  the effects of applied and resistance waves yields,  

a f te r  simplification, a velocity o f  t h e  arriving waves for t - < 4L/c 

'i ,a (t) = vA(t - L/2c) + vA(t - 3L12c) - vA(t - SL/Zc) 

- vA(t - 7L/2~) + c/EA Di(t - ?L/c) (A3.54) 

B u t  Di ( t  - 2L/c) = oi vi t - 2L/c) 

= ai[vA(t : 5L/2~) + vA(t - TL/~C)]  

and the ref ore 

"i ,a ( t )  = vA(t - L/2c) + vA(t - 3L/2c) - vA(t - 5 ~ 1 2 ~ )  

which leads t o  Di ( t )  by multiplication w i t h  ai. 

Figure (A3.5a) shows t h e  graph o f  Dj ( t )  f o r  an assumed constant 

velocity of magnitude vA(t)/ce; .-* 1 and a damping coefficient . 

di = EA/c, so tha t  ai = ER/2c. Figure (A3.5b) shows ai ( t )  due 

t o  t h i s  damping force obtained from applying Equation (A3.45) by 

graphically superirnpo;ing the applicable terms as i t  was shown i n  

Figure (A3.4) . 
If a damper i s  l ocated a t  t h e  p i l e  bottom then only waves 

a r r i  ving from one di rectf  on have t o  be considered, Th i s  leads t o  

simpler computations. The arriving wave velocity fo r  times t 2 

4L/c i s  tnen given by 
n -: 

"n,a = Z[vA(t - L/c) - v A ( t  - 3L/c) + c/EA Di(t - Ziicjl 



and therefore the resistance Delta curve for t - < 4L/c 

since D n ( t )  = u"-vn,, ( t )  

Both D,( t )  and hn(t) are shown i n  Figure (A3.5c,d), respectively. 

Applied velocity and damper coefficients were chosen the same way 

as i n  the previous example, T h i s  resistance Delta curve seems 

identical to that for a shear resistance a t  the tip of the pile. 

O f  course, t h i s  is a result of the choice of a constant velocity 

a t  the pile top. I t  was found i n  analyzing actual records where 

the velocity showed only a small decrease after the maximum that 

i t  is,  i n  fact, difficult i f  not impossible to distinguish between 

shear and dynamic resistance forces. Further detai led discussion 

of this important point is presented i n  Chapter I Y .  

6. Prediction of Soil Resistance Forces Acting Along the Pile 
Under a Hammer Blow 

Using the concept of Measured and Resistance Delta curves 

a prediction scheme w i  11 be developed for the magnitude of forces 

w h i  c blow. Their effects a t  t h e  

pile t o p  are displayed i n  the Measured Delta curve which is derived 

from acceleration and force measured a t  the pile top. 

The actual resistance forces am distributed along the pile. 

For ease i n  computation i t  w i l l  be assumed that they act as 

concentrated forces on n equally spaced locations along the pile. 

The number of unknowns is slightly reduced by assuming that the 

pile top element has no resistance forces acting, an assumption 



which is sensible because part  of the p i l e  is mostly above grade 

and the upmost soi l  is usually not i n  contact w i t h  the pi le  due t o  

transverse pi 1e v i  bratiow. Thus ,  the magnitudes of (n - 1 ) quakes, 

qi , (n - 1)  u1 timate shear resistance Si and (n - 1 ) damping ,o' 
coefficients, di, have t o  be computed. 

As outlined i n  Chapter I1 the I-th quake w i l l  be assumed t o  be 

reached when the velocity a t  the point x = xi reaches a maximum 

velocity. If no resistance forces were acting then this  displace- 

ment would be the same as the displacement a t  the top a t  time tm, 

the time when the top velocity has a maximum. Only the bottom end 

would obtain twice the displacement due t o  2he reflection of the 

arriving wave. The effect  of t h e  resistance forces can be estimated 

by considering the Measured Delta ctlrve. In Section 5 i t  was found 

tha t  a shear resistance force produced a p i le  top-force ef fec t  of 

twice i ts  u1 timate shear resistance value a t  time t, + 2L/c. A 

damper a t  the p i l e  toe. also yields a top force effect  of twice its 

maximum resistance force a t  th i s  same t i m e .  The Measure4 Delta 

curve is equal to  the sum of a1 ll Resistance De1 t a  curves i f  the 

parameters are correct. Thus, ~ ( t )  shows a t  a time 2L/( a f t e r  

impact twice the magnitude of the sum of a1 l resistance forces i f  

a l l  the damping force is assumed t o  act concentrated a t  the bottom 

end. The ef fec t  of a11 ultimate shear resistance forces and the 

ef fec t  of the toe damping force on the toe velocity is proportional 

t o  thei r respective wave parti  c le  velocities o r  magnitudes of 

resistance forces. Thus, the maximum velocity a t  the pile bottom 



a t  time L/c + t, is 

nax vn = 2 max vA -& &(tm + ~ L / c )  (A3.58) 

where vA(t) is the top messured velocity and A(t) is  the magnitude 

of the Measured Delta curve a t  time t. 

A good estimate on the bottom end displzcew~r i; can be  obtained 

by assuming tha t  t h e  r a t io  of pi le  top and pile t i p  displacement is 

li nearly proportional t o  the i r  respective vel oci ty' r a t io  t h u s  
max vn 

qn = un(t  + L/c) = u*(t",) max vA 

uA(t) being the pi le  top and un(t)  the p i le  t i p  displacement. The 

quakes for  locations other than pile top o r  p i l e  t i p  are l inearly 

interpolated so tha t  

Quakes resulting from t h i s  calculation which are  largev *an 

.12 (inch) are s e t  equal t o  t h i s  value t h e  quake, therefore, cannot 

exceed commonly recommended values fo r  sand (9). A lower bound is 

net introduced because i t  i s  desired t o  keep the quakes small enough 

so tha t  the ultimate resistance can be reached a t  a l l  elements, The 
- - 

prediction scheme for  quakes is  bssed on the following considerations: 

Examples of Measured Delta curves are shown in  Chapter 11, 

Figures (2.5) , (2.6) and (2.7). A7 1 three curves, a1 though 

obtained from very differently behaving piles have their maximum 

value a t  a time 2L/c a f t e r  maximum velocity a t  the top. I f  s k i n  

damping forces are considered small then t h i s  means tha t  the maximum 

shear and damping forces were a l l  reached before o r  a t  a t i m e  L/c 



a f t e r  maximum velocity , a t  the top. Then, the toe shear resistance 

force must  have reached its ultimate shear resistance force a t  the 

same time. This time, however, i s  the time o f  maximum velocity a t  

the p i le  t ip .  Consequently, the quake of the t i p  shear resistance 

force is reached a t  the time of maximum t i p  velocity a result which 

is extended t o  a1 t points along the pile,  In Chapter I11 and I V  

this point w i l l  be fur ther  discussed. 

A1 though several simplifications have been made i n  the above 

described computation quakes w i l l  i n  general resul t  which lead t o  

the ultimate shear esistance a t  the i - t h  element a t  o r  before a 

time t, + xi/c, Therefore, i n  the absence of dynamic resistance 

forces the value of the Measured Delta curve a t  time tm + 2xi/c 

w i l l  be a resul t  of a superposition of the top force effects of the 

first i ultimate shear resistances plus some small influence o f  the 

already increasing shear resistances of lower elements due t o  the 

part of the before maximum velocity . Call ing this  influence ci 

and defining ti = tm + 2xi/c then 

and f o r  ti_, = tm - Z X ~ - ~ / C  

Subtract!np Equation [A3.62) from Equation (A3.61) leads to  



If  i t  i s  then assumed tha t  the difference E ~ + ~  - E is small the i 
i - t h  ultimate shear resistance has been found. Figure (A3.6) 

serves t o  clar i fy t h i s  point by use of a theoretical example- 

Several theoretical Resistance Delta curves (ai) are shown - 
corresponding to  shear resistance forces -.whose sum 

corresponds t o  the Measured Delta curve (b). A t  times ti an 

influence si from the next lower shear resistance force can be 

observed. The Soyi were assumed to  be equal i n  t h i s  example so 

that  ei = E ~ + ~  f o r  i c n-1. 

T h i s  computation can be performed the same way f o r  a l l  elements 

except fo r  the bottom where the effect  of a l l  the bottom reflected 

waves requires a top reaction force of twice the total resistance. 

Thus,  an approximation f o r  the h-th shear resistance force can be 

computed from 

T h i s  computation scheme w i l l  not apply when damping forces have t o  

be considered and when t, is reached so l a t e  that  ~ ( t , - ~ )  contains 

already effects of the return of reflection waves from the bottom. 

In tha t  case an improvement of the above described method f o r  

predicting ultimate shear resistance forces can be obtained if the 

damping effects and the effects  due to  reflection waves are subtracted 

from the Measured Delta curve. For doing so the magnitude of damping 

forces mus t  be known. An estimate of the maximum damping force 

max D can be obtained from the simplified Phase I11 prediction 



method as described i n  Chapter I I ,  Section 5 and i n  Appendix D. 

If i t  is  assumed that  a l l  this damping is concentrated a t  the p i le  

bottom (actually damping w i  11 be distributed b u t  a large percentage 

i s  i n  most cases found t o  be concentrated a t  the bottom) then its 

ef fec t  a t  the top w i l l  be proportional to  the top velocity shifted 

over a time of 2L/c as shown by the Resistance Delta curve i n  

Figure (2.11). (This is actually only true fo r  no other resistance 

forces acting, b u t  since the shear resistance forces are constant 

except fo r  a small portion before the quake is reached t h f  s gives 

sti  11 a good approximati on). 

The doubling effect  due to  the return of reflection waves from 

shear resistance can be assumed tc be propartional t o  the Resistance 

Delta curve for  a shear force a t  the p i le  bottom. Such a Resistance 

Delta curve, however, can be thought of being a curve proportional 

t o  the p i le  top displacement u n t i l  tm and constant, thereafter, 

w i  t h  a time 1 ag of Z L ~ C .  

The resulting Reduced Def t a  curve is then 

2L 2L uA*(t - 
"red - so (4 1 (A3.65) 

where 
u,(tI f o r  t < tm 

UA*(t) = 
4 1 f o r  t > tm 

and So is the sum of a l l  ultimate shear resistance forces. 

Using the Reduced Oelta curves the equation for  t h e  prediction 

of ultimate shear resistance forces becomes (see Equation (A3.63)) 



f o r  i = 1,2,..-,n 

i = dtj) - ~ ( t ~ - ~ )  

It i s  naw l e f t  t o  compute the damping coef f ic ient  f o r  the bottom 

damper. From Equation (A3.58) i t  i s  possible t o  predic t  the 

maximum veloci ty a t  the p i l e  t i p  using both measured ve loc i ty  and 

Measured Del t a  curve. Therefore, 

= max D/ (2 max vA - .{c/zEA)A(~, + ~Lx,) ) . (A3.67) 

A l l  necessary parameters f o r  performing a lumped mass analysis 

have now been approximately determined and the top force and a71 

displacements can be calculated using the measured ve loc i ty  and the 

predicted soi 1 resistance forces as an input. To improve the values 

an analysis should be done. 

The dif ference between measured and the p i l e  top force 

computed i n  the lumped mass analysis using the predicted s o i l  

parameter can be consi dered again a Delta curve. It w i  1 1 be referred 

t o  as an Error Delta cbrve, ~,(t), and provide a means o f  computing 

corrections on the f irst predictions. These errors can be due t o  a 

used i n  reducing the Measured Delta curve can account f o r  errors, 

Other errors, however, w i l l  also be introduced from assuming tha t  

i - t h  shear resistance force had the same top force e f f e c t  a t  time 

tha t  Si+,(t) had a t  ti (i.e. ci = E ~ + ~ ) .  

The Error Delta curve can be considered a Measured Delta curve 

which must be the sum of Resistance Delta curves- This time the 



computation becomes somewhat simplified since for  every element 

both a velocity and displacement versus time relation are available 

which can be considered an approximation, whose qua1 i ty  depends on 

the relat ive magnitude of t h e  Error Delta curve. Using, again, the 

concept of Resistance Delta curves i t  is now possible t o  s e t  up 

matri ces whose coeffi ci ents are influence numbers reflecting the 

top force e f fec t  of a resistance force a t  time t = 2x./c a t  the 
j J 

i - t h  element. Thus, for  the shear resistance forces a matrix C 

is defined w i t h  elements 

where 
u i ( t )  f o r  ui( t )  < qi  

fo r  ui( t )  2 qi 

As an example of t h e  meaning' of c 
j ,i 

In the same way for damping forces a matrix E is  s e t  up having 

elements 
2L - Xi 

e = (v i ( t  - xi/c) + v i ( t  - c .))/ max vi 
j ,i (A3.70) 

So tha t  

Ai(tj) = max Diej,i 

T h i s  matrlx is used l a t e r  on f o r  distributed damping resistances. 

I t  w i l l  be understood tha t  max Di is the maximum damping force 

occuri ng on the f i rst arrival of the impact wave. I t  i s  expected 

that  a higher, second maximum is obtained (o f  about 2 max Di as can 



be seen i n  Fjgure (2.12)) a f t e r  the inpact wave is  reflected a t  

the p i le  bottom. T h i s  maximum damping force max Di is  known t o  

occur a t  a time t, + xi /c  and therefore, i ts top force ef fec t  w i  11 

b e s e e n o n t o p a t t i m e t , + 2 x i / c = t i .  Tnus,e w i l l  b e a  
j ,i 

convenient tool f o r  computing damping resistance forces when Di 

i s  not zero along the pi le  s k i n .  By use of cj,i and e i t  is 
j ,i 

now easy to  reduce the Error Delta curve by the effect  of 

reflection waves a t  2L/c-arid by the difference AD between necessary 

damping (max 0) and damping found i n  the previous analysis (max D ~ ) ,  

t h u s ,  if AD = max D - max D~ 

The correcti ons on the shear resi stance forces, , can now 

be computed using the same approach as in  the i n i t i a l  shear force 

predi c t i  on 

The corrected damping coefficient can be computed from Equation 

(~3.67) where the expression i n  the denominator on the l e f t  hand side 

replaced by max vn as obtained i n  the lumped mass analy 

In order t o  further improve the predictions another lumped mass 

analysis can be performed and further corrections obtained and t h i s  

process has t o  be continued u n t i  1 the Error Delta is  small enough. 

The number of necessary i teration cycles depends on how well the 

soi l  model describes the actual soi 1 behavior. For good agreement 

between the assumed and actual ;oil action four i teration steps 



usually suffice. In many cases, however, the Delta curve portion 

of t h e  record for  2L/c a f t e r  impact cannot be reduced t o  small 

values. In such cases the computation is terminated a f t e r  the 8 t h  

attempt. 

When requiring the Error Delta curve t o  become smaller than a 

certain bound i t  is important to  realize the different sensit ivity 

of an Error Delta curve a t  different tSms t o  a change i n  prediction. 

