vukanhammerinfo

the website about Vulcan Iron Works Inc. and the pile driving equipment it

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entorod)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio) BACKGROUND THEORY AND DOCUMENTATION OF FIVE	5. TYPE OF REPORT \& PERIOD COVERED Draft finat report
COMPUTER PROGRAMS	6. Performing org. report number
7. AUTHOR(s) N. Radhakrishnan Frazier Parker, Jr.	8. CONTRACT OR GRANT NUMBER(a)
9. PERFORMING ORGANIZATION NAME AND ADDRESS U. S. Army Engineer Waterways Experiment Station Automatic Data Processing Center P. O. Box 631, Vicksburg, Miss. 391.80	10. PROGRAMELEMENTMROJECT, TASK AREA \& WORK UNIT NUMBERS
11. COntrolling office name and address U. S. Army Engineer Division	12. REPORT DAIE May- -975 July 1979
Lower Mississippi Valley P. 0. Box 80 , Vicksburg, Miss. 39180	13. NUMBER OF PAGES 290
T. MONITORING AGENCY NAME \& ADORESS(If diliterent Irom Controlling Offico)	15. SECURITY CLASS. (of this Toport) Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIEUTION STATEMENT (of this Roport)	
Approved for public release; distribution unlimit	ed.
17. DISTRIBUTION STATEMENT fof the abetract ontored in Block 20, if different fid	n Report)
18. SUPPLEMENTARY NOTES	
19. KEY WOROS (Contrinu on revorse aida if nacessaty and idontily by block numbor)	
Computer programs	
Finite difference method	
Lateral loads (piles)	
Piles	
Soil-structure interaction	

The primary purpose of this report is to document four pile analysis-related finite difference computer programs (COM62, PX4C3, MAKE, and BENTI) and a structural analysis program (BMCOL51), all developed at the University of Texas, Austin, Texas, under the guidance of Professors L. C. Reese and H. Matlock. These programs have been converted to run on the U. S. Army Engineer Waterways Experiment Station (WES) G-635 computer system. Basic theory to explain the
(Continued)

DD $\underset{i}{\text { FORM } 73} 1473$ EDITION OF inov 65 is OBSOLETE
Unclassified

20. ABSTRACT (Continued).

methods used in the computer programs is also included in the report. COM62 solves laterally loaded pile problems using an iterative scheme that considers nonlinear soil resistance versus pile movement curves. PX4C3 is a computer program written for the analysis of an axially loaded pile accounting for nonlinear soil properties. MAKE is a program that generates lateral soil resistance-pile movement curves from laboratory soil testing data based on predefined criteria. BENTl enalyzes group pile problems, again accounting for nonlinear soil behavior under both axial and lateral loads. BMCOL51 is a computer program based on the discrete element theory. Some of the uses of BMCOL5l can be in obtaining general solutions for linear beam-columns, moving load problems, beam on elastic foundation problems, variable beam-size problems, and buckling problems. Each of the five computer programs has been documented completely with a general introduction, listing of program, flow charts, guide for data input, and example problems with input-output data. Programs COM62, PX4C3, MAKE, and BENII run on the time-sharing mode while program BMCOL5l runs on the batch/card-in mode on the WES G-635 computer system.

PREFACE

The report presented herein documents five soil-structure interaction finite difference computer programs obtained from the University of Texas (UT), Austin, Texas. The computer programs are designed to analyze a wide variety of problems involving laterally and axially loaded single piles, group pile foundations, and complex beam-column structural members.

Professors L. C. Reese and H. Matlock, Civil Engineering Department, UT, are gratefully acknowledged for giving permission to use these computer programs developed under their guidance. Special thanks also go to the Center for Highway Research at UT for permission to use their reports referred to extensively in this documentation.

Funds for this work were authorized by the Lower Mississippi Valley Division (LMVD), Corps of Engineers, as part of the analysis support provided by the U. S. Army Engineer Waterways Experiment Station (WES) Automatic Data Processing Center (ADPC). Mr. D. R. Dressler, Technical. Engineering Branch, IMVD, was the contact engineer and also reviewed the content and format of this report.

The assistance given by several people in the Computer Analysis Branch (CAB), ADPC, is greatly appreciated. These include: Mr. D. W. Walters for converting the programs from the CDC 6600 computer to the G-440 system; Messrs. H. W. Jones and R. L. Hall for their help in documenting the codes; and Miss A. M. Wade for her help in converting the programs from the $G-440$ to the $G-635$ system.

The work was accomplished during the period July 1972 through April 1974 under the immediate supervision of Messrs. J. B. Cheek, Jr., Chief of CAB , and H. H. Ulery, Chief of the Pavement Design Division, Soils and Pavements Laboratory (S\&PL). General supervision was provided by Messrs. D. L. Neumann, Chief of ADPC, and J. P. Sale, Chief, S\&PL. The report was prepared by Drs. N. Radhakrishnan, CAB, and F. Parker, Jr., Pavement Design Division, S\&PL.

BG E. D. Peixotto, CE, and COL G. H. Hilt, CE, were Directors of WES during the course of the work and the preparation of this report. Mr. F. R. Brown was Technical Director.

CONTENIS

Page
PREFACE 1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNTTS OF MEASUREMENT 4
PART I: INTRODUCTION 5
Need for Pile Analysis 5
Group Pile Behavior 5
Methods of Group Pile Analysis 6
Nonlinear Interaction Curves 7
Beam-Column Programs 7
Purpose and Scope 8
PART II: FINITE DIFFERENCE APPROXIMATIONS FOR LIATERALLY LOADED PILES 9
Formulation of Finite Difference Approximations 9
Development of Equations of Bending for Laterally Loaded Pile 11
Formulation of Finite Difference Approximations for Equations of Bending of Laterally Loaded Piles 18
Solution of the Difference Equations 19
PART III: FINITE DIFFERENCE APPROXIMATIONS FOR AXIALLY LOADED PILES 26
Mechanics of Axial Load Transfer 26
Development of Difference Equations 28
Development of Mechanical Model and Equations for Model 32
Solution Erocedure for Equations 32
PART IV: PILE GROUP THEORY 34
Coordinate Systems and Sign Conventions 34
Relations Between Foundation Movements and Pile-Head Movements 37
Relations Between Foundation Forces and Pile Reactions 39
Relations Between Pile-Head Movement and Pile Reaction 39
Equilibrium Equations 42
Computational Procedure for Solution of Equilibrium Equations 45
PART V: CRITERTA FOR DEVELOPING SOIL-PILE INTERACIION CURVES 50
Laterally Loaded Pile 50
Soil Criteria 51
Axially Loaded Pile 59
Criteria for Clay 60
Criteria for Sand 63
Summary 67
Page
PART VI: DISCRETE ELEMENT THEORY FOR BEAM-COLUMNS 68
Discrete Element Representation of the Response of a Simple Beam 69
Discrete Element Representation of the Response of a Generalized Beam-Column 73
Recursive Solution Technique 79
REFERENCES 82
APPENDIX A: NOTATION A.
APPENDIX B: USER'S GUTDE FOR PROGRAM COM62 Bl
General Introduction B. 1
Program Listing B3
Flow Charts B.11
Guide for Data Input B13
Example Problems B15
APPENDIX C: USER'S GUIDE FOR PROGRAM PX4C3 Cl
General Introduction C1
Program Listing C3
Guide for Data Input C9
Example Problems Cl2
APPENDIX D: USER'S GUIDE FOR PROGRAM MAKE D1
General Introduction D1
Program Listing D2
Guide for Data Input D9
Example Problems D1. 3
APPENDIX E: USER'S GUIDE FOR PROGRAM BENSI E1
General Introduction E1
Flow Chart E3
Glossary of Notation E4
Program Listing E7
Guide for Data Input E25
Example Problems E32
APPENDIX F: USER'S GUIDE FOR PROGRAM BMCOL51 F1
General Introduction F1
Program Listing F6
Flow Chart F30
Guide for Data Input F31
Example Problems F37

```
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
    UNITS OF MEASUREMENT
```

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
inches	2.54	centimeters
feet	0.3048	meters
kips (mass)	453.5924	kilograms
pounds per cubic inch	27,679.90	kilograms per cubic meter
pounds (force)	4.448222	newtons
pounds per inch	175.1268	newtons per meter
pounds per square inch	6894.757	pascals
pounds per square foot	47.88026	pascals
inch-pounds	0.1129848	newton-meters
inch-kips	112.9848	newton-meters
inch-pounds/inch	4.448222	newton-meters/meter
degrees	0.01745329	radians

BACKGROUND THEORY AND DOCUMENTATION OF FIVE UNIVERSITY OF TEXAS SOIL-STRUCTURE
 INTERACTION COMPUTER PROGRAMS

PART I: INTRODUCTION

Need for Pile Analysis

1. Pile foundations are frequently used for structures when the soil immediately below the base will not provide adequate bearing capacity. The purpose of the piles is to transfer the load from the structure to soil strata which can sustain the applied loads. The Lower Mississippi Valley Division is interested in the analysis and design of pile foundations for a variety of structures.