AS i n  any other Delta curve an er ror  nSi a t  x = xi w i l l  result  i n  

a Delta curve approximately given by 

~ ~ ( t )  = ASi fo r  ti < t < t, 

and 

a,(t) = as i  fo r  t, < t < ti + xi/c 
9 0  

t h u s ,  the portion of the record fo r  t, c t < tn is less sensitive 

t o  errors  than the l a t e r  portion of the record. The fo f  lowing 

c r i t e r i a ,  therefore, have been established for  a sufficiently small 

Error Delta curve acciuati ng for the di fferent sensi ti vi t ies  i n  the 

record (a further discussion of these c r i t e r i a  is given i n  the example 

in  the next section). 

l E 2 l  = 
1 n,(t)dt < Cb = 0.05 max FA 

t" - s" I 



where max F i s  the maximum measured force 
A 

and 
f 4L/c f o r  no unloading 

tf 2. 
otherwise 

w i t h  tn being the time of zero velocity a t  the pile t i p .  Th is  
9 0  

way it is not required tha t  the predicted and measured top forces 

match a f t e r  unloading effects become apparent a t  the top. I t  was 

found i n  applying the above described error c r i te r ia  tha t  the 

I E~ -numbers can be eff ic ient ly  used t o  control the computation 

process: As long as 1 El 1 is too large the shear resistance forces 

'i ,o along the p i le  skin have t o  be c~r 'rected,  when I El 1 is 

sufficiently small b u t  1E21 is  not less  than CR, than e i ther  toe 

damping or toe shear have t o  be adjusted by an amount equal t o  one 

half of (iZI, and when 1 El 1 and I E,I are small then a check on 

llaws t o  decide whether or not the total  maximum amount o f  

damping used was correct. T h i s  is due t o  the fac t  that  a Resistance 

Oel t a  curve f o r  damping decreases w i t h  a higher rate a f t e r  tm + 2L/c 

than a Resistance Delta curve for  shear forces. Therefore, damping 

has t o  be added and shear resistance subtracted a t  the same time if 

the predicted force is greater than the measured force for  t > t, 

+ 2L&, i .e. fo r  E3 < 0.  For Eg > 0 the opposite has to  be done. 

Thus, an improved total  damping value w i l l  result from 



where i t  is assumed tha t  the shear resistance forces are staying 

constant whi 1e the damping forces decrease immedi ately t o  zero a f t e r  

t, + 2L/c. T h i s  scheme - although being quite crude - usually leads 

t o  a satisfactory match over the t h i r d  portion that  is  t from tn t o  

tf as long as the soi 1 model a1 lows a good match i n  that  regi on. 

Once, the inequalities (A3.74a,b,c) have been sa t i s f ied  the 

prediction for  a l l  damping a t  the t i p  is accomplished. 

The assumption of a11 damping concentrated a t  the p i le  t i p  

might yield a good match, however, i t  is possible and probable 

tha t  damping forces ac t  also a t  the pi le  s k i n .  For finding out how 

the damper locations influence the predicted top force two more 

methods of damping di  stri bction w i l l  be tried. One of these methods 

is t o  place damping forces uniformly along the s k i n  i .e. f o r  

i = 2 3 , .  . - 1  Thus, (n-2) damping forces are chosen t o  replace 

the bottom damper. ~ a i  culating w i t h  the damping maxima, max Di , 
occuring before the impact wave reaches the bottom and assuming tha t  

the max Di are one half of fne maximum damping effect  f e l t  a t  the 

top a t  time 2L/c (see example i n  Figure (2.12)) leads t o  

max D. 

lnax Oi = d 
However, i t  has t o  be checked whether these damping forces would not 

result i n  top force effects larger than specified by the Measured 

Del t a  curve. Using the E-Matri x this can be checked 



n- 1 1 wax Diejsi < b ( t j )  
9 =2 

If for some time t = t. th i s  inequal i ty does not hold than max Dj 
J 

has t o  be reduced 

- 1 n-1 
max 0. q b ( t g )  - max D.e . - $ maX +ejSi J - J 1=2 1 j .1  

j = 2 , .  n -  (A3.79) 

Also i t  has t o  be checked whether the maximum t o t a l  dampirlg force on 

the return o f  the ref lect ion wave would exceed the necessary to ta l  

damping force as determined i n  the f i r s t  prediction. Again using 

the €-Matrix t h i s  check requires 

n- 1 1 max Diensi = max D 
3 =2 imp 

which can be accomplished by adding a max Dn i f  the l e f t  hand side i s  

smaller than the r i g h t  hand side o r  t o  subtract from a l l  max Di 

i = 2,3 ,..., n-1 i f  the-opposite holds. 11: f o r  j = 2,3 ,..., n-1 

turns out t o  be negative then neighboring dampfng forces have t o  be 

reduced u n t i l  the maximum uossi b le  damping forces are found. The 

IY 

predicted ve loc i t ies (which had been used also f o r  computing the 

. Errors resul t ing from t h i s  assumption must be small since a 
ei .J 
good match had been determined previously and the maximum velocities 

f o r  t < tm + 2L/c w i l l  be the same f o r  %(t) belng small no matter 

how the match was accomplished. (The pa r t i c l e  veloci t ies i n the 

waves.de t o  e i ther  resistance forces have t o  be the s e ) .  



The computations f o r  obtaining the ultimate shear resistances 

so .i can be obtained i n  a similar manner as described above f o r  one 

damper a t  the bottom only tha t  the Reduced Delta curve has t o  

be computed by accounting f o r  a l l  damping forces, t h u s  

The variation of the damping forces and the effects of the reflection 

wave on damping usually introduces more errors i n  the predi c t i  on 

than i n  the case of only one damper a t  t h e  bottom, therefore, if  

damping is  large more computations have to  be performed u n t i  1 the 

f inal  distribution produces a small enough Error Delta curve, if t h i s  

is possible. Otherwise the computation i s  terminatod a f t e r  the 8 t h  

i t e ra t i  on. 

A t h i r d  way of distributing damping forces is t o  place only 

one damper a t  the s k i n ,  a t  the point where the maximum s k i n  

resistance force i n  ttie upper half of the pi le  had been determined 
1 i n  the f i  r s t  predi c t i  on. If max SO ,i > max Dimp 9 then max Di = 

rnax Dimp h and if max S k i  < max D 12 then max Di = max So and toe 
imp . i 

damping has t o  be added. Essentially t h i s  computation is t h e  same 

as when damping forces are d i  stri buted uniformly . 
Once the f inal  Error Delta curves have been found (these three 

curves usually d i f fer  a t  and a f t e r  t, + 2L/c for  a l l  three damping 

distribution4 a l inear  combixation of the i r  SoSi and di is used t o  

find a final selection by minimizing the resulting Error Delta 

3 curve. If p stands for  the i - t h  resistance force (either SOsi 



or di) obtained i n  the j - t h  damping distribution method and a 

superscript f i s  used for the final result, then 
f -  pi - a,pil + asp + asp i i (A3.82) 

where 

a1 + a2 + as = 1 (A3.83) 

and 
f Ae ( t )  = aldel (t) + a2~e2  ( t )  + a3~e3( t )  (As. 84) 

f For A, ( t )  t o  become a minimum the coefficients al ,  a2, a3 can be 

determined using 

where w(t) i s  a weighting function. Since the errors i n  the init ial  

portion of the match are..due to measuring inaccuracies these effects 

can be removed from the computation by setting 

w ( t )  = 0 f o r 0  L t  I t 2  (A3.86a) 

Also the portion of the record where unloading effects the match w i l l  

be disregarded (See Chapter I11 for examples), thus 

w(t) = 0 for t tf (A3.86bl 

where tf i s  as defined i n  Equation (A3.75). In. order t o  place more 

emphasis on the improvement of the f i r s t  2L/c. of the match the rest 

of the weighting function may be defined as 

for t 2 . X  t c tn 

t--.tn 
1 for tn e t < tf 



However, n o t  t o o  much improvement can be expected  from choosing a 

p r o p e r  we igh t ing  f u n c t i o n  s i n c e  i t  is p o s s i b l e  t h a t  an  a p p l i c a t i o n  

of t h e  least s q u a r e  method r e s u l t s  i n  some So ,i o r  di n e g a t i v e .  

S i n c e  n e g a t i v e  va1 ues  are n o t  a l l  owable t h e  a1  , a2 : and a, 

c o e f f i c i e n t s  have t o  be  a d j u s t e d  under obse rv ing  thei r re1 a t i  ve 

magnitudes. As an example suppose t h a t  a3 c 0 and t h a t  f o r  some 
a3Pja 

j t h e  rat io alp,l+ a2p,l < 0 and s m a l l e r  than  any o t h e r  r a t i o  
J J n n 

i i j, i = S,3 ,... n, then t h e  new cons tan t s  a, . 2, , asn can be 

determined from 

and 

a1/a2 = aln/a2" 
n n 

Using a1 , a2 , a3 i n  Equation (A3.82) l e a d s  t o  t h e  f i n a l  r e s u l t  

if n o t  a second c o e f f i ' c i e n t  was nega t ive  i n  which case t h e  process  

h a s  t o  be repea ted .  

7. Computation E x m p l e  

As a computat ion example the record  o b t a i n e d  from p i l e  F-60, . - 
Blow No. 26-A i  s used. The record, S .e . f c r c ~  and veloc! t y  , I s  

shown i n  Figure (B. 1 ) . After s u b t r a c t i n g  t h e  precompression f o r c e ,  

S~ 
, ( f o r  e x p l a n a t i o n  see Appendix B]  i n  t h i s  case S P = 40.6 (kip) ,  

t h e  f o r c e  c u r v e  as shown in Figure  (2.1 ) was o b t a i n e d .  

The p i l e  l e n g t h  below t h e  accelerometer  was 59 feet. The 

p i l e  was of 12-inch diameter p ipe  wi th  l /4-inch w a l l  t h i c k n e s s  



having a cross sectional area of A = 9.82 (inch) 

The zave speed f o r  such a steel  pipe pi le  had been 

experimentally determined by placing one accelerometer on e i the r  

end of a 50 foot pi le  and applying a hammer blow on one end. The 

wave speed thus determined was c = 17,000 ( f t / s )  and w i t h  p = 

,285 1386 ( 7 b/s2/i n4) 

E = cZp = 30.8 x 106 [ps i ]  

T h i s  dynamic modulus is used i n  a11 the analyses. The proportiona- 

l i t y  factor EA/c becomes 17.8 (kip/ft /s) ,  which means that  a 

par t jc le  velocity of 1 ft/s corresponds t o  a 17.8 k i p  force i n  t h e  

pile.  

The maxtmum p i l e  top velocity encountered i n  t h e  example 

problem was 9.1 ft/s which corresponds t o  a maximum pile t i p  force 

of 169 (kip) . (The yield 1 oad of the p i  l e  i s 320 kip) .. 

The Measured Delta curve is shown i n  F igure  (~3.7a) and was 

obtained by subtracting the free pi le  solution - Equation (A3.18) - 
from the measured force record. 

I t  can be observed that ~ ( t )  has non zero values before time 

y due t o  recordi ng inaccuracies : These--va'l ues 

are s e t  t o  zero u n t i l  a time 7.2 L/c a f t e r  which ~ ( t )  s t a r t s  

definitely t o  increase. I n  some of the records effects of high 

frequency vibrations are observed whi ch are  undesired i n  the 

analysis since they represent only local effects and could lead 

t o  misinterpretations. For cancelling out such effects a new, 

smooth ~ ( t )  was obtained by time averaging the original one. 



The result  is shown as curve b i n  Figure (~3 .7b)  

Integrati ng the top ve1 oci ty  u n t i  1 time t, leads t o  a 

displacemnt o f  0.107 (inch). Estimating the maximum toe velocity 

us ing  Equation (A3.58) w i t h  the maximum top velocity being 9.1 

[ftls] and ~ ( t ,  + 2L/c) = 422 kips leads t o  
422 

"n(toe) = 2 x 9.1 - 2 m  = 6,s [ft.s] 

So that  an estimate f o r  the toe displacement a t  maximum toe velocity 

can be given using Equation (A3.59) 

un(tm + L/C) = 0 . 1 0 7 . g  = .075 (inch) 

Linear interpolati 6n leads t o  the quekes shown i n   able (2.1 5 .  
The Phase 111 prediction for  total  s t a t i c  resistance is 

146 kips and the estimated maximum damping force 65 k i p s .  

Redacing the ~ e i s u r e d  Delta curve by the damping ef fec t  

leads t o  curve c i n  Figure ( ~ 3 7  ). T h i s  curve is then reduced 

further i n  order t o  reinwe thz ef l:; :t of i n i t i a l l y  downward traveling 

waves from shear resistance forces. The resulting curve (d) 

is a Delta curve due t o  the effec t  of the upwards traveling waves 

from shear resistance forces only. (An inf in i te ly  long p i l e  would 

show the same top force ef fec t  due t o  shear forces). 

This curve can be used t o  determine t h e  . individual ultimate 

resistance forces by applying Equation (A3.66). In Figure (~3.7) 

the ti ( t i  = t, + 2xi/c) are marked w i t h  dashed 1 ines. Accordingly 

the SOsi were determined as the differences between the indicated 

%ed(ti) - values. The l a s t  two shear resistances So,n_l and 

S are averaged since the accuracy o f  distinguishing these two 
0 ,n 



forces i s  small due t o  the large increase of top forces a t  t = tnm1. 

Using t h e  maximum toe velocity as calculated above leads t o  t h e  

damping coefficient 

A l l  soi 1 parameters predicted so f a r  are 1 i s ted  i n  Column 2 of 

Table (A3.2). As a check on the quality of t h i s  prediction a 

lumped mass analysis is performed. The measured p i le  top velocity 

and the predicted so i l  parameters are used and the corbresponding 

p i l e  top farce is computed. If the so i l  model would be correct 

and if the soi 1 parameters were predicted precisely then th is  

computed pi le  top force would be equal t o  t h e  measured force ( i n  

absence of measurement inaccuracies ) . In genera1 , however, 

differences between measured and computed p i l e  top force occur. 

Subtracting the predicted from the measured curve leads t o  an 

Error Delta curve. For the present example curve (a) i n  Figure 

(A3.8) shows t h i s  difference curve. 

A remark cn t h i s  graph i s  appropriate. For c la r i ty  the force 

scale was 'chosen f ive  times larger than i n  t h e  graphs for  the 

i n  Figu 

the first portion of the Error Delta curves (i.e. f o r  tm c t c tm + 

2L/c) i t  carr be noticed tha t  local peaks and valleys or' t h i s  curve 

are preserved and the differences of the Error Delta curves occur 

only i n  an averaged manner. Clearly, t h i s  is  due to  the constant 

behavior of shear resistance forces. The l a t e r  portion of the graph 

(tm + 2L/c c t) shows t h i s  behavior fo r  Error Delta curves a and b 



only. But  i t  must be recalled tha t  the amount of damping had been 

changed fo r  obtaining curve c and curve d. These changes influence 

only the behavior of t h i s  l a t e r  portion. The high frequency 

oscil lations i n  the Error Delta curves are due to  small time lags 

from Measurement inaccuraries causing a sh i f t  between the predicted 

and the measured force, also the accuracy of reading the original 

measured force record is responsible as can be seen Figure (2.1) 

where the relative smoothness of the velocity compared t o  that  

of the measured force becomes apparent. 

I t  i s  not possible t o  influence the high frequency behavior 

of the Error De1 t a  curves by applying low frequency resistance 

forces and a check on the absolute values of be(t) could lead t o  

unnecessary computations without convergence. Thus, an average 

is used. Also, when using t h e  Error Delta curve f o r  computing 

corrections on the SoSi and di only a smoothened ~ ~ ( t )  is used as 

in  the case of the Measured Delta curve. 