Group Pile Behavior

2. If the structure is supported on vertical piles and if all loads from the structure are also vertical, then the loads transmitted to the piles will all be principally axial. If some horizontal component of load is present, a lateral force will also be transmitted to the piles. If some of the piles are battered, an axial and lateral force will be transmitted to the piles regardless of the direction of the applied load. For most structures both horizontal and vertical components of load are present. In some instances, the horizontal component may be small and can be neglected. However, for many structures, such as offshore drilling platforms, tall bridge bents, or hydraulic structures, wind and wave action will produce significant horizontal forces. Therefore, for a complete analysis of a pile foundation, the behavior of the piles must be analyzed for both lateral and axial loads.
3. When a pile is subjected to any load, deformation will occur. For small loads, the deformation may be proportional to the load; however, the load-deformation relationship becomes increasingly nonlinear as the load increases. This nonlinear load-deformation relationship is
principally due to the nonlinear load-deformation characteristics of the soil.

Methods of Group File Analysis

Hrennikoff's method

4. One of the most popular methods of analysis of a group pile foundation is due to Hrennikoff. Implicit in this method of analysis is the assumption that the load-deformation relationships for soil are linear. In other words, the soil is represented by a series of linear springs in the analysis. Since the soil behavior under load is generally nonlinear, this method of analysis poses some limitations. An excellent review and comparison of various methods of analyses of group pile foundations is given by Robertson. ${ }^{2}$ University of Texas (UT) method
5. In the UT method of group pile analysis, nonlinear deflectionreaction curves are used to depict soil behavior. The axial pile-soil interaction is obtained from a nonlinear load-deformation curve. The lateral interaction is specified by a set of nonlinear deflectionreaction curves. These curves, referred to as p-y curves, establish the relationship between the deflection of the pile and the reaction exerted by the soil. The equilibrium position for the pile-supported structure is found by an iterative process that ensures the compatibility between the behavior of soil and the piles and between the piles and the structure.

Advantages of the UT method
6. The method of Hrennikoff and the UT method are somewhat similar in their approach. However, the UT method introduces two major improvements. Probably the most important of these is the use of nonlinear pile movement-soil resistance relationships. The second major improvement is that it permits the rotational stiffness of the structure or the pile-head restraint to be included in the analysis (Hrennikoff's method allows only for completely fixed or hinged conditions).

Nonlinear Interaction Curves

7. If families of curves that will simulate the nonlinear interaction between the pile and surrounding soil are available, existing procedures for numerical computation can be used to predict the response of individual piles. The response of individual piles may then be combined to predict the behavior of a foundation supported by these piles. This is the basis of the UT method of analysis. A detailed knowledge of the behavior of the foundation and of the individual piles will allow a superior design, which will usually be more economical than is possible with a less rational procedure.
8. The family of curves describing the behavior of the soil around an axially loaded pile will give axial soil reaction versus axial pile movement for a number of locations along the pile. For a given location, a curve would show the axial force per unit area transferred to the soil for a given axial movement of the pile.
9. Similarly, the family of curves describing the behavior of the soil around a laterally loaded pile will give lateral soil reaction versus lateral pile movement for a number of locations along the pile. For a given location, a curve would show the lateral force per unit length transferred to the soil for a given lateral movement.
10. Unless procedures are available to develop soil interaction curves based on available data, the UT method of analysis loses one of its principal advantages. There are semi-empirical procedures available for predicting the interaction curves for both axial and lateral behavior of piles. However, these procedures must be used with caution; the applicability of these techniques for the problem in hand must be fully examined before use. Some of the procedures used in the computer programs documented in this report are summarized in Part V.

Beam-Column Programs
11. A series of computer programs, developed under the guidance of Prof. H. Matlock, are available at UT at Austin to solve structural
and soil-structure interaction problems. These programs are very versatile and can be used for analysis of a variety of problems. One of the earlier beam-column programs, BMCOL5l, developed by Matlock and Taylor, ${ }^{3}$ is documented in this report. BMCOL5l is a discrete element program and can be used for obtaining general solutions for linear beam-columns, movable load problems, beam on elastic foundation problems, variable beam size problems, buckling problems, etc.

Purpose and Scope

12. The primary purpose of this report is to document four pile analysis-related finite difference computer programs (PX4C3, COM62, BENTI, and MAKE) and a structural beam-column program (BMCOL51), all. developed at UT under the guidance of Professors L. C. Reese and H. Matlock. The subject area covered is rich in technical literature, and no attempt is made here to discuss the details of the methods of analyses. However, enough theory to explain the basis of the methods used in the computer programs is presented.
13. Finite difference approximations for laterally loaded piles (basis for program COM62) are presented in Part II and for axially loaded piles (basis for program PX4C3) in Part III. The UT pile group theory (basis for program BENTI) is discussed in Part IV. Some criteria for mathematically describing soil-structure interaction (basis for program MAKE) is presented in Part V. Part VI explains the discrete element theory used in BMCOL5l program. All five computer programs described in the report are documented with a general introduction, listing of program, flow charts, input data guide, and example problems with input-output data in Appendixes B, C, D, E, and F.
14. Most of the material presented herein has been covered in a number of earlier reports from the Center of Highway Research as well as other departments at UT. This report brings together the material needed to appreciate the power and limitations of the sive computer programs selected. Liberal use of subject matter from References 2, 3, 15, 16, 22, and 31 and lecture notes on "Soil-Structure Interaction Courses" of Professors H. Matlock and L. C. Reese is gratefully acknowledged.
15. The computer code COM62 utilizes central difference approximations for describing the load-deformation response of laterally loaded piles. In addition, the code BENTI (that predicts the load-deformation response of a pile-supported foundation) has COM62 as a subroutine for predicting the lateral load-deformation response of the individual piles in the foundation. In this part, central difference approximations for describing the elastic curve of a laterally loaded pile will be derived and used in formulating a set of simultaneous equations for describing the load-deformation response of a laterally loaded pile.

Formulation of Finite Difference Approximations

26. The finite difference approach to the solution of laterally loaded piles was first suggested by Gleser. ${ }^{4}$ This idea was further extended by a number of investigators including Reese and Matlock. ${ }^{5}, 6$
27. The first step in the formulation is the derivation of the central diffexence approximations for the elastic curve (Figure l). It can be seen from this figure that the slope of the curve at sta i may be approximated by the secant drawn through the points on the curve of the two adjacent stations. Mathematically this step is expressed as

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{i} \approx \frac{y_{i+1}-y_{i-1}}{2 h} \tag{1}
\end{equation*}
$$

where h^{*} denotes the increment length. For higher derivatives, the process could be repeated by taking simple differences and dividing by 2h each time. However, to keep the system more compact, temporary sta j and k are considered and the slopes at these points computed on the basis of the deflection of the station on either side. The second

[^0]

Figure 1. Geometric basis for central-difference approximations
derivative for each permanent station is then written as the difference between these slopes divided by one increment length in the following equation:

$$
\begin{align*}
\left(\frac{d^{2} y}{d x^{2}}\right)_{i} & =\frac{\left(\frac{d y}{d x}\right)_{k}-\left(\frac{d y}{d x}\right)_{j}}{h} \\
& =\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \tag{2}
\end{align*}
$$

Proceeding in a similar way, the third derivative is expressed as

$$
\begin{align*}
\left(\frac{d^{3} y}{d x^{3}}\right) & =\frac{\left(\frac{d^{2} y}{d x^{2}}\right)_{i+1}-\left(\frac{d^{2} y}{d x^{2}}\right)_{i-1}}{2 h} \\
& =\frac{y_{i+2}-2 y_{i+1}+2 y_{i-1}-y_{i-2}}{2 h^{3}} \tag{3}
\end{align*}
$$

and the fourth derivative as

$$
\begin{align*}
\left(\frac{d^{4} y}{d x^{4}}\right)_{i} & =\frac{\left(\frac{d^{3} y}{d x^{3}}\right)_{k}-\left(\frac{d^{3} y}{d x^{3}}\right)_{j}}{h} \\
& =\frac{y_{i+2}-4 y_{i+1}+6 y_{i}-4 y_{i-1}+y_{i-2}}{h^{4}} \tag{4}
\end{align*}
$$