The maximum damping force obtained by using dn = 10.3 i n  the 

analysis was 70 kips. Using the Error Delta curve f o r  calculating 

the A ,  , correcting the damping coefficient and performing another 

lumped mass analysis leads t o  the Error ~ e i t a  curve (b) i n  Figure 

(A3.8). The damping coefficient is  corrected t o  produce the 
' '65 

assumed damping force of 65 k i p s  ( i  .e. d, = 10.3(r) 1. The c r i t e r i a  

CRi of the Inequalities (A3.74) are show i n  t h i s  figure. Here, 

i t  also can be observed tha t  over the first and second region the 

average ~ r r o r  Delta curve stays w i t h i n  the bounds. Thus,  



IEr I = ~ R I  

I E2 1 = CR;! 

however 

lE31 < CR3 

and 

E3 = 26 ( k i p s )  > 0 

EL is t h e  ave rage  delta va lue  between t = 2L/c + ti and t = tf. 

S i n c e  t h e  s i g n  of ~3 is p o s i t i v e ,  i t  means t h a t  n o t  enough s h e a r  

r e s i s t a n c e  f o r c e  was a p p l i e d .  Thus, 13 ( k i p s )  t o t a l  damping 

w i l l  be s u b t r a c t e d  and 13 ( k i p s )  s h e a r  r e s i s t a n c e  added both a t  

t h e  p i l e  t i p .  

The E r r o r  Del ta  c u r v e  r e s u l t i n g  f r o m  t h e  r e d i s t r i b u t i o n  is shown 

i n  c u r v e  c, F igure  (~3.8). Error Delta c u r v e  c satisfies t h e  

c o n d i t i o n s  i n  r eg ion  one  and r e g i o n  two b u t  n o t  i n  r eg ion  t h r e e  

s i n c e  E2 < 0 and E3 < 0 t h i s  w i l l  be c o r r e c t e d  by s u b t r a c t i n g  s h e a r  
. . 

r e s i s t a n c e .  However, s i n c e  Ez was a l s o  less than  z e r o  no damping 

is added t h i s  time. After a n o t h e r  luniped mass a n a l y s i s  is performed 

Error Delta c u r v e  d is obt;iined which s a t i s f i e d  a1  1 t h r e e  c r i t e r i a .  

The f i n a l  r e s u l t  i s  g iven  i n  column 3 of T a b l e  (A3.2). As an 

example fo r  t h e  C and E m a t r i x  t h e  d i sp lacements  and v e l o c i t i e s  

were used from t h i s  f i n a l  match of t h e  first d i s t r i b u t i o n .  The 

r e s u i  t i n g  matrices a r e  shown i n  T a b l e  (A3.1). Ten e lements  a r e  

used i n  the lumped mass a n a l y s i s  t o g e t h e r  w i t h  $ = 2 {see Appendix 

A1 ) , t h e r e f o r e ,  xi/c = 2k t .  Thus, t h e  i n f l u e n c e  numbers r e p r e s e n t  

r e l a t i v e  a i sp lacements  or v e l o c i t i e s  which are taken  a t  time 



differences o f  two time increments. (At = .I78 milliseconds). I t  

can be observed i n  the E-matrix that  max vi was not reached exactly 

a t  tn + xi/c b u t  a t  t, + xi/c + ~t a time f o r  which there is no 

matrix element. Thus, ei = 1.0 was not obtained. A serious 
,j 

defect is  not introduced since the E-matrix recpgnizes this  fact .  

Note, that  a t  j = 7 the influence of the returning wave can be 

observed i n  both C and E - Matrix. The C and E matrix are always 

recalculated when a lumped mass analysis is performed; 

The second damping distributior. leads t o  max Di 5518 = 6.9 

(kips) maximum damping force for the second through n i n t h  element. 

The Measured Delta curve, however, indicates tha t  the predicted force 

would become too large i n  the beginning of the record. Therefore, 

these damping forces have t o  be reduced. The resul t  are the 

parameters l i s t ed  in  Column 4 of Table (A3.2). 

I t  can be observed tha t  some damping was used a t  the pi le  

t i p  element i n  order not t o  exceed allowable top force effects 

before t i m e  tm + 2L/c. The had been obtained a f t e r  reducing 

the Measured Delta curve by means of the E and C - matr5x. Figure 

(A3.9) shows the successively improved Error Delta curve obtained 

u n t i l  f i na l ly  t h e  e r ror  c r i te r ia  were satisfied.  The final resul t  

is given i n  Column 5 of Table (A3.1). 

In the third distribution a max 03 = 6.4 (kips) was used 

corresponding t o  So ,3 whi ch was the ma&imum shear  res! stance f orcc 

a t  the pi le  s k i n  i n  t h e  upper pi le  half f o r  the first distribution. 

Corresponding for  the p i le  toe a damper was necessary for  rnax D, = 



57 (kip) (the total  damping determined i n  t h e  second method was 69.8 

(kip), therefore, max Dn = 69.8 - 2 x 6.4 = 57.0). 

Since the difference between t h e  third and the first mthod 

is small f o r  a small damping force a t  the. s k i n  a sufficiently 

small Error Delta curve (see Figure (A3.10) was obtained a1 ready 

from t h e  predi c t i  on. Sol 1 resistance parameters obtained from t h i  s 

distribution are given i n  Table (A3.2), Column 6. . 

I n  Figure (A3L;l l ]  the predicted top forces are shown f o r  a1 I 

three predi ctions together w i  t h  the measured force. 

Now, the l eas t  square procedure can be performed. T h i s  leads 

t o  

The negative a s  produces a negative damping parameter, d3 = -0.3 
$ 

which i s  discarded since its ef fec t  is small. The f ina l  result i s  

tabulated i n  Column 7 of Table (A3.1). Thus ,  So = 157.4 (kip)  

and max 5 = 52 (kip) . 

hammer compression force S had been subtracted from the to ta l  
P, 

record. T h i s  s t a t i c  fwce has t o  be added t o  So i n  order to  obtain 

R,, t h e  to ta l  s t a t i c  bearing capacity. As f o r  the distribution 

i t  is sensible t o  add to  a l l  So,$ a contribution of t h i s  s t a t i c  

force proportional to  the dynami cal 1y predi cted val ue. The 

total  s t a t i c  bearing capacity then becomes Ro = 157.4 + 40.6 



= 198.0 (kip). The final distribution and the load test curve 

predicted from this result are presented in Chapter 111. 



APPENDIX B 

Study on Characteristics of Force and'Acceleration Records 

As a basis for the studies on pile dynamics presented i n  t h i s  

work two quantities must be available as continuous functions over 

time, namely force and acceleration measured a t  the top of the pile. 

Transducers, signa7 conditioning and recording devices have been 

described i n References (3 3 20) . Several observatai ons were made 

whi ch need to  be explained. I n  records taken on a pi1 e driven by a 

Diesel hammer an increase i n  force was noticed some time before the 

impact. This force can be explained w i t h  pressure b u i l d ?  ng t;p 

i n  the combustion chamber of the hammer. I t  seemed surprising, 

therefore, that no acceleration was recorded before the impact. 

Thus, the proporti ona1 i t y  between force and velocity derived from 

wave theory appeared to be questionable. This and further details 

observed i n  acceleration and force records arc discussed i n  Section 

1. Another phenomen on which had to be investigated was the existence 

of an oscillation appearing i n  both velocity and force. Since t h i s  

frequency was not the pile naturcll frequency several possible 

models of pile-soil and hammer-pile were studied. The results of 

these studies are presented i n  Section 2 of this appendix. 

1 ; Observations on Force and Acceleration i n  Diesel Hammer Records 

Because of the proportional i ty  between force and vel oci ty i n 

a stress wave it i s  advantageous to deal w i t h  pile velocities rather 

than w i  t h  acceleration. From fi ndings about vel O C ~  ties C O ~ C ~   US^ 0ns 

can be drawn regarding the measured accelerati on. 



Consider F i g r e  (B-1) showing the measured force and the velocity 

which was mu1 tip1 ied by the proportional 5 tj constant EA/c. The 

time scale chosen is i n  L/c u n i t s .  The time when impact occurs is  

easi ly  identified from the steep increase i n  both force and velocity. 

In t h i s  particular record the force s t a r t s  t o  b u i l d  up a t  a time 

of the order 10 L/c before impact while the velocity stays zero 

through. the first 9 L/c. 

. In  order t o  explain t h i s  lack of proportionality i t  i s  now 

assumed tha t  the pile is fixed a t  the bottom end and the force is 

for  the f i r s t  9 L/c approximated by a piecewise 1 inear function as 

indtcated i n  Figure (B-2a). T h i s  piecewise linear function can be 

approximated again by superimposing two 1 inear functions FASl (t) 

and FA,*(t). For the time u n t i l  the first reflection wave peaches 

t h e  top again a f t e r  having been reflected a t  the bottom, force and 

velocity m u s t  be proportional. Thus, fo r  t - < 2L/c t h e  velocity i s  

C/= FAP1(t). When the first wave returns from the fixed bottom 

end its part ic le  veloci t ies -wi l l  have changed s i g n .  This leads to  

a decrease i n  top velocity. A t  a time 4 L/c two reflection waves 

w i  I?  reach the top w i t h  different signs of velocities. Thus, the 

p i l e  top vel oci ty can be wri tten as 

Using t h i s  equation i t  is seen tha t  fo r  a linearly increasing top 

force the velocity a t  the top w i l l  osc i l la te  between zero and the 

value pmdortional to  tRe force a t  time 2L/c. Figure (B-2b) shows 



the velocity derived from superimposing the solutions f o r  the two 

l inesr  force functions. This 'superposition can only produce a slope 

i n  the velocity which is less  than or equal to  the maximum proportion- 

al  slope i n  the force record. A simple calculation can then  lead t o  

the maximum acceleration. Suppose max f i s  the maximum slope en- 

countered i n  the record before impact then the maximum slope of .the 

velocity, rnax a, is given by 
C max a < max f 

B u t  max f can be expressed by a force difference AF over a time L/c 

then 
AF c max a = ,,, 
L/ L 

and w i t h  c2= E/p and ALpg = W the weight of the pi le  

In  the example of Figure (B.2) AF = 5.7 k i p s  and W = 2.0 (kip) 

so tha t  max a = 2.9 9's. The acceleration is read from a record 

i n  which a 1 in&'  a w l  i tude corresponds to  375 g ' s (see Figure B .3 ) . 
I t  is, therefore, not surprising that  small magnitude accelerations 

he 

recognized i n  the record. I 
The results of these considerations can b g  expressed as fol  lows: 

The acceleration w i l l  reach a noticeable non off zero value i n  the 

record only when the time derivative of the force becomes larye 

enough. Second, the velocity of the pi le  w i l l  have obtained some 

value greater than zero which w i l l  be dependent mainly on the 



s t i f fness  of the so i l ,  i f  t h i s  s t i f fness  would be inf in i te  then the 

above derived relations would ho1 d. T h i r d ,  the proporti ona1 i ty 

between velocity and force was l o s t  bec~use  of the long time over 

which the force b u i l t  up. I t  can be argued tha t  t h i s  precompression 

force is applied i n  a "static" way and, therefore, should be separated 

from the dynamic portion of the record if dynamic analysis is t o  be 

used. The dynamic record might then be defined from that  point a t  

which an acceleration greater than zero can be observed. I n  most 

of the records t h i s  is the time when a proportionality between force 

and velocity can be observed. For comparison Figure (2.1) shows 

force and proportional velocity a f t e r  the precompression force had 

been subtracted. The record was the same 2s analyzed above. 

 he study of the forces recorded before the actual impact occurs 
. I - - A  teaus to 6't~t i isi .  -i rtteresti ng observati on. Frequently i n  pi 1e dynami cs 

. t i s  necessary to  predict the hammer impact velocity max vh. I n  

the case of a gravjty hammer th is  can be done when the dropheight, 

h, of t h e  hamner is known. Then 

mx vh = ;- {Be5) 

For Diesel hammers, however, a f ree f a l l  cannot occur under t h e  action 

of the fuel compression force. In t h i s  case the velocity has t o  be 

computed by subtracting the velocity due t o  these forces, t h u s ,  

1 t=t, max vh = - - ~ ~ ~ ~ ( t )  d t  
Mh t = O  

where Mh i s  the ram mass and t, is the time where the "dynamic 

record" s t a r t s .  In  the example of Figure (8.2) the evaluation of the 



integral i n  Equation (B.6) laads t o  a difference velocity (the 

second term on the right handside i n  Equation (B.2) of 2.7 ft/s 

(Mh = 3.51 g kips/g) which is substantial compared t o  the velocity 

encountered a t  impact (max vh = 9.6 ft/s). Although the energy 

which the hamner supplied does not change due t o  the compression 

another k ind  of energy w i  11 be ut i l ized having smaller velocities 

b u t  being spread over time: T h i s  f ac t  might prove essential when 

applying the wave equation method proposed by Smith (9)  where one 

of the input parameters used is t h e  impact ve1 oci ty. 

A remark on the accurscy of the velocity seems appropriate. 

The usual recording sensi t ivi ty  fo r  acceleration is between 300 and 

400 g's fo r  one inch amplitude i n  the record. Records are read 

w i t h  an accuracy of about 1/150 inch. A s h i f t  of the assumed zero 

acceleration l ine w i t h  t h i s  amount can produce over the length of 

the record (usually about 20 m i  11 iseeonds) a considerable vel oci ty  . 
T h i s  e f fec t  w i  11 be even amplified when considering displacements. 

Using the average of two acceleration records taken on opposite 

sides of the p i le  should lead t o  an improvement i n  accuracy but 

velocities and displacements can still not be reliable a f t e r  some 

t i m e  o f  integration. I t  was noticed i n  applying the Phase I 

s implif ied theory (see Chapter 11, Section 5) that  sometimes no 

zero velocity was reached, which can be explained from the facts 

under consideration. The Phase 11-A method (see Appendix D) w i  11 

introduce a major improvement because only differences i n  velocity 

are considered over a relatively short  time and the time o f  zero 



velocity is  no longer an important parameter. . . 

Another inaccuracy can be observed i n  Figure(2.l)before 

maximum velocity occurs. The force should be exactly equal t o  the 

velocity times EA/c. However, it i s  noticed tha t  there is a time 

lag beween force and velocity the reason of which is a different 

response ti me i n  the signal condition equipment. T h i s  time lag 

causes often largs Delta curve values i n  the beginning of the record 

which m u s t  be discarded i n  an analysis. 

Anather interesting observati on can be made on records obtained 

under a single acting Diesel hammer. Such a hammer consists ' 

basically of two parts: a cylinder whose top i s  open and a piston, 

i .e. the h a m r ,  which fa l l s  freely i n  the beginning and by fall ing 

compksses the a i r  i n  the combus tion chamber. When the piston 

reaches the cylinder bottom fuel i s  injected so tha t  metal to  metal 

impact between hammer and anvi 1 occurs together w i  t h  'the combusti on. 

Impact p l u s  combustion force w i l l  move t h e  p i le  head. In the first 

instant both hammer and pile head w i  11 move together w i t h  the 

velocity of the impacting hammer. The hammer cylinder originally 

res t ing  a t  the pi le  top cannot follow t h i s  rapid movement, thus i t  

w i l l  s t a r t  t o  f a l l  under gravity. When assuming that  mast of the 

deflection of the p i le  head is due t o  penetration into the ground 

and only a smaller portion i s  due t o  e l a s t i c  deflection of  pile and 

soi 1, then the hammer cylinder w131 reach the pi le only af te r  the 

p i le  has established i t s  final,. position. The h a m r  cylinder then 

w P l l  impact upon the pile top and a force and acceleration due t o  



t h i s  (smaller) impact can be observed i n  these records. Figure 

(B.3) shows a record i n  i ts  original scale. In both force and 

acceleration the second impact can be observed a f t e r  a time AT. 

I t  is now interesting t o  compute the distance uf which the hamner 

cylinder was fall ing freely disregarding any fr ic t ion i n  the leads 

or other iosses f~om the time a t  between the impact of the piston 

and tha t  of the cylinder . 

and, therefore, i n  the example of Figure (B.3) 

- 386(.054)2 = .562 [inch] Uf - T 
During the driving operation an average set of .06 inch under one 

hammer blow was measured, I t  seems tha t  i n  cases where the s e t  

of the pi 1e is large enough and where a single acting hanuner i s  

used more accurate information about t h e  pile s e t  can be obtained 

from t h i s  observation. 

2, Studies of Vibration Frequences Occuri ng on the P f  l e  Head 
During Dri vi ng 

gure (2.1 ) shows typical force 

the above mentioned osci 1 l a t i  ons about an essenti a1 ly 1 inear behavior. 

If the lowest pile natural frequency would be responsible only p i l e  

length and material properties would be necessary t o  predict these 

frequencies b u t  t h i s  is not the case. Vibrations might  also occur 

due t o  the interaction of so i l  s t i f fness  w i t h  pile mass, a system 

whi ch is represented i n  Figure (B.4b). Another explanation f o r  

t h i s  phenomenon developed herefn is that the cushion hammer system 



suppor ted  by t h e  p i l e  e x e r t s  f o r c e s  upon t h e  p i l e  head which are 

due t o  i t s  n a t u r a l  f requencies .  The model fo r  such a system is  - 
shown i n  F i g u r e  i B . 4 ~ ) .  In t h e  f o l l o w i n g  t h e  f r e q u e n c i e s  expected  

for the d i s c u s s e d  models w i  11 be i n v e s t i g a t e d  and compared t o  t h o s e  

observed i n  t h e  record.  

The l o w e s t  n a t u r a l  frequency o f  a p i l e  o f  l e n g t h  L i s  

where c i s  t h e  wave speed.  

Assuming t h e  soil s t i f f n e s s  ks t o  be approx imate ly  

where thequake q can be chosen as .12 i n c h e s  and . R" . as t h e  

ultimate b e a r i n g  c a p a c i t y  o f  t h e  p i l e ;  t h e n  f o r  t h e  system of 

F i g u r e  (8.4b) a f requency of 
7 

(B. 10) 

would b e  o b t a i n e d  i f  A ,  L, P o r  p i l e  c r o s s  s e c t i o n a l  area, l e n g t h ,  

and mass d e n s i t y .  I n  t h e  exanq les  g iven  below i n  Table (8.2) 

steel p i l e s  w i  11 be considered  having a cross s e c t i o n a l  area A = 

9.82 ( i n c h  ). For  t h e s e  cases  

i f  L is i n s e r t e d  i n  feet and Suit i n  k i p ,  The system shown i n  

F i g u r e  (8.4~) h a s  two degrees o f  freedom. If the upper cushion 

s t i f f n e s s  i s  k and t h e  lower one k.s  and i f  t h e  upper and lower  

e l ements  have  masses rm and m, r e s p e c t i v e l y  then  t h e  two n a t u r a l  



frequencies can be computed from 

The cushion stiffnesses f o r  the transducer cushion ('ks ) were 

obtained experimentally. This transducer cushion was bui l t  using 

alternated layers of 3/4-inch plywood and 1/4-inch neoprene sheets. 

3 or 5 plywood and 4 o r  6 neoprene sheets were used. The p i le  

cushions stiffnesses (k) were obtained from Reference (10). In 

both cases s t a t i ca l ly  obtained load versus deflection curves were 

used and stiffnesses were obtained a t  the different  load levels 

observed i n  the force record. A11 the parameters necessary fo r  

computing f3  ,I+ are l i s t e d  i n  Table (B.1). The correlation of 

frequencies calculated from a l l  three methods w i t h  the observed 

are l i s t ed  i n  Table (B.2). 

As an example consider again Figure (2.1 ) representing Pile 

F-60, Blow No. 26-A. . The average frequency observed i n  force and 

velocity record is 409 (cps), (Figure 2.1). The length of the steel  
17,000 pi le  was 60.5 f e e t  and hence f l  = = 70 (cps) from Equaticn 

he ultimate resistance obtained i n  the CRP t e s t  was 242 

kips which leads t o  a f2 = 99 (cps) using Equation (8. lo), . The 

transducer cushion consisted of 3 sheets of plywood and 4 sheets of 

neoprene. The average force acting on the p i l e  top during the blow 

was 150 k i p s  as can be observed f ri Figure (B.3) . ,From Table (B. 1) 

t h i s  gives a transducer cushion s t i f fness  of 7,250 ki  ps/inch. The 

driving hammer was a Linkbelt 440 which has a cushion s t i f fness  



o f  9.30Q kips/inch under the  given circumstances. Thus k = 

9.300 ... . (kips/inch) . . .  and s = 7,250/9.300 = 0.78. Also from Table (B. 1 )  . . . . . . . . . 
I '1:lO'Rips m - -  

g 9 
4'71 = 4.28. Inse r t i  ng these values i n  and r = 1~~ 

Equation (3.11) leads t o  a lower frequency f3  = 89 and a higher 

frequency f4 = 398 (cps). As in  a l l  the  other  cases 

presented i n  Table (B.2) f 4  is the only frequency of a magnitude 

comparable t o  the measured one (409 cps i n  the discussed example). 

I t  seems t h a t  the only reasonable explanation f o r  the occurence o f  

frequencies higher than 100 cps f o r  the l i s t e d  cases is  t h a t  the 

two degree of  freedom system described above vibrates i n  i ts second 

mode, thus ,  exert ing forces and ve loc i t i e s  upon the p i l e  head 

r e f l e c t i ng  this  higher frequency. 



APPENDIX C 

Soil Model Studies 

The investigations presented i n  this  Appendix give an insight 

into the relations between the pi le  motion and the soil  resistance 

response. This s c t l  response i s  approximated i n  Chapter 11 by a 

simple model, which is also employed by other investigators i n  the 

pi le  dynamics l i te ra ture  (9; 10). Results i n  Chapter I11 show that 

t h i s  model does not always describe the soi l  resistance force, 

iii ( t )  , accurately f o r  a1 1 times t. 

The soi 1 model is shuwn i n  Figure (2.2). I t  consists of a 

s p r i n g  and a dashpot i n  parallel ,  thus 

Ri(t) = Si ( t )  + Di ( t )  (c. 1) 

Si ( t )  and Di ( t )  are the shear and dynamic resistance, respectively. 

The index "i " i ndi cates the 1 ocati on where the resi stance force 

acts. 

The sp r ing  i n  the soi 1 model r s  thought t o  have elasto-plastic 

progerties such tha t  

Si ( t )  = kiui*(t) 

where ki is the so i l  s t i f fness  a t  x = xi and 

fo r  ui(t) 5 qi 
ui*(t) = (C.3) 

max ui + qi - ui (t) fo r  ui( t )  - > max ui 

ui( t )  being the displacement of the pile a t  x = xi and time t; qi 

i s  the quake and max ui is  the maximum displacement reached a t  or 

before ti& t. 



I60 

I t  i s  further assumed that  

and tha t  

Sn(t)  > 0 (c.5) 

i.e. no tension shear forces are allowed t o  act  a t  the pi le  t i p ,  

x = xn. T h i s  i s  a reasonable assumption fo r  the soil  forces acting 

agaf n s t  the p i le  toe plate. The quantity kiqi  is the u l  tirnate shear 

resistance force and is denoted by Si A typical force versus 

displ acement re1 a t i  on resulting from the definitions i n  Equations 

(C.2) through (C.5) is shown i n  Figure (2.2). 

The dynamic o r  damping resistance force, Di(t), is  linearly 

proportional t o  the pi le  velocity, v i ( t ) ,  a t  x = xi, t h u s  

Di(t) = divi( t )  (c.6) 

where di i s  a damping coefficient. Again, i t  i s  assumed that only 

conpressi ve resistance forces ac t  a t  the pi le  toe. Figure (2.2) 

shows t h e  dampi ng vel oci ty re1 a t i  on graphi cal l  y . 
To investigate the validity of the above soi 1 model measurements 

were taken during driving a t  the pile bottom end, Both force and 

acceleration records are available. Also the pile t i p  force was 

measured as a function of pile penetration during a s t a t i c  load test .  

The force was always recorded a t  some distance above the pile toe 

plate t o  which the  accelerometer was connected. From these measure- 
M ments the soi l  resistance force, R n - ( t ) ,  acting against the pile 

toe plate during driving can be approximated by 



where F(t) is the measured force, a ( t )  is the measured acceleration 

and M?is the mass of the pi le  below the point of force measurement. 

Five representative records are selected fo r  investi gati on. 

One s e t  of measurements - ob tz i~ed  frcm a reduced scale pile - i s  

typical fo r  the soi 1 response i n  coarse grained so i l s  (see Table 

1.3 fo r  the so i l  profile).  Two records are from f u l l  scale pi le  

Ri-50 (see Chapters I and 111) where the soi 1 surrounding the p i l e  

t i p  was highly cohesive. The records were obtained immediately 

a f t e r  d r i v ing  and also a f t e r  a waiting period of three days. In 

a simi 1ar manner records were taken on f u l l  scale pi l e  Ri-60. Thi  s 

p i le  had a high point resistance due to a sandy gravel layer a t  the 

bottom of the pile. Table (1.2) gives the soi 1 profile fo r  both 

piles Ri-50 and Rj-60. 

I. Reduced Scale Pile- i n  Sand 

The discussion is i l lus t ra ted  i n  Figure (C.1). A t  the top 

of  t h i s  Figui-e a p ? o i  i s  shown of both velocity, v,(t), and 

M acceleration. The measured resistance force, R , ( t ) ,  computed 

from Equation (c.7) is plotted a t  the bottom ~f Figure (c.1). 

For further discuss~ons the index n is mi tted. 
M The first remarkable observation i s  tha t  R ( t )  has its maximum 

a t  the same time as  the velocity v(t) .  Thus, dynamic forces seem 

to  be pwsent. A f t e r  its maximum the measured resistance force 



decreases monoton'i cal l  y . Thi s i s i n  ageemen t w i  t h  the decreasjng 

velocity and corresponds a f t e r  zero vel oci ty to  the pi l e  rebound. 

The so i l  model under discussion requires three parameters 

t o  describe the behavior of R(t) i n  terms of u(t)  and v( t) .  These 

parsmeters (q,d and so) give Me theoretical resistance curve such 

tha t  i t  agrees w i t h  the measured curve a t  three points. Using the 

same approach as i n  Chapter I1 for  f i nd ing  the quake, i .e. assigning 

the displacemnt a t  maximum velocity t o  be quake, leads i n  t h e  

example of Figure (C.1) t o  

q = 0.08 (inch) 

With- . th is  cholce only two parameters are l e f t  t o  be determined. 

Selecting the time of both maximum veiocity and zero velocIty to, 
- 

f o r  obtain3 ng agreement between measured and theoreti cal resistance 

force then 

and 

However, 

and 

so  tha t  

and 



I n  the example of Figure (C.1) the so i l  parameters become 

So = 6.75 (kip) 

max D = 70.0 - 6.75 = 3.25 (kip) 

d = 3.25/8.3 = 0.39 (kipesec/ft) 

Using now Equation (C. 1 ) through (C.6) the theoretical resistance 

curve can be plotted; In Figure ( C . l )  both ~ ( t )  and S(t) are 

plotted and can be compared w i t h  the measured curve. Since no 

negative damping forces are allowed for  the bottom end of a pi le  

R(t) = S ( t )  when the velocity v( t )  is negative. The resistance 
M curves R(t) and R (t) agree quite well before and a t  zero velocity. 

.- 

After t h i s  time the theoretical curve decreases a t  a slower rate 

than measured. Certainly, a smaller quake could match t h i s  portion 

of the record better,  however, such a change would also affect  the 

quality of the match before maximum velocity. Furthermore, the 

resistance force is very sensitive to  changes i n  e i ther  the quake 

or  the displacement during unloading. An error of 0.01 inches i n  _ 

the displacement a t  the end of the record would amount t o  a difference 

of the theoretical resistance force of 12.5% of  the predicted 

u l  timate shear resistance. The displacement ' curve i s not very accurate 

fcr l a t e r  times, therefore, not much accuracy can be expected i n  pred- 

ic t ing the quake from the unloading behavior. 

To summarize the results obtained from t h i s  record: A maximum 

d a p i n g  force was found of approximately one half of the ultimate 



shear resistance. The match between theoreti cal and measured 

resistance force is good before zero velocity. The ultimate shear 
* 

resistance force So = 6.75 (kip) compares well w i t h  the point 

resistance under the s t a t i c  load t e s t  which is plotted i n  Figure 

(DW6a),(7.3 k i p s  a t  ultimate and 6.6 k ips  a t  maximum dynamic 

displacement). Also soi 1 st iffness and quake are i n  good agreement. 

2. Full Scale Pi le  i n  Cohesive Soil 

Two records taken on a pi le  i n  a cohesive soi l  are shown i n  

Figures (C.2) and (C.3). The records were obtained before and a f t e r  

a wai ti ng period, respecti vely . The fo l l  m i  ng characteri s ti cs are 

common t o  both records. 

. A t  time zero a forcc , S can be observed which m u s t  be due to  
P" 

the hammer precompressi on. For further considerations S is thought 
P 

t o  be a s t a t i c  force independent of veloci ty and displacement 'and i s ,  

therefore, disregarded, 
( S ~  = 3 k i p s  i n  Figure (C.2)). The 

resistance forces show a steep r i se  together wi th  the corresponding 

veloci t y  . After the maxi mum the resi stance force rapidly decreases 

t o  a magnitude not much greater than S Thereafter, an almost 
P 

steady strength increase can be observed. Th i s  strength increase 

corresponds to  the monotoni cal iy i ncreasi ng di spl acement whi le 

oscillations in  the force show some relation to  the velocity record. 

The velocity shown i n  Figure (C.2) reaches no zero w i t h i n  the 

time period considered b u t  a small value a t  the end of the record. 

Thus, de f i n ing  fo r  t h i s  case to t o  be the time of minimum velocity 

the match shown i n  Figure (C.2) is obtained. The soil  parameters, 



t h u s  determined, are: 

q = .12 (inch) 

So = 15 (kip) 

d = 1.24 (kip/fts) 

This  match is very poor imnediately a f t e r  the time of maximum 

velocity , Several reasons can be responsible, 

( i  ) The proportionality between damping force and ve1 oci ty 

holds only u n t i  1 time tm, the time of maximum velocity. Immediately 

a f t e r  this time damping forces become very small. 

( i  i ) High pore water pressures are building up during the time 

of the i n i t i a l  load application and are released slowly, thereafter, 

(i i i  ) A strength increase can be observed throughout the 

resi'stance force record. Since the velocity is positive and decreasing 

this strengtn gain must be due t o  the displacement gain. 