Development of Equations of Bending for Laterally Loaded Pile
18. The second step in the formulation is the derivation of the differential equations for bending of a laterally loaded pile, and the substitution of the central difference approximations for the exact derivatives in the resulting differential equations. The differential equations are derived by considering an element of the pile (Figure 2). The sign of all forces, deflections, and slopes shown are positive. It should also be noted that the axial load is constant over the length of the pile. For piles this assumption is not consistent with observed behavior, since it is known that some of the applied axial load is transferred to the soil by skin friction along the shaft. The validity of this assumption is based on the fact that the errors introduced will be insignificant. Considering the problem from a physical standpoint,

Figure 2. Generalized beam-column element
it is known that for most cases the axial load transferred to the soil increases with depth. This, plus the fact that any lateral movement will cause a decrease in axial load transfer, leads to the conclusion that the axial load removed by the skin friction in the upper portion of the pile is small. Since the maximum deflection and moment occur in the top portion of the pile, and since it is the deflection of the pile top which is of interest, the assumption of constant axial load will not significantly affect the results of interest.
3.9. The reason for making the assumption of axial load being constant on the top of the pile is one of convenience. The addition of a variable axial load could have been handled analytically, but the effort required to obtain a solution would not be warranted because of uncertainties involved in obtaining the nature of the variation.
20. Referring to Figure 2, the equilibrium equations for the element may be written as

$$
\begin{equation*}
\frac{d M}{d x}-V+Q_{c} \frac{d y}{d x}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d V}{d x}=-p=-E_{s} y \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
M & =\text { bending moment } \\
x & =\text { distance along axis of pile } \\
V= & \text { shear } \\
Q_{c}= & \text { in pile axial load constant } \\
y= & \text { lateral deflection } \\
p= & \text { lateral soil reaction per unit length } \\
E_{S}= & \text { soil modulus; lateral soil reaction }(p) \text { divided by lateral } \\
& \text { deflection }(y)
\end{aligned}
$$

By combining Equations 5 and 6 and differentiating, the following equation is obtained:

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}}+E_{s} y+Q_{c} \frac{d^{2} y}{d x^{2}}=0 \tag{7}
\end{equation*}
$$

The equation for shear is written as

$$
\begin{equation*}
V=\frac{d M}{d x}+Q_{c} \frac{d y}{d x} \tag{8}
\end{equation*}
$$

Consider that the deformation of the pile is caused only by the bending
moment. The following expression for moment can then be written:

$$
\begin{equation*}
M=E I \frac{d^{2} y}{d x^{2}}=R \frac{d^{2} y}{d x^{2}} \tag{9}
\end{equation*}
$$

where
$E=$ modulus of elasticity of the pile
$I=$ moment of inertia of pile section
$R=E I$ (flexural rigidity)
Equation 9 is the basic expression for bending which states that the bending moment in the pile is equal to the product of the curvature of the elastic curve and the stiffness of the section.
21. At this point, the mechanics of the transfer of lateral load from a pile to the surrounding soil will be considered before proceeding further with the development of the finite difference equations of bending for a pile. In Equation 6 this load transfer is represented by the expression $p=E_{s} y$.
22. When a lateral load is applied to the top of a pile, the load is transferred to the soil surrounding the pile as illustrated in Figure 3. A thin slice through the pile and surrounding soil is shown at a depth of x_{1} below the ground surface. Before any lateral load is applied to the pile, the pressure distribution on the pile will be similar to Figure 3b. For this condition, the resultant force on the pile, obtained by integrating the pressure around the segment, will be zero. If, however, the pile is given a lateral deflection of y_{1} at depth x_{l}, the pressure distribution will be similar to Figure 3c. The integration of the pressure around the segment, for this condition, will yield a resultant force P_{1} per unit length of pile, as shown in the above figure. The same procedure may be applied for a series of deflections, resulting in a corresponding series of forces which may be combined into a $p-y$ curve. In a similar manner, $p-y$ curves for any depth may be defined, resulting in a set of curves (Figure 4).
23. Implicit in the development thus far are the assumptions that the soil pressure is a linear function of deflection, the relationship being defined by the constant E_{S}, and that the pressure at a

b. Pressure distribution before loading
a. REPRESENTATION OF PILE SEGMENT

mim

c. PRESSURE DISTRIBUTION AFTER LOADING

Figure 3. Illustration of lateral load transfer

Figure 4. Family of p-y curves
particular point is independent of the deflections at all other points on the pile. Nonlinear soil behavior can be handled by relying on repeated applications of elastic theory where the constant coefficient of soil reaction is replaced by a secant modulus value. Figure 5 illustrates the secant modulus concept.
24. The second assumption leads to the representation of the soil by a set of independent springs as proposed by Winkler ${ }^{7}$ in 1867. If the effects of the soil pressure is considered to be concentrated at a finite number of points along the pile then, the pile-soil system can be represented by the model shown in Figure 6. This model is compatible with the finite difference equations which will be developed.

Formulation of Finite Difference Approximations for

 Equations of Bending of Laterally Loaded Piles25. Equations 7, 8, and 9 may be written in finite difference by using the central-difference approximations for the first and second of the elastic curve. The equations will be written for a general point referred to as sta i. Station numbering increases from top to bottom of piles. The equations obtained for sta i are as follows:

$$
\begin{align*}
& y_{i+2}\left(R_{i+1}\right)+y_{i+1}\left(-2 R_{i+1}-2 R_{i}+Q_{c} h^{2}\right)+y_{i}\left(R_{i+1}+4 R_{i}\right. \\
& \left.+R_{i-1}-2 Q_{c} h^{2}+E_{s i} h^{4}\right)+y_{i-1}\left(-2 R_{i}-2 R_{i-1}+Q_{c} h^{2}\right) \\
& \tag{10}\\
& +y_{1-2}\left(R_{i-1}\right)=0 \\
& V_{i}=\frac{1}{2 h^{3}}\left[y_{i+2}\left(R_{i+1}\right)+y_{i+1}\left(-2 R_{i+1}+Q_{c} h^{2}\right)+y_{i}\left(R_{i+1}-R_{i-1}\right)\right. \tag{11}
\end{align*}
$$

$$
\begin{equation*}
M_{i}=R_{i} \frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \tag{1.2}
\end{equation*}
$$

26. In the development of the equations, no consideration was given to the assumptions regarding the variation in pile bending stiffness (EI $=R$). For the case of pure bending and constant bending stiffness, the second derivative of moment is usually written as

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}}=\operatorname{EI} \frac{d^{4} y}{d x^{4}} \tag{13}
\end{equation*}
$$

For the case of pure bending and a variable bending stiffness, the second derivative of moment is expressed as

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}}=E I \frac{d^{4} y}{d x^{4}}+\frac{2 d(E I)}{d x} \frac{d^{3} y}{d x^{3}}+\frac{d^{2}(E I)}{d x^{2}} \frac{d^{2} y}{d x^{2}} \tag{14}
\end{equation*}
$$

However, in formulating the difference equations, the assumption was made that the moment was a smooth continuous function of x and that the second derivative of moment could be approximated by the expression

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}} \approx \frac{M_{i+1}-2 M_{i}+M_{i-1}}{2 h} \tag{15}
\end{equation*}
$$

where M_{i+1}, M_{i}, and M_{i-1} are the moment at joints $i+1$, i, and i-l, respectively. The use of Equation 15 gives the same expression as does Equation 13 but, for a variable stiffness, is a somewhat cruder approximation than Equation 14. However, it permits the bending stiffness to vary from station to station since Equation 12 can be substituted directly into Equation 15.

Solution of the Difference Equations

27. The final step is the formulation of a set of simultaneous equations which when solved yield the deflected shape of the pile. The solution requires the application of four boundary conditions since Equation 7 is actually a fourth order differential equation in terms of the dependent variable y. With values of deflection known, moment, shear, and soil reaction may be obtained for any location along the pile by back substitution of appropriate values of deflection into appropriate equations.
28. The pile is divided into n increments of length h (Figure 7). In addition, two fictitious increments are added to the top and bottom of the pile. The four fictitious stations are added for formulating the set of equations, but they will not appear in the solution or influence the results. The coordinate system and numbering system used is illustrated in the same figure.
29. The procedure used is to write Equations 10, 11, and 12 about sta $n+3$. This results in three equations involving five unknown

Figure 7. Finite difference representative of pile
deflections $\left(y_{n+5}, y_{n+4}, y_{n+3}, y_{n+2}, y_{n+1}\right)$. Two boundary conditions, $V_{n+3}=0$ and $M_{n+3}=0$, are applied at sta $n+3$. The deflections for the fictitious sta $n+4$ and $n+5$ are eliminated from the three equations, and the deflection for sta $n+3$ is found in terms of the deflection at sta $n+2$ and $n+3$. The equation obtained may be written as

$$
\begin{equation*}
y_{n+3}=a_{n+3} y_{n+2}-b_{n+3} y_{n+1} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n+3}=\frac{4 R_{n+2}-2 Q_{c} h^{2}}{2 R_{n+2}-2 Q_{c} h^{2}+E_{s(n+3)^{h^{4}}}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n+3}=\frac{2 R_{n+2}}{2 R_{n+2}-2 Q_{c} h^{2}+E_{s(n+3)^{h^{4}}}} \tag{18}
\end{equation*}
$$

Equation 10, written for sta $n+2$, can be combined with Equations 11 and 12 for sta $n+3$ and with Equation 16 to determine the deflection for sta $n+2$. The deflection y_{n+2} is found in terms of the deflection of sta $n+1$ and n. The equation obtained is as follows:

$$
\begin{equation*}
y_{n+2}=a_{n+2} y_{n+1}-b_{n+2} y_{n} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n+2}=\frac{2 R_{n+1}+\left(2 R_{n+2}-Q_{c} n^{2}\right)\left(i-b_{n+3}\right)}{R_{n+1}+\left(2 R_{n+2}-Q_{c} h^{2}\right)\left(2-a_{n+3}\right)+E_{s(n+2)^{h^{4}}}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n+2}=\frac{R_{n+1}}{R_{n+1}+\left(2 R_{n+2}-Q_{c} h^{2}\right)\left(2-a_{n+3}\right)+E_{s(n+2)^{h^{4}}}} \tag{21}
\end{equation*}
$$

The deflection for sta $n+1$ may be found in a similar manner. From sta $n+1$ to the top of the pile the expressions for the deflection have the same form. The general form of the equation is as follows:

$$
\begin{equation*}
y_{i}=a_{i} y_{i-1}-b_{i} y_{i-2} \tag{22}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{i}=\frac{2 R_{i-1}+R_{i}\left(2-2 b_{i+1}\right)+R_{i+1}\left(a_{1+2} b_{i+1}-2 b_{i+1}\right)-Q_{c} h^{2}\left(1-b_{i+1}\right)}{c_{i}} \tag{23}\\
b_{i}=\frac{R_{i-1}}{c_{i}} \tag{24}
\end{gather*}
$$

and

$$
\begin{array}{r}
c_{i}=R_{i-1}+R_{i}\left(4-2 a_{i+1}\right)+R_{i+1}\left(a_{i+1} a_{i+2}-b_{i+2}-2 b_{i+1}+1\right) \\
-Q_{c} h^{2}\left(2-a_{i+1}\right)+E_{s i} h^{4} \tag{25}
\end{array}
$$

The terms, a_{i}, b_{i}, and c_{i}, are recursive coefficients and are defined for all stations along the pile during the solution procedure.
30. With the general expression, the deflection of each station may be expressed as a function of the deflection of the two stations immediately above it. If the deflections for sta 3, 4 , and 5 are written, a set of three equations involving five unknown deflections will be obtained. If two boundary conditions are introduced, the deflections for the fictitious stations may be eliminated and the equations solved for the deflections. Once the deflections for sta 3 and 4 are found, the deflections for the remainder of the pile may be obtained by baci substitution into the equations derived for the deflection of a station in terms of the deflection of the two stations directly above it.
31. The expressions obtained for y_{3} and y_{4} will depend on the boundary conditions applied to the top of the pile. Three sets of
boundary conditions are used resulting in three sets of equations. 32. For the first case, the following boundary conditions are applied:

$$
\begin{align*}
& M_{3}=M_{t} \tag{26}\\
& v_{3}=P_{t} \tag{27}
\end{align*}
$$

where M_{t} and P_{t} are the moment and lateral load, respectively, applied to the top of the pile. The application of these boundary conditions results in the following expressions for y_{3} and y_{4} :

$$
\begin{align*}
y_{3}= & \left\{\lambda_{1}\left[R_{4}\left(2 a_{5} b_{4}-4 b_{4}\right)+R_{3}\left(2-2 b_{4}\right)+2 Q_{c} n^{2} b_{4}\right]+\lambda_{2} \nu_{2}\right\} \\
& \int \nu_{2}\left[R_{3}\left(2 b_{4}-2\right)+R_{4}\left(4 b_{4}-2 a_{5} b_{4}\right)-2 Q_{c} n^{2} b_{4}\right] \\
& +\nu_{2}\left[R_{3}\left(4-2 a_{4}\right)+R_{4}\left(2 a_{4} a_{5}-2 b_{5}-4 a_{4}+2\right)\right. \\
& \left.\left.+Q_{c} h^{2}\left(-2+2 a_{4}\right)+E_{s}(3)^{n^{4}}\right]\right\} \tag{28}
\end{align*}
$$

388

$$
\begin{equation*}
y_{4}=y_{4} \quad\left(a_{4}-\frac{B_{4} v_{1}}{v_{2}}\right)-\frac{b_{4} \lambda_{1}}{v_{2}} \tag{29}
\end{equation*}
$$

where the boundary condition coefficients are defined as follows:

$$
\begin{align*}
& \lambda_{1}=\frac{M_{t} h^{2}}{R_{3}} \tag{30}\\
& \lambda_{2}=2 P_{t} h^{3} \tag{31}\\
& \nu_{1}=2-a_{4} \tag{32}\\
& \nu_{2}=1-b_{4} \tag{33}
\end{align*}
$$

33. The second set of boundary conditions applied is as follows:

$$
\begin{gather*}
v_{3}=P_{t} \tag{27bis}\\
\left(\frac{d y}{d x}\right)_{3}=\frac{y_{4}-y_{2}}{2 h}=\Omega_{t} \tag{34}
\end{gather*}
$$

where Ω_{t} is the slope of the pile top. These boundary conditions result in the following expressions for y_{3} and y_{4} :

$$
\begin{gather*}
y_{3}=\left\{\lambda_{2}\left(1+b_{4}\right)+\lambda_{3}\left[2 R_{4}\left(2 b_{4}-a_{5} b_{4}\right)+2 R_{3}\left(b_{4}-1\right)\right.\right. \\
\\
\left.\left.-2 Q_{c} h^{2} b_{4}\right]\right\} /\left\{2 R _ { 4 } \left[a_{4} a_{5}-b_{5}-b_{4} b_{5}\right.\right. \\
 \tag{35}\\
\left.-2 a_{4}+1+b_{4}\right]+4 R_{3}\left(1-a_{4}+b_{4}\right) \tag{36}\\
\\
+2 Q_{c} n^{2}\left(a_{4}-b_{4}-1\right)+E_{\left.s(3)^{h^{4}}\right\}} \\
y_{4}=y_{3}\left(\frac{a_{4}}{1+b_{4}}\right)+\frac{b_{4} \lambda_{3}}{1+b_{4}}
\end{gather*}
$$

where

$$
\begin{equation*}
\lambda_{3}=2 \Omega_{t} \mathrm{~h} \tag{37}
\end{equation*}
$$

34. The third set of boundary conditions applied is as follows:

$$
\begin{align*}
& V_{3}=P_{t} \tag{27bis}\\
& \frac{M_{3}}{\Omega_{3}}=\frac{M_{t}}{\Omega_{t}} \tag{38}
\end{align*}
$$

These boundary conditions result in the following expressions for y_{3} and y_{4} :

$$
\begin{align*}
y_{3}= & \lambda_{2}\left[1-b_{4}+\lambda_{4}\left(1+b_{4}\right)\right] /\left\{2 \lambda _ { 4 } \left(2 R_{3}+2 R_{3} b_{4}\right.\right. \\
& -2 R_{3} a_{4}+R_{4} a_{4} a_{5}-R_{4} b_{4} b_{5}-2 R_{4} a_{4} \\
& \left.+R_{4}+R_{4} b_{4}\right)+2 R_{4}\left(a_{4} a_{5}-2 a_{5} b_{4}-b_{5}\right. \\
& \left.+b_{4} b_{5}-2 a_{4}+3 b_{4}+1\right)+2 Q_{c} h^{2}\left(a_{4}-b_{4}-1\right. \\
& \left.\left.+a_{4} \lambda_{4}-\lambda_{4}-b_{4} \lambda_{4}\right)+E_{s 3} n^{4}\left[1-b_{4}+\lambda_{4}\left(1+b_{4}\right)\right]\right\} \tag{39}\\
& Y_{4}=\left[a_{4}-\frac{b_{4}\left(2-a_{4}+a_{4} \lambda_{4}\right)}{\left(1+\lambda_{4}-b_{4}+b_{4} \lambda_{4}\right)}\right] y_{3} \tag{40}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{4}=\frac{M_{t}}{\Omega_{t}}\left(\frac{h}{2 R_{3}}\right) \tag{41}
\end{equation*}
$$

35. The values of y_{3} and y_{4} are used to begin the back substitution procedure to calculate deflections for the remainder of the stations along the pile. With the values of deflection thus established, values of moment, shear, and soil reaction may be computed for any station along the pile.
36. The computer code PX4C3 utilizes finite difference approximations for describing the load-deformation response of axially loaded piles. In addition, the code BENTI (that predicts the load-deformation response of a foundation supported by a group of piles) requires the top load deformation curves of the individual piles in the foundation which is the particular response that is computed by PX4C3.