Comparing Figure (C.3) w i t h  Figure (C.2) i t  is observed that  

higher resistance forcks were acting a t  the pi le  toe although the 

displacements were smaller. Thus,  a s t rength  gain due to  the waiting 

period can be observed. A niatch was performed using t h e  same procedure 

q = ,096 (inch) 

So = 24 (kip) 

d = 2.5 (kip/ft*s) 

Ro = So + Sp = 29 (kip) 

As i n  Figure (C.2) the predicted so i l  forces i n  Fjgure (C.3) are t o  

large after maximum velocity and agree quite well thereafter. 

In Figure (C.6b) are shown the two p i l e  t i p  force versus pi le  



t i p  penetration curves obtained from s t a t i  c 1 oad t e s t  and correspondi ng 

to  the two records just  discussed. 

A t  ultimate the po-int resistance is 14 and 18 (kip) f o r  the cases 

i n  Figure iC.2) and (C.3), respectively. This compares t o  18 and 24 

(kip) from the dynamic measuren~nts . Thus, both dynamic resistances 

are h i g h  a t  about 25 to  30%. 

3. F u l l  Scale Pile w i t h  High Point Resistance 

Two cases where the so i l  consisted of a very hard grave' and 

sand layer are shown i n  Figure (C.4) and (C.5). The resistance force 

shown in  Figure (C.4) can be represented w i t h  a f a i r  degree of 

accuracy by the proposed soi 1 model. A small di fference occurs a t  
M the .second local maximum o f  the R ( t )  curve. A sensible explanation 

is  a further strength gain due t o  s ti 11 increasing d i sn l  acements. 

Differences i n  the unloading portion are again due t o  the h i g h  

sensi t ivi ty  of the soi l  model t u  small errors i n  quake and displace- 

ments. Th i s  was outlined i n  Section 1. 

A t f  me lag between velocity and force (a measurement inaccuracy 

discussed i n  Appendix B and Chapter 111) imposes problems on the 

match i n  t h e  f i r s t  portion of the record. In Figure (C.4) t h i s  

difficulty leads t o  determine the quake a t  the time of maximum force. 

A different way o f  match was used i n  Figure (C.5) namely by 

assuming that  the quake i s  greater than raximum displacement and then 

matching the maximum resistance values. The special feature of t h i s  

record are the small displacements (Note the change i n  scale),  and 

the smooth resistance force curve. Except for a time lag due t o  



measurement d i f f icu l t ies  the resistance force essenti a1 ly follows 

the behavior of the displacement curve. The f a c t  that  this 

proportional relation holds throughout the record indicates that  

only l i t t l e  or  no yielding occurred. Thus, the hammer d id  not supply 

enougfi energy t o  overcome the soi 1 resistance forces. Small damping 

forces can be observed a t  the time of maximum velocity. 

The s t a t i c  load tes t s  corresponding t o  the records of Figure 

(C.4) and (C.5) had t o  be terminated before the u1 timate load was 

reached. However, the so i l  stiffnesses from s t a t i c  and dynamic 

measurements can be compared. T h i s  is shown i n  Figure (C.6c) 

Apparently the soi 1 offered a stiffer resistance during the dynami c 

load application than durir?g the s t a t i c  t e s t .  Such a loading rate 

dependent behavior can be expected. Interesting t o  note i s  that  the 

so i l  l o s t  s t i f fness  during the waiting period; an effect  which is 

reflected i n  both dynamic and s t a t i c  measurements. 

The fo1 lowing conclusions can be drawn from the records 

y well the force versus 

displacement and velocity relation f o r  granular soi ls .  The unloading 

portion, however, is d i f f icu l t  to  match although t h e  model might  s t i l l  

hold. 

Cohesive s o i l s  present characteristic resistance force patterns 

which cannot be described by a simple spring - dashpot model. Further 

studies on how t o  mnief s ~ c h  so i l s  must be conducted, including 



other independent variables l ike pore water pressure o r  soil  dynamic 

effects.  The prediction of s t a t i c  capacity from dynamic records can 

give good results f o r  piles driven in to  granular soi ls .  I n  the 

cohesive s o i l s  as i n  Figures (C.2) and (C.3) it  is  seen that the 

shear resistance forces vary throughout the records and no indication 

is given-of the s t a t i c  resistance. A more rea l i s t i c  soi 1 model could 

improve th i s  si tuation, In  Chapter IV further discussion o f  t h i s  

problem i s  given w i  t h  respect t o  the results which can be expected 

by employing the present so i l  model i n  a wave analysis. I t  should be 

noted t h a t  an average value of the measured soil  resistance curve 

i m d i a t e l y  a f t e r  the maximum leads to a reasonable answer. One 

irnportmt observation is made when studying the dynamic and s t a t i c  

l e d  versus penetration curves plotted i n  Figures (C.6b and c). 

For cohesive so i l s  a strength increase is observed during the 

waiting period. The soi 1 s t i f fness  decreased, however, for the 

granular materi a1 . These effects weye mas ured both dynami cal ly 

and s t a t i ca l  ly , t h u s ,  justifying the proposed method of t a k i  ng 

dynamic measurements always a f t e r  a waiting i n  order t o  obtain 

meaningful predi c t i  ons on the s t a t i c  pi  l e  behavior. 



APPENDIX D 

Simpl i f i ed  Methods For Pred ic t ing  S t a t i c  Bearing Capacity 

In Chapter I e f f o r t s  were discussed on how t o  develop a s i ~ p l e  

method f o r  predi  c t i n g  ..s t a t i  c bear ing capac i ty  . Such a method u t i  li z- 

i n g  i n  a s p e c i a l  purpose computer would d i sp l ay  i n  t h e  f i e l d  t h e  

p red i c t i on  w i t h i n  a s h o r t  time a f t e r  the hammer blow. Thus, 

dec i s ions  could be taken during dr iv ing .  In t h e  fol lowing two 

previously  devef oped metnods (1 3) a r e  b r i e f l y  reviewed. The earlier 

methods were based on a r i g i d  p i l e  model. Using wave cons idera t ions ,  

i .e. employing an e l a s t i c  p i l e  model, two new computations schemes 

a r e  derived.  Resu l t s  from a l l  methods are given i n  Chapter 111. 

1 . - Rigid Body Models 

Suppose, a r i g i d  body of mass M is a c t e d  upon by a force F( t ) ,  

and a r e s i s t a n c e  f o r c e  R(t). If t h e  acce l e r a t i oq  of t h i s  mass i s  

denoted by a ( t )  then t h e  s t a t i c  bear ing capar i  ty , Ro, is g i  ven by 

R, = ~ ( t ~ )  - M a( to)  (D. 1) 

0 

(D.1) is given i n  Chapter I. The s i g n  convention is  shown i n  Figure 

( 1  Equation (D.1) is r e f e r r ed  t o  a s  t h e  Phase I pred i c t i on  

scheme, 

The r e s u l t s  obtained f r o m  the Phase I p red i c t i on  scheme were 

promising when compared w i  t h  the maxi mum bear ing  capaci ty determined 

i n  t h e  s ta t ic  load  test. However, t h e  r e s u l t s  d i f f e r e d  s u b s t a n t i a l l y  

from blow..to blow and i t  was found t h a t  smal l  changes i n  to, t h e  time 



of zero velocity , often amount t o  large differences i n  the 

predi c t i  ons . F i  gure (D. 2 )  i 1 1 us t ra tes  t h i  s sensi ti vi ty  of Ro t o  

changes i n  to. In t h i s  F i  sure are plotted the measured acceleration 

and the velocity and displacement obtained by integration. Also the 

measured force and the resi stance, R(t) , are shown where 

R ( t )  = F(t) - M a ( t )  (D.2) 

The point of zero velocity is indicated by a dotted l ine  i n  the 

force diagram, If t h i s  point of zero velocity were shifted even only 

a small time increment (due t o  measurement inaccuracies such a s h i f t  

is always introduced) then predictions ranging from 150 t o  200 k i p s  

could be obtained. 

This defect of the Phase I prediction method lead to  an 

averaging method referred t o  as the Phase 11 predi c t i  on scheme. 

Consider the velocity graph i n  Figure (D.2). A straight  l ine marks 

the trend of the descending velocity curve. Us ing  the slope of t h i s  

line instead of a(to) In Equation (D.1) the new prediction scheme 

becomes 
. tl + AT 

a ( t )d t  Ro = F(to) - 
t 1 

where t was chosen as the time of maximum velocity and the average 

was taken u n t i  1 the time of zero velocity ( t l  + bT = to). As a resul t  

of the averaging procedure the variations i n  the predictions from 

blow t o  blow were relatively smal:. Another method was proposed where 

the force F(t) is also t i m e  averaged, however, results were l i t t l e  

affected because of the relatively smooth force records. 



2. Elastic Pi le  Models 

The above methods used a rigid body as a p i le  model . To expl aSn 

and clar i fy limitations on these methods the traveling wave solution of 

the 1 inear, one-dimensional wave1 equation is u t i  1 i  zed. 

( i )  Phase IIA 

In Appendix A3 relations were developed by which the pi le  top 

velocity v ( t )  , can be expressed as a function of external forces. 
top 

I n  particular,  if a force, FA(t ) ,  is acting a t  the p i le  top then 

Equation (A3.27) can be used t o  compute vtop(t). Sini 1 arly , Equation 

(A3.29) expresses the pi le  top velocity as a function of a resistance 

force Ri ( t )  acting a t  x = xi and t i m e  t a t  the pi le  i n  upward direct  

direction. If i t  i s  assumed tha t  n resistance forces act  along t h e  

pi le  together w i t h  the force applied a t  the p i le  top then the 

resulting pile top velocity can be cal cul ated.*by superimposing the 

sol utions from Equations (A3.2? ,29). Thus,  w i  t h  r indi cating the 
2L time interval considerkd, i .e. r y  - < t - < (r + 1) 2L/c 

I t  i s assumed now tha t  the resistance forces, Ri (t) , are only 

due t o  shear. Effects of dynamic resistance forces w i l l  be included 

la ter .  Therefore, 

Ri ( t )  = Si ( t )  (D-5) 

and using the simplified expression fo r  a shear force as given i n  



A3.5, Equation (IU.46) , then 
'i Ri(t) = S. H ( t  - -$ 

1 9 0  

which means tha t  the quake is  assumed t o  be zero. Inserting Equation 

(D.6) into (0.4) yields 

Now, two different times, q and Q , are chosen so tha t  

t, = t, + 2L/c (0.8) 
2L 2L 

therefore, i f  - c tl. I - < ( r  + 1 )2L/c then ( r  + 1 ) 5 t2 - < (r + 2 ) 7 =  

The difference between the velocities a t  both times, hvtop, i s  

= v ( t2)  - vtop(t1) = c/EAIFA(tl + 2L/c) - FA(tl)  ""top top 

Th i s  expression can be simplified t o  yield 

+ 2L/c) + H(tl)3]1 (D. 10) 

The arguments of the step function terms on the left  hand side o f  

Equation (D.10) are non negative so tha t  



n 
4vtop = c/EA[FA(t2) + FA(ti) - 2 -k=l 1 ' s ~ , ~ ]  

which can be written as 

(D. 12) 

However, c2 = E/p and ALp = M, M being the mass of the pile. In 

.addition 2L/c = AT, i .e. the  time between tl and t2, thus ,  w i t h  

(D. 13) 

Equation (D.13) establishes a simple method fo r  computing t h e  

s t a t i c  bearing capacity, Ro, jf the force and t h e  acceleration a t  the 

pi le  top are known. Because of t h e  similarity between Equations 

(9.13) and (0.3) this method is referred t o  as the Phase IIA 

predi cti on scheme. 

Two differences can be observed between Equations (D.13) and 

(D.3). First, t h e  force term has t o  be calcul ated as an average df 

t h e  forces where the acceleration average s t a r t s  and ends. The sec- 

by applying Equation (D.1) Equation (D.7) has to  be differentiated 

w i t h  respect t o  t ine  and the r e s u l t ,  the acceleration of the pi le  

head, substituted in to  Equation (D. 1 ) . 



where s ( t  - a) stands for the Dirac &function which is fero Pi;r @.a. 

Inserting (D.14) into (0.2) and avoiding times to such that 
X- - jL 

- 
f o r  j = O,1 , r . .  ,r and t = 1,2,. , . ,n 

C 

yields a t  t = to 

.The second term consists of the slopes of the force record taken 

a t  time intervals of 2L/c. These slopes of the force record change 

rapidly over short  times due to  vibrations i n  t h e  hammer cushion 

system (see Appendix B). Therefore, i t  is not surprising that the 

results from the Phase I method changed 1 argely whenever the time 

to was changed by small amounts. 

In deriving the Phase IIA prediction scheme dynamic resistance 

forces were not considered. Such forces can be thought. of being 

1 i nearly proportional t o  the p i  1 e velocity . Thus, Equation (0.13) 

is only applicable a t  a l l  t i m e  pairs tl and t 2 i f  ei ther  the dynamic 

resistance forces are identically zero because of special soi l  pro- 

perties o r  the p i l e  is not moving. Practically, there exists no 

case of pi le  driving without velocity dependent forces and the p i  l a  

motion ceases only a f t e r  the pile has rebounded and a l s ~  :-hear 

forces reached zero. However, due to  the negative partf cir velocities 

of waves caused by resistance forces the velocities along the pile 

are usually small - positive or negative - when the pi l e  top velocity 

has reached zero. For t h i s  reason a good approximation t o  the 



prediction of s t a t i c  resistance forces can be found i f  tl i s  chosen 

t o  be t h 2  time of zero velocity a t  the p i le  top and t2 a t  a time 

2L/c la te r .  

I n  analyzing f i e ld  meas?lrements i t  was frequently found tha t  

zero velocity was not reached even fo r  long times a f t e r  impact. 

T h i s  non negati ve vel oci ty can be explained due to  measuring i n -  

accuracies as explained i n  Appendix B. In such cases a prediction 

can b e  obtained by taking tl . as the minimum velocity encountered. 

Since only the difference velocity between tl and t2 affects the 

result no major error  is inzroduced into the computation. 

( i i )  Phase 111 

The studies on wave propagation i n  Chapter I1  and i n  Appendix 

A3 showed tha t  the Measured Delta curve ref lects  the effects of 

soi 1 resistance forces a t  the pile top. Figures (2.5,6,7) show three 

such Measured Delta curves. Also Resistance Delta curves were 

investigated which display an approximate pi le  top force effect  of 

a certain wsistance force acting a t  some point along the pile. 

I t  i s  naw intended t o  show how t h e  concept o f  Delta cuvves 

s t a t i c  bearing capacity. In such a simplified analysis i t  i s  not 

possible t o  f i n d  where t h e  resistance forces act .  Therefore, the 

portion of the Measured Delta curve w i t h  t - c t, + 2L/c (t, being 

the time of maximum velocity a t  the pile top) is of minor interest .  

However, important informati on regarding the total  amount of s t a t i  c 

and dynamic resistance forces can be obtained f r o m  the Measured 



Delta curve for t, + 2L/c 2 t 5 tm + 4L/c. 

A f i r s t  assumption i n  the derivation of the Phase I11 prediction 

scheme is t o  neglect any influence of s k i n  damping forces. That 

t h i s  assumption i s  a t  l eas t  a good approximation is proven by the 

~ s i l l t s  i n  Chapter 111. Next i t  w i l l  be shown how the Measured Delta 

curve can be modified such that  the effect  of s k i n  shear forces 

can be converted t o  an equivalent effect  o f  pi le  t i p  forces. This 

then w i l l  reduce the problem t o  a pi le  w i t h  only pi le  toe resistance 

forces. 