Mechanics of Axial Load Transfer

37. An axial load applied to the top of a pile is resisted by the shearing resistance developed along the shaft of the pile and the pressure on the base of the pile. The transfer of load from the pile to the soil is illustrated in Figure 8^{8} and may be stated mathematically by the equation

$$
\begin{equation*}
Q_{t}=\int_{x=0}^{x=E} F d x+Q_{b} \tag{42}
\end{equation*}
$$

where
$Q_{t}=$ axial load applied to the top of a pile
$L=$ length of pile
$\mathrm{F}=$ shear force per unit length transferred to the soil as a function of the location along a pile
$x=$ distance along axis of pile
$Q_{b}=$ load due to the normal pressure on the base of a pile
This equation involves only statics, and its solution will only assure that the forces on the pile are in equilibrium. It provides no insight into the deformation pattern that is necessary to produce the base pressure and shear transfer along the shaft for equilibrium. For the ultimate strength approach, this equation is sufficient since the deformations are not considered, and the assumption is made that the maximum base pressure and maximum shear transfer occur simultaneously. If,

however, the load-deformation behavior of the pile is to be considered, the compatibility between loads and deformations must be considered. To represent this compatibility condition, another mathematical expression must be formulated relating load and deformation.

Development of Difference Equations
38. The derivation of an analytical expression for this purpose is suggested by Seed and Reese ${ }^{9}$ and expanded by Reese. ${ }^{10}$ Considering a segment of an axially loaded pile as shown in Figure 9, the expression

Figure 9. Element from an axially loaded pile
for the strain in the pile at depth x is given by
masem

$$
\begin{equation*}
\frac{d z}{d x}=\frac{Q}{E A} \tag{43}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{z}=\text { axial movement of pile } \\
& \mathrm{Q}=\text { axial load in pile } \\
& \mathrm{A}=\text { cross-sectional area of pile }
\end{aligned}
$$

This equation may be rearranged to yield

$$
\begin{equation*}
Q=E A \frac{d z}{d x} \tag{44}
\end{equation*}
$$

Differentiation of Equation 44 with respect to x, assuming EA constant, yields

$$
\begin{equation*}
\frac{d Q}{d x}=E A \frac{d^{2} z}{d x^{2}} \tag{45}
\end{equation*}
$$

Summing forces on the pile segment, shown in Figure 9, yields the equilibrium expression

$$
\begin{equation*}
\frac{d Q}{d x}=F \tag{46}
\end{equation*}
$$

The shear force per unit area is defined as

$$
\begin{equation*}
f=\frac{F}{C} \tag{47}
\end{equation*}
$$

where

$$
\begin{aligned}
f= & \text { shear force per unit area transferred to the soil as a func- } \\
& \text { tion of the location along a pile } \\
C= & \text { pile circumference }
\end{aligned}
$$

Equation 46 may now be written as

$$
\begin{equation*}
\frac{d Q}{d x}=f C \tag{48}
\end{equation*}
$$

If ψ is a function which relates the shear stress to the relative deflection between the pile, and soil so that

$$
\begin{equation*}
f=\psi z \tag{49}
\end{equation*}
$$

then Equation 48 may be written as

$$
\begin{equation*}
\frac{d Q}{d x}=\psi z C \tag{50}
\end{equation*}
$$

Equations 45 and 50 may be equated for $\frac{d Q}{d x}$ yielding

$$
\begin{equation*}
\text { EA } \frac{d^{2} z}{d x^{2}}=\dot{\psi C} \tag{51}
\end{equation*}
$$

which is the desired compatibility expression. To obtain a solution for

Equation 51, the function ψ and two boundary conditions must be known. For realistic problems, considering nonlinear soil behavior, the function ψ usually cannot be defined analytically, and a numerical solution is necessary.
39. A numerical solution to the nonlinear differential Equation 51 is suggested by Seed and Reese, ${ }^{9}$ Reese, ${ }^{10}$ and Coyle and Reese. ${ }^{11}$ The first step in obtaining a solution is to write Equation 51 in finite difference form. Referring to Figure 10 , the difference form of the equation for sta i may be written as

Figure 10. Load distribution along an axially loaded pile

$$
\begin{equation*}
\frac{\left(\frac{d z}{d x}\right)_{i-1}-\left(\frac{d z}{d x}\right)_{i+1}}{2 h}=\frac{\psi_{i} i_{i} C_{i}}{E A} \tag{52}
\end{equation*}
$$

Substituting Equation 43 into Equation 52 and simplifying yields

$$
\begin{equation*}
Q_{i-1}-Q_{i+1}=2 h \psi_{i} z_{i} C_{i} \tag{53}
\end{equation*}
$$

which is the desired form of the equation. Equation 44 can also be written in difference form as

$$
\begin{equation*}
\frac{Q_{i}}{E A}=\frac{z_{i-1}-z_{i+1}}{2 h} \tag{54}
\end{equation*}
$$

or by arranging as

$$
\begin{equation*}
\frac{2 h Q_{i}}{E A}=z_{i-1}-z_{i+1} \tag{55}
\end{equation*}
$$

40. Equation 53 is simply a statement that the difference between the forces in the pile at sta $i+1$ and $i-1$ is equal to the load transferred to the soil between these two points. Equation 55 is simply a statement that the deformation that occurs in the pile over a segment 2h in length can be computed from the strain at the midpoint of the seg... ment which is equal to the load in the pile at the midpoint of the segment divided by the product of the pile area and modulus of elasticity. Furthermore, the load distribution within the pile is assumed to be linear between these two points. The slope of the straightline load distribution is approximated by the rate of load distribution at the midpoint between sta $i+1$ and $i-1$. This procedure results in a concentration of the shear force, $h \psi_{i} z_{i} C_{i}$, at sta i. The physical significance of this assumption leads to the mechanical model of an axially loaded pile, illustrated in Figure 11. The mechanical model can be used to develop equations which are analogous to Equations 54 and 55 and to formulate a procedure for solving the equations, which will yield the desired

Figure 11. Mechanical model of an axially loaded pile

Development of Mechanical Model and

 Equations for Model41. The mechanical model represents the pile by n springs, of length h, connected by rigid joints (Figure 11). The springs, representing the pile, are linear and have a spring constant as shown. The nonlinear springs, representing the load transfer to the soil, are attached to the rigid joints. The spring attached to joint 1 will represent the load transferred from the ground surface to a depth of $h / 2$. The spring attached to joint $n+1$ will represent the load transferred to the soil through the pressure on the pile base rather than through shear along the pile shaft as it is for all other springs. The spring attached to joint n will represent the load transferred from the
pile base to a distance of $3 h / 2$ above the
 base. The interior springs represent the load transferred over a distance of $h / 2$ above and below the joint. The concentration of the shear transfer for an arbitrary interior joint represented by force $S F$ is

Figure 12. Joint j of illustrated in Figure 12. Summing forces on the mechanical model of an axially loaded pile
a joint yields:

$$
\begin{equation*}
Q_{j-1}-Q_{j}=S F_{j}=h \psi_{j} C_{j} z_{j} \tag{56}
\end{equation*}
$$

This equation is the same as Equation 53 except it considers only the load change or transfer over one increment rather than two.

Solution Procedure for Equations

42. If curves are available describing the load transfer, Equation 56 can be used to obtain the load-deformation behavior of the pile. The solution procedure may be formulated by considering the mechanical.
model in Figure 11. If a load Q_{t} is applied to joint 1 , the model will deform in such a way that conditions of equilibrium and compatibility are satisfied. The first step in the procedure is to assume a deflection of the pile base. From the nonlinear spring at joint $n+1$, the force $S F_{n+1}$ may be found for the assumed deflection. The force Q_{n} may now be found by considering the equilibrium of joint $n+1$, and solving Equation 56 at sta $n+1$. Solution of this equation yields $Q_{n+1}=S F_{n+1}$. With the force Q_{n} known, the deflection z_{n} may be obtained by considering the deformation in the linear spring between sta n and $n+l$. The deflection is expressed mathematically as

$$
\begin{equation*}
z_{n}=z_{n+1}+\frac{Q_{n} h}{(E A)_{r_{1}}} \tag{57}
\end{equation*}
$$

With Z_{n} and Q_{n} known, Equations 56 and 57 may be solved for each joint and spring until the top of the pile is reached. This procedure will yield a top load Q_{t} and a top deflection z_{l}. Additional values may be assumed for the base deflection, and the procedure repeated until - a complete load-deflection curve is obtained for the top of the pile.
43. It should be noted that in the derivation of Equations 54 and 55 it was assumed that EA was constant. With the mechanical model and for Equations 56 and 57 , this assumption was not necessary. It is only necessary that EA be constant over each increment length.
44. The computer program BENTl provides a method for analyzing foundations which are supported on pile groups consisting of vertical and batter piles. The procedures are similar to those described by Reese and Matlock. ${ }^{12-14}$ In this part, equations for describing the load-deformation response of a pile-supported foundation will be developed.

Coordinate Systems and Sign Conventions
45. Two types of coordinate systems are established as shown in Figure 13. A horizontal axis u and a vertical axis v are

Figure 13. Geometry of foundation
established relative to the foundation. Foundation movements, forces, and dimensions are related to these axes. The location of this system is completely arbitrary, but proper location will simplify calculations for most foundations.
46. For each pile an $x-y$ coordinate system is established. The x axis is parallel to the pile and the y axis is perpendicular to the pile. Subscripts are used to indicate the particular pile. Pile deflection and forces are related to these systems.
47. The coordinates of the pile heads as related to the $u-v$ axes are all positive for the example (Figure 13). The batter of the piles is positive counterclockwise from the vertical and negative clockwise from the vertical as shown. The variable θ will be used to denote the angular measure of pile batter.
48. The external loads on the foundation are resolved into a vertical and horizontal component through the origin of the structural coordinate system and a moment about the origin. The sign convention established is illustrated in Figure 14.
49. The external loads M_{e}, P_{v}, and P_{u} will cause the foundation to move. If the $u-v$ coordinate system is considered to be rigidly attached to the foundation, the movement of the foundation may be related to the movement of the coordinate system. These

Figure 14. Sign convention for foundation forces and movements
movements (Δ_{v}, Δ_{u}, and r) are shown with positive signs (Figure 2h).
50. Due to the movement of the foundation, forces will be exerted on the foundation by the piles. The sign convention for these forces is illustrated in Figure 15 in two ways: (a) conventions consistent with

a. FORCES AND MOMENT STRUCTURAL SIGN CONVENTION

b. FORCES AND MOMENT-PILE SIGN CONVENTION

Figure 15. Forces and moment on pile head

Figure 16. Pile-head movements on the $x-y$ coordinate system
those established previously for the structure; and (b) conventions consistent with those established in the solution of laterally loaded piles. The differences should be carefully noted. The inconsistencies are taken care of when the relations between foundation forces and pile forces are developed.
51. The sign conventions for movements of the pile head (Figure 16) are consistent with the $x-y$ coordinate system. A movement in the positive x direction, which constitutes an axial compression, is considered as a positive movement. A movement in the positive y direction
is considered as a positive movement. A rotation of the pile head will cause a change in the slope at the top of the pile. The sign convention for slope is consistent with the usual manner in which slope is defined.

Relations Between Foundation Movements and Pile-Head Movements

52. When the structure moves, the pile heads move. Two assumptions are made in order to relate structure movement to pile-head movements. The first assumption is that the foundation is rigid so that the pile heads maintain the same relative positions before and after movement. Because of this assumption the approximation

$$
\begin{equation*}
\Gamma \approx \tan \Gamma \quad .:=\approx \tag{58}
\end{equation*}
$$

is valid.
53. . In Figure. 17a, diagrams are given of the lineal movements at the pile head of a given pile in terms of the structural movements. The movement of the structure is defined by the shift of the $u-v$ axes to the position indicated by the $u^{\prime}-v^{\prime}$ axes. The total movement of the pile head is resolved into a component parallel to the u axis $\left(\Delta_{u}+v r\right)$ and a component parallel to the v axis $\left(\Delta_{v}+u r\right)$.
54. Figure 17b illustrates the resolution of the horizontal and vertical components of movement into components parallel and perpendicular to the direction of the pile. These movements are designated as x_{t} and y_{t}. From the same figure, the axial component of pilehead movement may be written as

$$
\begin{equation*}
x_{t}=\left(\Delta_{u}+v \Gamma\right) \sin \theta+\left(\Delta_{v}+u \Gamma\right) \cos \theta \tag{59}
\end{equation*}
$$

and the corresponding lateral movement as

$$
\begin{equation*}
y_{t}=\left(\Delta_{u}+v \Gamma\right) \cos \theta-\left(\Delta_{v}+u \Gamma\right) \sin \theta \tag{60}
\end{equation*}
$$

a. LINEAL MOVEMENTS OF PILE HEAD

b. RESOLUTION OF MOVEMENT INTO COMPONENTS

Figure 17. Movements of pile-head structural. coordinate system
55. In addition to the lineal displacements of the pile head, the change in slope of a tangent to the elastic curve will be considered. The change in the slope will depend on the manner in which the pile is attached to the foundation. If the pile is fixed to the structure, then the change in slope will be equal to the rotation of the foundation. For the restrained case the change in slope will depend on the moment applied to the pile top. For a pinned connection the slope will depend on the deflected shape of the pile.

Relations Between Foundation Forces and Pile Reactions

56. The forces acting on the foundation and pile are illustrated, along with sign convention, in Figure 15. It has been noted that inconsistencies in the sign conventions are present. However, these will be corrected while deriving the relations between the forces.
57. From Figure 15, the relationship between moments on the structure and moment on the pile may be expressed as

$$
\begin{equation*}
M_{s}=-M_{t} \tag{61}
\end{equation*}
$$

The relations between forces are obtained by resolving the forces on the pile into components in the horizontal and vertical directions. With the sign conventions considered, the components are summed as follows:

$$
\begin{align*}
& F_{v}=P_{t} \sin \theta-Q_{t} \cos \theta \tag{62}\\
& F_{u}=-Q_{t} \sin \theta-P_{t} \cos \theta \tag{63}
\end{align*}
$$

Relations Between Pile-Head Movement and Pile Reaction
58. In the preceding paragraphs the movement of the pile head and the forces acting on the pile head have been defined. Relations between
pile reaction and movement will be developed below.
59. For computational purposes the pile shown in Figure 18 a may be simulated by the set of springs as shown in Figure 18 b . The springs

a. PILE AND FOUNDATION

b. SPRINGS AND FOUNDATIONS

Figure 18. Spring representation of pile: \equiv will produce a force parallel to the pile axis, Q_{t}, and a force acting perpendicular to the pile axis, P_{t}. The rotational spring will yield a moment about the pile top; ' M_{t}.
60. The forces produced by the springs will depend on the deflection of the springs. Since the springs are nonlinear, the movement and reaction are not related by a single constant. It is assumed that curves can be obtained which show spring reaction as a function of deflection. In Figure 19, a hypothetical set of load-deflection curves are drawn for a set of springs. If the curves are single valued, then the spring reactions may be calculated for a particular deflection by

$$
\begin{align*}
& Q_{t}=J_{x} x_{t} \tag{64}\\
& P_{t}=J_{y} y_{t} \tag{65}\\
& M_{t}=J_{m} y_{t} \tag{66}
\end{align*}
$$

where J_{x}, J_{y}, and J_{m} are the secant modulus values as illustrated in the figure.
61. It should be noted that the moment produced by the rotational