Consider Figure (D.3a) which s'hows a theoretical Delta curve 

fo r  a shear force 5, acting a t  the pile t i p .  (Such a theoretical 

shear force is discussed i n  A3.5). A shear force having the same . .T;prr - 
magnitude acting a t  x = xi produces a Resistance Delta curve as shown 

i n  Figure (D.3b). The difference between these two Delta curves 

is the ea r l i e r  pi le  top effect  of the upwards traveling wave generated 

by the skin force. A modified Delta curve can be obtained by delaying 

the ea r l i e r  effects by a time 2(L - xi)/c. Figure (D.3c) i l lus t ra tes  

this  procedure. Analyti ca1 ly,  the Modified Delta curve can be 

obtained from the Measured Delta curve, ~ ( t ) ,  and the p i  l e  top veloci t y  , 
vA(t) ,  u s i n g  

v,( t - 4L/c) 
h O d ( t )  = ~ ( t )  + ~ ( t  - ~ L / c )  - 1/2 max vA ~ ( t ,  + ~ L / c )  

(D. 16) 

which is valid for  tm + 2L/c - c t 5 tm + 4L/c, and nnly if s k i n  forces 

are of the step shaped type as i n  Figure (0.3). The t h i  rd t e n  i n  ' 

t h i s  equation is necessary for not delaying effects  of the already 



returning waves a f t e r  reflection a t  the bottom end. (This is a 

similar approach as used i n  the derivation of bred(t) i n  A3.6). 

In further derivations of the Phase 111 method the subscript "mod" 

is dropped and i t  is understood that  ~ ( t )  means the modified 

Delta curve. 

If a71 resistance forces act  a t  the bottom end cf the pi le  then 

the i r  e f fec t  can be f e l t  a t  the pi le  top a t  a t i m e  L/c la te r .  Thus, 

the Measured Delta curve is gi ven by 

~ ( t )  = 2[Dn(t - L/c) + Sn(t  - L/c)] (D.17) 

where the notation of Appendix A3 is used. The velocity of the pi le  

t i p  tha t  results from the velocity vA(t), imposed on the p i le  top 

and from both shear and damping forces acting a t  the t i p  is given 

where SnSd is  as defined e a r l i e r  the ultimate shear resistance a t  

the p i l e  top. (This i s  Equation (A3.43) derived in  A3.5). Equation 

(0.18) is  valid for  L/c 5 t 5 tnSo, i.e. a f t e r  the quake is reached 

The time t,, sos i.e. the time o f  zero velocity a t  the p i le  t i p  can be 

determined f r o m  Equation (D. 18) 

vn(tn.o ) = 0 = 2vA(tnS0 - L/C; (C/EA)S,.~, (D.19) 

However, S, can be expressed i n  t e r n  of the Measured Delta curve 
¶ 0 

by using Equation (D.17) and by observing that  a t  time t, damping 
¶ 0 

is zero and Sn(tnSo)= Sns0. Thus, 



2v~(tn,p - L/c) - (c/eEA)~(t + L/c) = 0 n so (D. 20) 

or  rewritten 
'EA 

f ,o + L/c) = 4, vA(t - L/c) 
C. 

(0.21) 

Equation (0.21) shows how to  f i n d  the time of zero velocity a t  the 

pi le  t i p  from pi le  top velocity and Measured Delta curve. A comment 

i s  appropri ate. Suppose tha t  the pile had a fixed bottom end (this 

is the condition which yields the largest  possible pi le  resistance 

forces assuming tha t  there are no forces acting a t  the pi le  which 

could produce a negative pi le  permanent se t ) .  A t  a fixed end 

reflection waves are generated such that no movement occurs. This 

constraint requires a reaction force, Rf(t), of twice the magnitude 

of the forces i n  the wave. Therefore, 

i f  i t  is assumed tha t  the only wave arriving is  due to  the hammer 

impact. The Measured Delta curve resulting from a fixed end i s  

then 

Hence, whenever the Measured Delta curve exhibits a value four 

times larger than the force proportional velocity a t  a time 2L/c 

e a r l i e r  then no motion of the pile t i p  w i  71 occur a t  a tiine L/c 

ear l ie r .  

In the usual case of pile d r i v ing  a motion of pi le w i l l  always 

occur before the fixed end condition, Equation (D.23), i s  satisfied.  

Such a motion is  necessary to  activate the resistance forces. Once, 

however, the resistance forces have reached a value large enough or 



once the applied velcci tyS vA(t - 2L/c), became small enough then 

Equation (D.21) w i l l  be sat isf ied.  (An exception is the case where 

the hammer applied forces are  so  large that  the motion w i l l  not 

cease before time tm - 3L/c; t h i s  case w i  11 be discussed :ater). 

Once the time of zero velocity a t  the pi le  t i p  has been 

determined the ultimate shear resistance force can be f s n d  using 

Equation (D. 17) 
-1 

S n,o = +(tn ,, + L/c) (D. 24) 

Also, the maximum damping, max D, force which acts a t  the pi  l e  

t i p  a t  the time of maximum t i p  velocity can be found. Since the 

effect  of the maximum pi le  t i p  velocity is  f e l t  a t  time tm + 2L/c 

a t  the p i le  top one obtains again from Equation (D.17) 

max D = ~ ( t  + 2L/c)/2 - Sn,, m (0.25) 

To i l lus t r a t e  the prediction scheme as developed s o  f a r  a 

computation example i s  g i  ven . The accelerati on and force record 

used i s  the same as in the computation example i n  A3.7. In Fi gure 

(D.4) both Measured and Modified Delta curve are shown together 

w i t h  the force proportional t o  velocity and the curve obtained by 

mu1 tiplying the velocity by 4c/EA and s h i f t i n g  i t  over 2L/c. The 

point where both curves in tersec t  is  a t  a time 3.91 L/c and a t  a 

Delta curve vat ue of 292 kips. Th i s  i n t ~ r s e c t i  on represents the 

solution t o  Equation ( ~ . 2 1 ) .  The maximum Delta is 422 k i p s ,  t h u s  

s*,o = 146 (kip) ( f rom Equati on D. 24) 

max D = 65 (kip) (from Equation D.25) 

The pre~ompressi on force, s~ = 41 k i p s ,  had t o  Be subtracted i n  t h i s  



method as we l l  as i n  the wave analysis (see Appendix 43) so tha t  the 

predict ion of s t a t i  c capaci t y  becomes : 

Ro = 146 + 41 = 187 (kip). 

For the same record analyzed by wave analysis the resul ts were: 

Ro = 198 and max D = 52 (kip). 

Special consideration was necessary for  cases with low dr iv ing  

resistance i n  the Phase I I A  derivation. Xn such cases no zero veloc- 

i t y  was encountered a t  the p i l e  top throughout the analyzed record. 

A s imi lar  d i f f i c u l t y  can arise i n  the Phase 111 method. Suppose, t h a t  

t > 3L/c + tm then the fixed end condition (D.23) i s  no t  sa t i s f i ed  
R*O  - 

within the considered t i m e  in terva l  (t 2 4L./c + t,). An approximate 

predict ion scheme for such cases i s  t o  neglect presumably small dynz- 

m i  c force effects a t  the p i l e  top a t  t i m e  3L/c + tm (the maximum 

damping e f f e c t  i s  displayed i n  the Measured De1 t a  curve a t  time 2L/c + 

t). This assulnption i s  derived from studies a t  p i les w i th  low shear 

resistance and re la t i ve ly  high damping as discussed i n  Appendix C. I n  

order to avoid using a local extreme value f o r  predicting the ult imate 

shear resistance an average Delta i s  taken over some time before and 

a f t e r  tm + 3L/c . Thus, 

tm+3. 5L/c 

s o,n = gLl ~ ( t )  d t  (0.26)  

tm+Z. 5L/c 
An example t o  th i s  cornpu+,ation scheme i s  given i n  Figure (D.5). 

It can be observed tha t  (4EA/c)vA(t - 2L/c) i s  always. greater than 

~ ( t )  , wi th in  the t i m e  interval  tm + 2L/c - c t - < tm + 4L/c. The 

predi ct ions taken f r o m  Figure (D.5) are: 



maxD = 72 andS = 46 (kip). 
n ,o 

The Phase I11 method is  used as an i n i t i a l  estimate on the 

magnitudes o f  shear and damping forces i n  the wave analysis , disc- 

ussed i n  Chapter 11. Table (D.1) gives the results from both Phase I11 

and analysis f o r  the cases discussed i n  Chapter 111. I t  can be seen 

that the Phase I11 method gives good results i n  most cases. 



APPENDIX E 

Computer Program 

I n  the following a brief description i s  given of the comp- 

uter program used for  predicting the so i l  resistance forces from 

maasurements of both pi le  top force and acceleration. The program i s  

demonstrated using block diagrams and short  descriptions. Only the 

main features of the prograih are discussed. Emphasis is placed on a 

description of both i n p u t  and output, 

The program consic,% of two parts. The f i rs t  part i s  an 

ALGOL 60 routine employed for  reading the dynamic data and the pile 

parameters, A l l  necessary arrays are declared i n  t h i s  program, t h u s ,  

dynamic a1 f gcati on is possible. 

The second part of the program consists of several FORTRAN V 

subroutines. A subroutine MAIN controls the actual computation process. 

1. ALGOL Program PREDI'C 
One force record and two acceleration curves (see MAIN) are 

needed as dynami c i n p u t  . The continuous records are dizi ti zed by pl  ac- 

ing points on the traces such tha t  l inear  interpolation betweer, these 

points closely reserbles the original record. Both the time and the 

function values are then determined i n  units of 0.02 ( i n c h ) .  

Frequently, the portion of the record before impact (the 

acceleration i s  still  zero while the force is already increasing as 

shc'ir'n i n  Appendix B) is long. I t  would be unreasonable to  include 

this portion of the record i n  the dynamic analysis. Therefore, an 



input parameter SUB is included which i s  the t i m e  a t  which to  s ta r t  

the dynamic computations. Also, the maximum time is limited by an 

i n p u t  value MAXT. 

The following i n p u t  i s  necessary: 

N1 ,N2,M p,e -.,-kn.- ::ir!,rur: - C  values of the f i r s t  accelerati on, 

second acceleration and force trace, respectively. 

S1 ,S2,S3,S4 Four s t r i n g  variables describing pile, blow, 

soi 1, and transducers , respectively . 
SUB,MAXT Time a t  which to  s tar t  and terminate computat- 

MASS 

AE ,LE 

ions, respecti vely . 
Calibration constants for first acceleration { A I )  

and second acceleration trace (A2) , respectively. 

. Calibration constants for force values and 

length to time conversion, respectively . 
Mass of pile 

&oss sectional area and length o f  pile, resp- 

ecti vely . 
Force t i m e  vector i n  units (3 = 1,2,. . . ,PI). 

Vector of f o r  

Acce1.-1 time vector i n  u n i t s  (3 = 1,2, ..., N l ) .  

Vector of acce1.-1 values i n  u ' s  (J= 1,2,. . , N i l ) .  

Accel . -2 time vector i n  units (3 = 1,2,, . . ,N2). 

Vector of acce1.-2 values i n  u's (J= 1,2,. . ,N2). 

(If N2 = 0 then no values for TZ(3)and A2(3) 

have to  be gi Yen). 



Procedure : 

From MASS and LE together w i t h  ct, = 2 and N = 10 ( N  being 

the number of elements t o  be used i n  the lumped mass analysis) the 

t?me increment DET i s  computed (see Appendix Al). From t!e total  

time interval (MAXT - SUB) one obtaizs NT, the number o f  time 

increments necessary. PREDIC now cal l s  MAIN. 

2, FORTRAN Subroutines 

MAIN controls the computati on process. The following 

subroutines are called: 

ANALY S For lumped mass analysis (see Appendix A1 ) - . 

DISTRI For computs ng shear resi stance d i  stri bu t i  ons . 
LEASTS For performing a Least Suare Analysis. 

PILEPL For plotting results. 

RESIST For finding so i l  resistances (Eqs (A3.30,38)). 

SMOOTH For sn~oothing a given function. 

STAT1 C For finding a theoretical load versus penetr- 

a t i  on curve see Appendi x A2) . 
I n  the following these subroutines and MAIN are discussed 

i n  more  detai l .  



(a) ANALYS (see Appendix A1 ) 

Problem: For given p i l e  top acceleration (velocity , displacement), 

pi l e  prcperti es and resistance force parameters f i n d  

the pi le  top force and displacements along the pile.  

Input: A(1,J) Pi le  top acceleration (J = 1,2 ¶... *NT) 
- 

v(7 ,J) Pile t b p  velocity (3 = 1;2, ..., NT) 

D(l,?) Pile top displacement (J  = I ,P,. . . ,NT) 

K Element sti ffness 

MA Element mass 

N Number of pi 1 e elements 

NT Number of ti me i ncrements 

Procedure: see Block ' D i  agram 

E N D  f 



(b) DISTRI (see A3.6) 

Problem: Compute corrections on predi cted shear resistance forces 

and damping coefficients for  given Error Delta curve 

and displ aceinents and vef oci t i e s  from corresponding analysis. 

Input: DN(J)  Error Delta curve 

Previ ous ultimate shear resistance forces 

co(I) Previous damping coefficients 

ITIME(1) Timevalue atwhich f u l l  e f f e c t o f  ultimate 

shear resistance RE(1) can be f e l t  a t  pi le  top. 

v(I,J) Velocity of i - t h  element a t  time J*DET 

D(I,J) Displacement o f  3 9 t h  element a t  time J*DET 

DAMP(I) Damping force t o  e f fec t  p i le  top a t  time 

ITIME(1). 

DET Time increment. 

N, NT As introduced i n  PRECIC 

Procedure: 

Compute C- and €-Matrix. Compute differences AD between prop- 

osed and actual ly obtai ned damping forces. Reduce Error 

Delta curve by AD effects. Reduce Error Delta curve by the 

effects  of returning ref lec t i  on waves due to  shear forces. 

Compute corrections on ultimate shear resistance forces 

and f i nd  new damping coeffi ci en.ts . 



( c ) LEASTS 

Problem: Conipute coeffi c i e n t s  A1 , A2, A3 such t h a t  

A1 + A2 + A 3  = 1 

and 

2 I' I ~ ( t )  1 d t  becomes a minimum 

where 

b ( t j )  = AI*DN1 (J)+AZ*DN~(J)+A~*DN~(J) 

Input: DNl(J) Error Delta curve f o r  first damping d i s t r i b u t i o n  

ON2 (3) Error Del ta  curve f o r  2nd dampi ng d i s t r i b u t i  on 

DNS(J) ' Error Del ta  curve f o r  t h i r d  damping d i s t r i  b u t i  on 
-. 

DET As i n  PREDIC 

NT . As i n  PREDIC 

Procedure : 

Generate a weighting func t ion  w( t )  . 
S e t  up Normal Equations. 

Output: A l ,  A2, A3. 

(d) PILEPL 

Problem: P l o t  measured and p red i c t ed  pi:@ top  force as a func t ion  of 

time. 

Input: FTOP(3) Measured pi  le  t o p  force 



F ( 1  ,J) Predicted pile top force 

NT As i~troduced i n  PREDIC 

J = 1,2,.-r,NT 

(e) RESIST (see Equations (A3,30,38) 

Problem: Compute shear and damping resistance force fo r  element INOW 

a t  time JNOU*DET. 