Figure 19. Hypothetical spring load-deflection curves
spring is proportional to the lateral deflection rather than the rotation. For a rotational spring this procedure is inconsistent with usual concepts. This concept is used because it provides a convenient means for deriving and solving the equilibrium equation for the structure.
62. The curves in Figure 19 do not adequately explain the behavior of a pile. It is not necessary that the exact nature of the curves be known. The representation shown is only for the formulation of the equilibrium equations. The procedure for calculating values for J_{x}, J_{y}, and J_{m} will be discussed in the following paragraphs. However, for the formulation of the equilibrium equations, Equations 64-66 are sufficient, since they will be applicable no matter what kind of relationship exists between the loads on the pile tops and the resulting displacements.
63. The relations between forces and movements for the structure and the pile, previously developed, will now be combined to form three equations of equilibrium for the structure. The form of the equations is such that an iterative type solution may be used. This is necessary since the system is nonlinear.
64. Consider a foundation supported by n piles. The coordinate system and the $i^{\text {th }}$ pile are shown in Figure 20. The external loads

Figure 20. Forces on the piles and foundation
applied to the foundation are resolved into the forces and moment through and about the origin of the coordinates. The forces and moment exerted by each pile are designated as $F_{v i}, F_{u i}$, and $M_{\text {si }}$ in the figure. The three equations are obtained by summing forces in the horizontal and vertical directions and by summing moments about the origin of the $u-v$ coordinate system. Performing these operations the equilibrium equations may be written as

$$
\begin{gather*}
\sum_{i=1}^{n} F_{v i}+P_{v}=0 \tag{67}\\
\sum_{i=1}^{n} F_{u i}+P_{u}=0 \tag{68}\\
\sum_{i=1}^{n}\left(M_{s i}+u_{i} F_{v i}+v_{i} F u i\right)+M_{e}=0 \tag{69}
\end{gather*}
$$

where M_{e}, P_{u}, and P_{v} symbolize external moment horizontal force, and vertical force applied to the foundation at the origin of $u-v$ coordinate system. Substituting Equations 61-63 into Equations 67-69 and rearranging

$$
\begin{align*}
& P_{v}=\sum_{i=1}^{n}\left(Q_{t i} \cos \theta_{i}-P_{t i} \sin \theta_{i}\right) \tag{70}\\
& P_{u}=\sum_{i=1}^{n}\left(P_{t i} \cos \theta_{i}+Q_{t i} \sin \theta_{i}\right) \tag{71}\\
& M_{e}=\sum_{i=1}^{n}\left[M_{t i}+u_{i}\left(Q_{t i} \cos \theta_{i}-P_{t i} \sin \theta_{i}\right)\right. \\
& \left.\quad+v_{i}\left(P_{t i} \cos \theta_{i}+Q_{t i} \sin \theta_{i}\right)\right] \tag{72}
\end{align*}
$$

Substituting Equations 64-66 into Equations 70-72 the equilibrium equations may be expressed as

$$
\begin{gather*}
P_{v}=\sum_{i=1}^{n}\left(J_{x i} x_{t i} \cos \theta_{i}-J_{y i} y_{t i} \sin \theta_{i}\right) \tag{73}\\
P_{u}=\sum_{i=1}^{n}\left(J_{y i} y_{t i} \cos \theta_{i}+J_{x i} x_{t i} \sin \theta_{i}\right) \tag{74}\\
M_{e}=\sum_{i=1}^{n}\left[-J_{m i} y_{t i}+u_{i}\left(J_{x i} x_{t i} \cos \theta_{i}-J_{y i} y_{t i} \sin \theta_{i}\right)\right. \\
\left.\quad+v_{i}\left(J_{y i} y_{t i} \cos \theta_{i}+J_{x i} x_{t i} \sin \theta_{i}\right)\right] \tag{75}
\end{gather*}
$$

The equations are modified further by substituting equations. 59 and 60 into Equations $73-75$ and rearranging to obtain

$$
\begin{align*}
P_{v}= & \sum_{i=1}^{n}\left\{\left(J_{x i} \cos ^{2} \theta_{i}+J_{y i} \sin ^{2} \theta_{i}\right) \Delta_{v}+\left[\left(J_{x i}-J_{y i}\right) \sin \theta_{i} \cos \theta_{i}\right] \Delta_{u}\right. \\
& \left.+\left[u_{i}\left(J_{x i} \cos ^{2} \theta_{i}+J_{y i} \ddot{\sin }^{2} \dot{\theta}_{i}\right)+v_{i}\left(J_{x i}-J_{y i}\right) \ddot{\sin } \theta_{i} \cos \theta_{i}\right] \dot{r}\right\} \tag{76}\\
P_{u}= & \sum_{i=1}^{n}\left\{\left[\left(J_{x i}-J_{y i}\right)\left(\sin \theta_{i} \cos \theta_{i}\right)\right] \Delta_{v}+\left(J_{y i} \cos ^{2} \theta_{i}+J_{x i} \sin ^{2} \theta_{i}\right) \Delta_{u}\right.
\end{align*}
$$

$$
\begin{align*}
& \left.+\left[u_{i}\left(J_{x i}-J_{y i}\right) \sin \theta_{i} \cos \theta_{i}+\left(v_{i} J_{y i} \cos ^{2} \theta_{i}+J_{x i} \sin ^{2} \theta_{i}\right)\right] r\right\} \tag{77}\\
M_{e}= & \sum_{i=1}^{n}\left\{\left[J_{m i} \sin \theta_{i}+u_{i}\left(J_{x i} \cos ^{2} \theta_{i}+J_{y i} \sin ^{2} \theta_{i}\right)\right.\right. \\
& \left.+v_{i}\left(J_{x i}-J_{y i}\right) \sin \theta_{i} \cos \theta_{i}\right] \Delta_{v}+\left[-J_{m i} \cos \theta_{i}\right. \\
& \left.+u_{i}\left(J_{x i}-J_{y i}\right) \sin \theta_{i} \cos \theta_{i}+v_{i}\left(J_{y i} \cos ^{2} \theta_{i}+J_{x i} \sin ^{2} \theta_{i}\right)\right] \Delta_{u} \\
& +\left[J_{m i}\left(u_{i} \sin \theta_{i}-b_{i} \cos \theta_{i}\right)+u_{i}^{2}\left(J_{x i} \cos ^{2} \theta_{i}+J_{y i} \sin ^{2} \theta_{i}\right)\right. \\
& \left.\left.+v_{i}^{2}\left(J_{y i} \cos ^{2} \theta_{i}+J_{x i} \sin ^{2} \theta_{i}\right)+2\left(J_{x i}-J_{y i}\right)\left(\sin \theta_{i} \cos \theta_{i}\right) u_{i} v_{i}\right] r\right\} \tag{78}
\end{align*}
$$

65. Equations $76-78$ constitute a complete set of equilibrium equations for a foundation. The loads on the foundation, the distance to the pile tops, and the batter of the piles are known quantities. If the spring modulus values are known, the three equations may be solved simultaneously for Δ_{v}, Δ_{u}, and Γ. However, since the system is nonlinear, J_{m}, J_{x}, and J_{y} will not be constants. Thus, an iterative solution is required. The procedure utilized for solving the equilibrium equations is described in the following paragraphs.

Computational Procedure for Solution of Equilibrium Equations

66. The iterative procedure used for the solution-ofthe equilibrium equations is illustrated in Figure 21. The iterative procedure is necessary for establishing the deflected position of the foundation so that equilibrium and oompatibility are satisfied.
67. To begin the procedure, values of Δ_{v}, Δ_{u}, and r are set equal to zero. In addition, the deflections of each pile top ($\mathrm{x}_{\mathrm{ti}}, \mathrm{y}_{t i}$) are set equal to one. These values are used only for starting the iterative procedure and have no bearing on the final solution.
68. Values of $x_{t i}$ are used directly with load-deflection curves for the individual piles to obtain values of $J_{x i}$. A typical loaddeflection curve and the procedure for computing $J_{x i}$ are shown in Figure 22. The use of a unique single valued curve for the axial loaddeflection response of a pile is based on the assumption that the axial behavior of a pile is unaffected by any lateral effects. That is to say, the axial load on the pile is dependent only on the axial deflection of the pile. This is not rigorously correct since it is known that lateral forces on the pile top will cause lateral movement which will decrease the axial load carrying capacity of the pile. However, for realistic situations the influence of the lateral forces on the axial response will be small and thus is ignored in this procedure.
69. Values of $y_{t i}$ are used with a lateral loaded pile