Input: INOW Element nuinber 

JNOW Time increment number 

RE(IN0W) Ultimate shear resistance of element INOGI 

QO(IN0W) Quake of element INOW 

CO(IN0W) Damping caeffi cient of element INOW 

V(INOW,J) Velocity a t  element INOW 

D(INOW,J) Displacement a t  element INOW 

J = t,2, ..., JNOW 

Procedure : 

So1 ve Equati on (A3.30). 

Solve Equati on (A3,38). 

Outpu t :  RESI Shear resistance a t  element INOW and time JNOW* 
DET 

D I Damping resistance a t  element INOW and 

time JNOW*DET. 

(f) SMOOTH 

Problem: Time average a given curve t o  obtain a smooth curve. 

Input: ROUGH(J) Original function. 



I START F i r s t  v a l u e  of ROUGH t o  be  i n c l u d e d  i n  smoothing. 

ISTOP Last v a l u e  o f  ROUGH t o  b e  i n c l u d e d  i n  smoothing. 

ITVAL Time i n t e r v a l  DET*ITVAL is t o  b e  used  6s i n t e r v a l  

o v e r  which t o  i n t e g r a t e  for  smoothing,  Odd i n t e g e r  

COT Option:  CUT = 1 means no  change  of f u n c t i o n  b e f o r e  

ISTART. CUT = 2 means set a1 1 f u n c t i  on v a l  ues  t o  

zero b e f o r e  ISTART. 

P rocedure  : 
A. J E  . 

1 n Q g r a t e  ROUGH o v e r  time* i n t e r v a l  ITVAL*DET and d i  v i  d e  

r e s u l t  by ITVAL*DET. T h i s  y i e l d s  t h e  new f u n c t i o n  v a l u e  a t  

the m i d d l e  of t h e  ti= i n t e r v a l .  The new f u n c t i o n  is  c a l l e d  

SMOOTH. 

Output:  SMOOTH(J ) New smooth f u n c t i  on between ISTART and  ISTOP. 

E i t h e r  SMOOTH(J) = 0 
or  J < ISTART 

Or  SMOOTH ( J  ) = ROUGH (3)  

and SMOOTH(J) = ROUGH(3) f o r  J > ISTOP 

,(g) STATIC (see Appendix Aii)  

Problem: F o r  g i v e n  s ta t ic  soi l  r e s i s t a n c e  p a r a m e t e r s  and  p i l e  

s t i f f n e s s  compute stati c l o a d  v e r s u s  d e f l e c t i o n  curve .  

Inpu t :  RE(S) S h e a r  resistance force a t  i - t h  e l e m e n t  

Q o ( I )  Quake a t  i - t h  e l e m e n t  

I( S t i f f n e s s  of p i l e  e l e m e n t  

N As i n t r o d u c e d  i n  PREDIC. 



Procedure: see Block Diagram 

Set up pile stiffness 

I Impose P'  on p i  Ye top 

Compute pi 1 e def Y ecti ons 
X ' ( 1 )  for all elements 

Find element where a 
soil spring yields 

first  

Compute pile top force P(S) 
and pile t c p  deflection x(J) 
for first yief d. 

I Modify pile stiffness 
matrix 



Ckl MAtN bee.  Appendix A31 

Problem: For given pi le  properties and both measured force and 

acceleration f i n d  shear and damping resistance distribution 

f a r  a best match of predicted w i t h  measured top force, 

Also, predict s t a t i c  load versus deflection curve. 

Plot and p r i n t  p i le  top forces both measured and predicted. 

Pr int  predicted pile displacements, velocities and forces 

below pi le  top. 

Input: A1 (J) Accelerati on I 
measured a t  opposite s i t e s  of 

AZ(J) Acceleration 2 n4 ?e 
I" 

FTOP(J) , Measured pi le top force 

DET Time increment 

N Number of pile elements 

NT ~bmber of time increments 

LE Length of pi le  

. MASS Pile  Mass 

Procedure : see Block Diagram 

"Prepare" stands f o r  the following manipulations: 

Use E =30.8 (psi) and compute pi le  element stiffnesses K. 

Corrpute element mass MA. Average both acceleration curves. 

Integrate acceleration Swi  ce. Subtract precompression force 

from force record. 



S T A R T  0 
Compute Measured Del t a  

Smooth 

Apply Phase 111 

L = l  

I 
i l e .  all damping at toe 

Compute Soi 1 Parameters 

Analys 

Compute Error Delta 

Smooth 

I Correct Predi cti ons I 

Compute Error Delta 





Compute uni form dampi ng ULI, 
i COUNT = 1 I 

I 
I 

Leas ts 

Analys 

S t a t i  c 

P l o t  and p r i n t  
I 
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Description 

- 
Brown Sit t 
Gray S i l t  

L 

Grv S i l t  
Gray Clayey Si l t  

D 

Gray Sf 1 t 
Gray Sf 1 t 

II) 

Gray Clayey St t 
Gray Gravelly S i l t  

I) Grv Sandy Si 1 t 
Gray Sandy S i  1 t 
Gray S i l t  and Clay 

m 

Gray S i l t  and Clay 
Gray. Gravelly Clay 

II 

Grqy Gravel ly Clay 
Cray S i  l t and Clay 

Y 

Gray Sandy Si l t  
Gray Clayey Silt 

TABLE 1 , I :  SOIL CHARACTERISTICS AT TEST SITE IN TO!,EDO 





TABLE 1.3: SOIL CHARACTERISTICS AT TEST S I T E  FOR REDUCED SCALE P I L E S  



200 

P i l e  No. P i l e  Name 9 1 9s 41 o 

531 - 76 

F-30 

F- 30A 

F-50 

F-50A 

F- 60 

F-60A 

Cincinnati 

272 Toledo 

17 Logan .12 .;2 , l o  

Chi 1 l i  cothe 

!?i -5CI 

R i  - 50A 

R i  -60 

R i  -@A 

Not l i s t e d  values can be obtained by interpof ation 

TABLE 2.1 : TABULATION OF QUAKES USED I N  PREDICTION ANALYSES 



DATA . PILE NAME DATE DATE LOAD a DATE OF SOIL LENGTH L 
DRIVEN TESTED SET NO. DYN. MEAS. 

C- 1 
531 -70 
531-76 
531 -83 
F-30 
F- 30A 
F- 50 
F-50A 
F-60 
F-60A 
Cincinnati 
272 Toledo 
TO- 50 
TO- 50A 
'TO-60 
TO-60A 
Logan 
W-56 
W- 76 
Chi 11 i cothe 
Ri-50 
Ri-50 
R i  -60 
Ri-6OA 

G. Sa, 

AREA A HAMMER 
 IN^ 

REMARKS 

Fluted 

pecl . 
h, I 

pecl . 
>:s: 

A l l  p i l e s  were o f  12-inch diameter pipe. G.Sa. Gravelly Sand i)-12 Delmag 
S i  81 Sa S i l t  and Sand L.B. L inkbel t  440 
S i  & C S i l t  and Clay 
G & S Gravel and Sand 

TABLE 3.1 : DESCRIPTION OF FULL SCALE TEST PILES 



DATA 
SET NO. 

PILE NAME DATE DRIVEN DATE LOAD 
TESTED 

DATE OF SOIL LENGTH L 
DYN. MEAS. FT 

REMARKS 

2 Cross Sectional A r e a  = 1.7 in for a11 listed piles. 

TABLE 3.2:  DESCRIPTION OF REDUCED SCALE TEST P ILES 



DATA PILE LOAD TEST LOAD TEST PRECOMPRESSION PREDICTED PREDICTED TOTAL MAX. 
SET NO, NAME RESULT AT RESULT AT FORCE SHEAR STAT I C DAMPING . 

max dA ULTIMATE' FORCES RESISTANCE FORCES 
Rd Ro s, , so Ro max D 

- 

3 531 -76 15 1 198 18 141 159 15 
\ 5 F-30 97 103 33 55 88 39 

6 F- 50 107 114 30 106 ;36 24 
7 F-50 172 224 29 138 167 4 1 
8. F-50 200 238 . 52 178 .230 52 
9 F-60 1 76 204 29 171 200 25 

10 F-60 174 242 40 158 198 52 
11 C i  nc i  nnati 137 190 39 122 161 17 
12 272 Toledo 1 83 221 66. 138 229 22 
122 272 Toledo 183 221 66 138 204 22 
13 TO-50 .60 69 26 36 62 57 
14 TO-50 9 3 94 35 86 119 88 
15 TO-60 32 43 29 26 55 6 9 
16 TO-60 75 86 2 5 9 4 119 106 
17 Logan 165 220 13 167 180 54 
18 W-56 90 9 2 20 123 I43 125 
19 W- 76 125 160 2 2 1 39 161 141' 
1 9  W-76 125 160 2 2 129 15 1 127 
20 Chi 11 1 cothe 152 207 18 133 151 18 
2 1 R i  A50 40 46 2 3 2 2 45 88 
22 R i  -50 64 64 15 70 85 105 
23 R i  -60 1 76 , 3 22 167 189 92 
24 R i  -60 174 -3 9 185 194 48 

l U l  t imate may be defined here as the maximum value obtained i n  the load t e s t  
20btained by Inspection 
3Load t e s t  incomplete ALL RESULTS I N  KIPS 

TABLE 3.3: SUMINRY OF RESULTS FROM WAVE ANALYSIS 
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METHOD SLOPE Intercept CORREI-ATION 
m-+ (I, -(kips) COEFFICIENT 

b +-g. 'r 

Phase IIA 0.998 20.146 -19 .;_+22 .83 

Phase 111 0,867 k0.108 -7 +,I7 .87 

Analysis 0.949 20.067 -11 +I0 -94 

Enging. News . 33 +74 .29 

Gow -32 +74 -36 

Hiley .92 +14 .72 

Paci f i c Coast 1.04 +1 4 .76 

Jambu 

Dani st? -77 

Gates 

TABLE 3.6: STATISTICAL PARAMETERS FOR SIMPLIFIED METHQDS AND 
ENERGY FORMULAS (1 6) 



ELEMENT NUMBER 

DATASETNO. 1 2 3 4 5 6 7 8 9 10 EA/c 

3 0 0 0  0 ,017 0 0 0 .I73 .I48 10.5 
5 0 0 0 0 ,025 0 0 0 ,160 ,158 17.8 
6 0 0 0  0 .lo4 0 0 0 ,129 -317 17.8 
7 0 0 0 0 0 0 0 0 ,158 ,150 17.8 
8 0 0 0  .009 ,081 ,046 ,049 .055 ,055 .090 17.8 
9 G O O  0 . ,003 0 .001 .024 .028 ,140 17.8 

10 0 0 0  0 .001 ,005 ,003 0 ,560 ,394 17.8 
11 0 0 0  0 ,134 0 0 0 0 ,041 12.1 
12 0 0 0  0 0 0 0 0 .O . ,254 12.1 
13 0 0 0  ,032 0 0 0 .I14 ,234 ,122 17.8 
14 0 0 0 ,435 0 0 0 0 ,112 .412 17.8 
15 0 0 ,157 ,012 0 0 .001 ,008 0 .554 17.8 
16 0 0 ,312 0 0 0 0 0 .431 .424 17.8 
17 0 0 ,009 0 0 go12 0 .020 ,025 .455 12.1 
18 0 0 0  ,021 ,445 ,032 ,040 ,047 ,042 1.312 72.7 
19 0 '072 ,053 0 ,308 0 ,042 0 0 2,370 12.1 
2 0 0 0 ,110 0 0 0 0 0 0 .260 12.1 
21 0 0 0  .lo0 0 0 0 0 ,263 ,292 16.9 
22 0 0 ,039 0 0 0 0 0 ,246 ,309 16.9 
23 0 0 0 ,  ,087 0 ,013 0 0 0 .338 16.9 
24 0 0 o t  ,110 ,016 .017 ' ,018 ,019 ,020 .I17 16.9 

TABLE 4.1: DIMENSIONLESS DAMPING COEFFICIENT dn/(EA/c) AS DETERMINED BY WAVE ANALYSIS 



ELEMENT NUMBER 

DATA 1 2 3 4 5 6 7 8 9 10 Element Enclosed 
SET length cross 
NO. f t  sectional 

area 
i n2 

3 0 0 0 0 .18 0 0 0 1.82 1.55 8.20 28 ( a t  t i p 1  
5 0 0 0 0 .45 0 0 0 2.86 2.80 3.25 128 
6 0 0 0 0 1,85 0 0 0 2.29 5.65 3.25 128 
7 0 0 0 0 0 -  0 0 0 2.80 2.68 5.05 128 
8 0 0 0 .I6 1.44 .82 .88 ,943 .99 1.60 5.05 128 
9 0 0 0 0 ,06 0 ,02 '43 .49 2.50 5.95 128 

10 0 0 0 0 .03 ,09 .05 0 -10 6.97 5.95 128 
11 0 0 ,  0 0 1.62 0 0 0 0 .50 6.90 113 
12 0 0 0 0 0 0 0 0 3.17 3.17 5.40 113 
13 0 0 0 '56 0 0 0 2,03 4.17 2.17 4.90 128 
14 0 0 0 7.75 0 0 0 0 2.00 7.35 4.90 128 
I5 0 0 2.81 .20 0 0 .02 .I4 0 9,89 5.90 128 
16 0 0 5.55 0 0 0 0 0 7.67 7.54 5.90 128 
17 0 0 .06. 0 0 . I4 0 .24'  -30 5.50 5.70 113 
18 0 0 .  0 ,25 5.37 -39 .48 ,57 .51 15.84 5.50 113 
19 0 .87 .64 0 3.70 0 .50 0 0 28.6 7.50 113 
20 G 0 1.33 0 0 0 0 0 0 3.15 4.05 113 
2 1 0 0 0 1.67 0 0 0 0 4.44 4.93 4.90 113 
2 2 0 0 .65 0 0 0 0 0 3,90 5.22 4.90 113 
23 0 0 0 1.47 0 .23 0 0 .29 5.70 6.15 113 
2 4 0 0 0 1.85 .28 .29 .30 .32 .34 1.97 5.70 113 

I 

TABLE 4.2: NATURAL DAMPING COEFFICIENTS d,[kips/ft/secl AS DETERMINED BY WAVE ANALYSIS 







Column No. 1 2 3  4 5 6 7 
Soi 1 First Damping Second Damping Thi rd Damping From Column 3,5,6 

Parameter Distribution Distribution Distribution Final 
Ele'lement No. Initial Final ' Initial Final Initial & Final Distribution 

TABLE A3.2: I SOIL PARAMETERS PREDICTED (F-60, BLOW NO. 26-A) 



CUSHION STIFFNESSES k i n  ki ps/i nch 

Appl i ed Force Transducer Oak 15/15/5 Phenol 
k ips  3-4 5-6 (Delmag D-12) 11 "9/2.5ff 

Link tiel t 440 

100 4,600 3,500 1600 8,600 

150 7,250 5,500 2400 9,300 

200 10,000 8,000 3300 11,600 
. .  . . 

VEIGHTS of RAM and ANVIL i n  k i p s  

Ram and Anvil 

Delmag D-12 3.50 

Link  Belt $40 4.71 

Capblock and Adaptor 

1.20 

1 .I0 
. . . . .  . . .  

TABLE 8.1 : CUSHION STIFFNESSES AND HAMMER WEIGHTS 



/F PILE BLOW LENGTH PUl t  AVG. HAMMER fl=k f 2 = 4 9 . 4 j r  f 3  f4  MEAS. ERROR 
NO. FT . KIPS t 

KIPS l/s 1 /s 1 /s 1 /s 1 /s % 
Equ. 3 Equ. 3 

l i n k  
Belt 
440 

TABLE 18.2 :. MEASURED AND CALCULATED FREQUENCIES ON TOP OF PILE 



TA8L& (8.2) continued 
. . 

PILE BLOW LENGTH Pult  AVG. HAMMER f l = &  f 2 = 4 9 . 4 / F  f3 f 4 MEAS. ERROR 
NO. FT . KIPS 

1 /s 1 /s 1 /s 71s 1,'s % 
Equ. 3 Equ. 3 

* Concrete fi l led pile here c = 12,000 ft/s was used. 

** Transducer cushion with 5 plywood and 6 rubber sheets. 



DATA SET NO. 

MAXIMUM DAMPING FROM 

PHASE 111 ANALYSIS 
k ips kips 

TABLE D.1: COMPARISON OF MAXIMUM DAMPING FORCE AS PRECiICTED 
FROM PHASE I11 AND FROM WAVE ANALYSIS 







FIGURE 1.3: FORCES IN PILE UNDER A HAMMER BLOW ( ~ i  -50 BLOW .No. 8-A) 



 FIGURE^ .4 : FORCES I N  P I L E  UNDER A HAMMER BLOW ( R i  -60 BLOW NO. 22) 











200 

100 

0 Millisec. 

-100 

-200 Measured Delta Curve 

FIGURE 2.5: MEASURED FORCE AND VELOCITY AND DERIVED MEASURED DELTA CURVE 
(RI-50, HALF DRIVEN) 



k Measured Delta Curve 

5 10 f 15 

Measured Force 

( EA/c) 

l l l s e c ,  

FIGURE 2.6: MEASURED FORCE AND VELOCITY AND DERIVED MEASURED DELTA CURVE 

(RI-50, BLOW NO. 20) 









FULL SCALE PILE RI-60 IN RITTMRN 
BLOW I 10 ON JRN, 9 1970 

-91118 SOIL GONbITION SILT RND M Y  OVER STIFF UYER OF: 6RAVEl AND SAM) 

FORCE -1m--m.)mm.)m11mm.)m DELTR 11111.11.11.1- vuoc I TI 

FORCE OF 25 KIPS AT BOTH 0.4L AND 0.8L 











FULL SCRLE PlLE 531-76 
RFf ER SET - UP PER1 OD 
PREDIC71OIIS FROfl BLOW NO. 3-A 
PlLE LENGTH . . . 83 FEET 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
PEME*RATIQN I N  INCHES 

FORCES IN PILE 
1 INCHa 200 KIPS 

SHEAR DRMPING 

ttEF1SURED LII.LII--..-- PRED JC'IED 

FIGURE 3.3: COMPARISON OF PREDICTED STATIC RESULTS WITH LOAD TEST AND PREDICTED FORCES I N  PILE 





'"T 
FULL SCFlLE PILE F-30 IN RKRON 
8bOW 57 

-300 I JUNE P I .  1981 SOIL CONDITION SILT W SRNO 
.FORCE H E ~ ,  -----m..m...... FORCE ?RED, -----*-- VELOCITY 

FIGURE 3.5: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA SET NO, 5 



FULL SCALE PILE F-30 
AT THE END OF DRlVlNG 
PREDICi'IONS FRflH BLOW NO. 17 
P f LE LENGTH . , , 33 FEET FORCES IN P I L E  

1 I NCW 200 HIPS. 
SHEAR DRHPING 

0.2 0.4 0.6 1 0.8 1.0 1.2 1.4 1.6 1,8 2.0 
I PENETRRIIEIN IN INCHES 

HERSURED I l l .LII I I -  PRED I CPED 

FIGURE 3.6: COMPARISON OF PREDICTED STATIC RESULTS WITH F IELD  LOAD TEST AND FORCES I N  PILE 

I 



FIGURE 3.7: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA NO. 6 



FULL SCALE PILE F-30 A 
RFTER SET - UP PERIOD 
PR€OJCTIONS FROH BLOW NO. 1-R 
PILE LENGTH . , . 33 FEE? 

0.2 0.4 0.6 8.8 1.0 1.2 1.4 1.6 1.0 2.0 
P WETRRT I ON IN INCHES 

HEMURED --dm--- 
I PRUlI CTED 

FORCES SN PJtE' 
1 INCH* 200 KJPS 

SHEI\R OfUP IN6 

FIGURE 3.8: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND PREDICTED FORCES IN PILE 



W 
0 
n?: 
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FULL SCALE PILE F-50 
FIT THE END OF DRIVING 
PREDICTIONS FROH BLOH NO. 19 
PILE LENGTH . . . 51 FEE7 

a.2 8.4 0.6 0.8 1.0 1.2 1.i 1.8 1.8 2.8 

PENElRATi3N I N  INCHES ' 

FORCES I N  PILE 

FIGURE 3.10: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND PREDICTED FORCES I N  PILE 



FULL SCALE P JLE F-50 IN AKRON 

388 T BLOW 13-A 

-380 1 JULY 6. 1987 SOIL CONDIlIDN SILT RND BRND 
FORCE ~ E f l S , m o m o m o o m m . - o . . e e *  FORCE P R E D . B ~ - U - ~ ~  VELOCITY 

FIGURE 3.11 : COMPARISON OF PREDICTED WITH MEASURED P I L E  TOP FORCE FOR DATA SET NO. 8 



FULL SCALE PILE F-50 fl 
RFfER SET - UP PERIOD 
PREDICT IONS FROfl BLOH NO. 13-R 
PILE LENGTH . . . 51 FEET FIIRCES I N  PILE 

1 INCH* 200 KIPS 

PENETRflTJON I N  INCHES 

HEflSURfD ...I--ILI. PREDICIED 

FIGURE 3.12: COMPARISON OF PREDICTED STATIC RESULT WITH FIELD LOAD TEST AND PREDICTED FORCES I N  P ILE  





FULL SCALE PILE F-60 
F\7 THE END OF DRIVItJG 
PREDICT1 ONS FROH DLOH NO. I8 
PI LC LENGTH . . . 59 FEET FORCES I N  PILE 

I INCHP 200 KIPS 
SHEAR DNPING 

0.2 0.4 0.6 0.8 1.0 1 1.4 1,6 1,8 2.0 

PENETRFLT ION I N  INCHES 

, HEFtSURED I-LIrn--- PREDICTED 
I 

FIGURE 3.14: COMPARISON OF PREDICTED STATIC RESULT WITH FIELD LOAD TEST AND FORCES I N  P ILE  









FULL SCALE PILE CINCINNATI 
AFTER SET - UP PERIOD 
PREDICTIONS FROH BLOW NO. 3-R 
PILE LENGTH . . . 78 FEE7 

C 17s 
2 rsa 

FORCES IN PILE 
1 INCH* 200 HIPS 

SHEm ORW ING 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.8 
PENE? RRT JON IN IHCHES 

-- HEEUREO -L.-ll--- PREDl(CTED 

FIGURE 3.18: COMPARISON OF PREDICTED STATIC RESULTS WITH F IELD  LOAD TEST AND FORCES I N  P I L E  
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FULL SCALE PILE 7'0-60 IN .TOLEDO 
''' T BLOU 3-0 

-3B0 1 ,PUT. 18. 1968 SOIL MNDITION SILTY CLRY 
, FORCE HERS, mmmoo.ee*ommemmm- FORCE P R U ) . ~ ~ ~ ~ ~ ~ ~ V E  LOCITY 

FIGURE 3.28: COMPARISON OF PREDICTED WITH MEASURED P I L E  TOP FORCE FOR DATA SET NO. 36 



FULL SCALE PILE TO-60 A 
WPER SET - UP PERIOD 
PREOICTIO!IS FROfl ELOM 140. 3-R 
PILE LEIiGTtl . . . 60 FEEIT FORCES I N  PILE 

1 INCW 208 KIP3 
SHERR DRTP INS 

0.2 0.4 0.6 0.8 1.0 1.2 1 4  1.6 1.8 2.0 
PENETRIIT 1 ON I N  INCHES 

PREDI CTEO -.------ 

FIGURE 3.29: COMPARISON OF PREDICTED STATIC RESULTS WITH F I E L D  LOAG TEST AND FORCES I &  PILE 



FULL SCALE PILE IN LOGRN.OHIO 
'lPT B U Y  I I W  

-388 SOIL CONDITION SPND AND 6RRVEL DRTE 5 NOV. 1968 
I FORCE H E ~ e - . = ~ ~ m m m ~ m m m m - = - -  

' FORCE $RED. - ---- -- VElOCIf Y 

FIGURE 3.30: COMPARISON OF PREDICTED WITH MEASURED P ILE  TOP FORCE FOR DATA SET NO. 17 



2 s  
t- C3 w - 2  m e w  

S f - '  E E! 2 
Q= - k a. 















FULL S C A L ~  P I  LE CHI LLI COTHE 
s RflUZ SET - UP' PUZIOD 

PREOICTIONS FROH BLOW NO. 13-R 
PILE LENGTH . , . 41 f EE'f FORCES IN PILE 

1 INCW 200 KIPS 
SHECllZ DfUlPIN6 

8.2 6.4 8.6 8.8 1.0 1.2 1 4  1 l a 8  2.8 
I PWETRRTION IN INCHES 

FIGURE 3.38: COMPARISON OF PREDICTED STATIC RESULTS WITH F I E L D  TEST AND FORCES I N  P I L E  
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FULL SCALE PILE RI-5fl A 
AFTER SET - UP PERIOD 
PREDICT1ONS FROH BLOW NO. 14-8 
PILE LENGTH . . . ff@ FEET FORCES I N  PILE 

1 INCH" 288 HIPS 
SHERR D W I N G  

0.2 0.4 0.6 0.8 1.0 2 1.4 1.6 1.8 2.0 
PENETHRT I ON I N  INCHES 

HERS WED L.um.IR.IILL PRUlI CTED 

FIGURE 3.42: COMPARISON OF PREDICTED STATIC RESULTS WITH FIELD LOADbTEST AND FORCES I N  PILE 







FULL SCALE PILE RJ-60 I N  RITTMAN 
ELOW NO, 0mtl ON JRN, 216 1978 

-300 SOIL CONOITION SILT AND CLRY WUI S71FF GRAVEL RND SfWl STARTA 
FORCE ~ E ~ , - ~ ~ o - - o ~ ~ ~ ~ o ~ ~ ~ o o  FORCE PRUI, -----I--- VELOCI rY 

FIGURE 3.45: COMPARISON OF PREDICTED WITH MEASURED PILE TOP FORCE FOR DATA SET NO. 24 



FULL SCALE PILE RI-60 ifl 
flFTER SET - UP PERIOD 

PILE LENGTH . . . 58 FEET 

HUISURrn a-m---- PREDICTEO 

FORCES IN PfLE 
i INCtF 200 HIPS 

SHUN OWING 

FIGURE 3.46: COMPARIS~N OF PREDICTED STATIC RESULTS WITH FIELD LOAD TEST AND FORCES I N  PILE 
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FIGURE 3.47: MEASURED FORCE AND VELOCITY AND PREDICTED P I L E  TOP FORCE FOR REDUCED SCALE 
Pile 3 - R - 2 0 , ( D a t a  Set No. 12) 
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. 
F I U R E  4.1 : P I L E  TOP VELOCITY DUE TD A INPUT AT TIME t = 0 AND A 

DAMPER AT THE P I L E  BOTTOM 



I o X cohesive soi 1s 
2 5 4  O % sandysoi ls 

1 '  U 

FIGURE 4.2: RELATIVE DIFFERENCES BETWEEN PHASE I11 PREDICTION AND STATIC LOAD TEST 
-25 RESULT AS A FUNCTION OF RELATIVE MAGNITUDE OF DAMPING 



FIGURE A1 . I  : CONTINUOUS p ILE AND SPRI!!!?!'-IASS MODEL 











Real Pile Imaginary P i  le 
Before Reflection 

f ( x  + c t )  - 
-.l).l,a.lll,.llll Displacements of a 

Waves 
orces of Waves 

~ u r i  69 Ref lection 

After Reflection 

FIGURE A3.1: TREATMENT OF FREE END BOUNDARY CONDITION 







( B  I- 
b e  DELTA CURVE 
I 

FIGURE A3.4: RESISTANCE DELTA CURVES FOR THEORETICAL SHEAR FORCES WITH UNLOADING 





... .. 

RESISTANCE DELTA CURVES 

MEASURED DELTA CURVE 

A (t 

FIGURE A3.6: PREDICTICN OF SHEAR RESISTANCE FORCES FROM MEASURED 

DELTA CURVE IN ABSENCE OF DAMPING FORCES 
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FIGURE A3.7: GRAPH I CAL REPRESENTATION OF I N I T I A L  PREDICTION SCHEME 









L...~.~~.,-.~~....-....-.~ 1 S k i n  + 1 T i p  Damper I----------- -J P i l e  Tip Damping 8 

L-.-.-.r...-.-r - U n i f o r m  Damping I r Measured Force 

FIGURE A3.11: PREDICTED P I L E  TOP FORCE FOR THREE D 1 FFERENT DAMPING DISTRIBUTIONS 

COMPARED WITH MEASURED P I L E  TOP FORCE 









Hammer 

- - Harmer ,-I= 

Cushf on Capb 1 ock 
=Adaptor Transducer -- = 

Cushi on El emen t 

Stiffness k Mass r,m 
Element 

Cushi on ss m 
Stiffness k 

c. Hammer-Cushion System 

Sys tern 

FIGURE 8.4: SIMPLIFIED MODELS OF HAMlvlER PILE SYSTEMS 



Tim i n  Milliseconds 

%(t) = Dn(t) + sn(t) (theoretical) 
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FIGURE C-1 : SOIL RESISTANCE FORCES AT PILE TIP 6-T-20, 
BLOW NO, 1 -A 



Time in  millisecond^ 

FIGURE C.2: S O I L  RESISTANCE FORCES AT P I  

B 

LE TIP Ri-50, BLOW NO. 22 



Time i n  Mi l l isec~nds 

FIGURE C.3: SOIL RESISTANCE FORCES AT PILE T I P  Ri -50 BLOW NO. 8-A. 



Time ir ;  M i  1 fiseconds 

4 16 18 

FIGURE C.4: SOIL RESISTANCE FORCES AT PILE TIP Ri-60, BLOW NO. 



T i  me i n Mi 1 1 i seconds 

FIGURE C.5: SOIL RESISTANCE FORCES AT PILE TIP Ri-60, BLOW NO. 8-A 



a) 6-f-20 Sand 

Penetrati on i n  Inches 

b) Ri-50 Si l t  and C l a y  

T 

corr. 

corr. 

Penetration in Inches ' 

c) Ri-60 Granular Soil 

static corr. to B l o w  # 8-A 

Penetrati on in Inches 
FiGiii(E C.6 : RES!!LTS FROM STATIC AND DYNAMIC PILE TIP MEASUREMENTS 





FIGURE D.2: DYNAMIC RESULTS OF PILE F-50 AFTER DRIV ING 

(DATA SET NC. 7) 



a .  Shear a t  Bottom End 

b. Shear a t  x = L/4 
'i .o 

c: ModifIed Delta Curve 

FIGURE D.3 MODIFICMION OF RESISTANCE DELTA CURVE FOR SKIN SHEAR 

FORCE TO PRODUCE EQUIVALENT DELTA CURVE FOR BOTTOM 

SHEAR FORCE 