Figure 21. Block diagram for iterative solution

Figure 22. Axial load-settlement curve
subroutine, similar to COM62, to obtain values of $J_{y i}$ and $J_{m i}$. The subroutine requires two boundary conditions for the top of the pile. For the initial iteration, one of these boundary conditions is that the lateral deflection of the top of the pile is 1 in.* The second boundary

[^1]condition will depend on the manner in which the pile is connected tc the foundation and is set equal to zero. For pinned connections this means that the moment at the pile top is zero, for fixed connections $t_{1} e$ slope at the pile top is set equal to zero, and for restrained connections the stiffness of the rotational restraint spring is set equal to zero. In addition to the above boundary conditions, the axial forces applied to the top of the piles are obtained directly from the axial load-deformation curves. The axial forces are included because it is felt that these forces significantly affect the lateral response of the piles. However, this is contrary to what is assumed for the effects of lateral forces on the axial response. The reasoning for these assumptions are as follows:
a. The majority of the axial load is transferred to the soil in the lower part of the pile. For practical problems the lateral forces only cause significant lateraF movement in the upper part of the pile where the axial load transfer is small--hence, the assumption that lateral forces have little influence on the axial response.
b. The majority of the lateral load is transferred to the soil in the upper part of the pile. This means that the maximum defleetions, bending moments, and lateral soil. reactions occur near the top of the pile. Because the axial forces in the pile may be quite large near the top, the effects on the lateral behavior may be significant-hence, the inclusion of the effects of axial load on lateral behavior.
70. With the initial boundary conditions, the finite difference equations for the piles are solved and values of moment and shear at the pile top computed. With the moment and shear at the pile top known, values of $J_{y i}$ and $J_{m i}$ are computed by dividing the moment and shear by the top deflection which is 1 in. for the initial iteration.
71. With spring moduli for each pile, the equilibrium equations for the foundation movement are solved for Δ_{v}, Δ_{u}, and Γ. The new values of Δ_{v}, Δ_{u}, and Γ are then used to start the second iteration.
72. To start the second and each preceding iteration, deflections of the pile top ($x_{t i}$ and $y_{t i}$) are computed using current values of Δ_{v}, Δ_{u}, and Γ. New values of $J_{x i}$ are computed directly from
the load deflection curves for the individual piles as was done for the initial iteration. To calculate new values of $J_{y i}$ and $J_{m i}$, it is necessary to establish boundary conditions for the top of the pile as was done for the initial iteration. One boundary condition is the lateral load at the top of the pile. The lateral load is found by multiplying $J_{y i}$ from the previous iteration by $y_{t i}$. The second boundary condition will depend on the manner in which the pile is connected to the foundation. For pinned conditions the second boundary condition is that the top moment is zero. For fixed connections the slope at the top of the pile is set equal to the rotation of the structure (Γ). For restrained connections the second boundary condition is the stiffness of the rotational restraint spring. The axial forces are computed by multiplying $J_{x i}$ by $x_{t i}$. With the boundary $\underset{\sim}{*}{ }^{\circ}$ ditions established the remainder of the procedure is the same as for the initial iteration.
73. The values of Δ_{v}, Δ_{u}, arid r are compared with values from the previous iteration. The correct solution is obtained when the movements agree within the specified allowable tolerance. If closure is not obtained, the procedure is repeated. If closure is obtained, a control is set and the forces and moments exerted by each pile on the foundation are computed. In addition, the deflected shape, moment distribution, and soil reaction for each pile are calculated.
74. A computer program GROUP, developed by Dr. Katsuyuki Awoshika and Prof. L. C. Reese ${ }^{15}$ at the University of Texas, is currently available. GROUP can perform the same type of analysis as BENTl but is considered more general and efficient.
75. The UT method of analysis for single piles (loaded laterally or axially) and group of piles (discussed previously) requires the development of nonlinear soil resistance-pile movement curves for both lateral and axial loading conditions. This subject is quite complex, and no attempt will be made in this report to review the work that has been done in this area. A concise presentation on this topic is given by Awoshika and Reese ${ }^{15}$ and Parker and Cox; ${ }^{16}$ the material in this part is principally extracted from these two reports. The discussions here will be limited to the establishment of criteria that are used internally in the computer codes documented in this report. : $:=$
76. The actual pile-soil systems are quite complex and the interaction will be affected by a number of parameters, such as time effect on soil behavior, disturbance of soil due to pile driving/placing, cyclic loading of soil, settlement of the soil surrounding the pile due to negative skin friction, and interference of adjacent piles. The criteria presented have been derived for static, short-term loading conditions and are based on semi-empirical considerations.
77. Soil criteria for lateral and axial loading conditions are developed separately. Also, the criteria are developed separately for two common but extreme soil types, clay and sand. One may expect other soils to exhibit characteristics somewhere between those for clay and sand.

Laterally Loaded Pile

78. In Part III, the effect of the soil on a laterally loaded pile was shown as a distributed reaction p. The soil reaction p was defined as

$$
\begin{equation*}
p=E_{S} y \tag{79}
\end{equation*}
$$

where E_{s} is the soil modulus and y is the lateral deflection. The soil modulus values vary generally with p and y in a nonlinear manner. The subsequent paragraphs discuss the methods to obtain these p-y curves.
79. The p-y curves will depend on the soil properties. For most cases the properties of the soil in a profile are not constant with depth, the usual case being that the strength of the soil increases with depth. A typical variation of shear strength of soil with depth is shown in Figure 23a. Since the strength of the soil will affect the $\mathrm{p}-\mathrm{y}$ curves obtained, a variation similar to that illustrated in Figure $23 b$ might be expected. It should be pointed out that the shear strength is not the only parameter which will affect the $p-y$ curve, although it does have considerable influence. The purpose sf the variation shown in Figure 23b is only to illustrate the variability of the p-y relation.

Soil Criteria

80. Soil resistance movement for both clays and sands are constructed assuming that the $p-y$ curves can be divided into two segments. These two segments are designated as $0-A$ and $A-B$ in Figure 24. The segment $0-A$ represents the early part of the curve, and the segment $A-B$, the ultimate part of the curve. Because of this division, the construction of $p-y$ curves may be carried out in two steps. First, the ultimate soil resistance is calculated and then the shape of the early part of the curve is obtained. Secondly, the horizontal line representing the ultimate soil resistance and the early part of the curve are then joined to form a continuous curve. In the following paragraphs the procedure will be explained first for clay and then for sand. Criteria for clay
81. For clay two methods are employed to obtain $p-y$ curves. If stress-strain data are available, the method proposed by Mcclelland and Focht ${ }^{17}$ is used, with one modification. For this method stressmstrain

a. VARIATION OF SHEAR STRENGTH WITH DEPTH

b. VARIATION OF p-y CURVES WITH DEPTH

Figure 23. Variation of soil properties with depth

Figure 24. Construction of p-y curve
curves, similar to the one shown in Figure 25, are required. The curve is obtained from a triaxial test in which the confining pressure σ_{3}

is as close as possible to the confining pressure on the soil in the field. McClelland and Focht recommend that the $p-y$ curve be obtained by using the following relations:

$$
\begin{equation*}
\mathrm{p}=5.5 d \sigma_{\Delta} \tag{80}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{y}=1 / 2 \mathrm{~d} \varepsilon \tag{81}
\end{equation*}
$$

where
$d=$ diameter of pile or equivalent diameter
${ }_{\Delta}=\begin{aligned} & \text { soil deviator stress }\left(\sigma_{1}-\sigma_{3}\right) \text { from triaxial compression test } \\ & \text { in psi }\end{aligned}$
$\varepsilon=$ axial soil strain from triaxial compression test
82. Skempton ${ }^{18}$ has suggested the following relationship for calculating deflections of footings:

$$
\begin{equation*}
y=2 d \varepsilon \tag{82}
\end{equation*}
$$

An average value to use for deflection would be one between the values calculated using Equations 81 and 82. The equation suggested is

$$
\begin{equation*}
y=d e \tag{83}
\end{equation*}
$$

Using Equations 80 and 83 and the stress-strain curve, a corresponding p-y curve may be obtained.
83. It is assumed that the test is run until failure is obtained. That is, the maximum value for σ_{Δ} obtained will represent the ultimate value which may be carried by the soil. Consequently, the value for p calculated using the ultimate value of σ_{Δ} is considered to be the ultimate soil resistance.

Reese's criteria
84. If no stress-strain curves are available, but the shear strength and unit weight are known, $p-y$ curves can be obtained. riwo expressions are available for calculating the ultimate soil resistance for clay. These equations suggested by Reese ${ }^{19}$ are as follows:

$$
\begin{equation*}
p_{u}=\gamma d X+2 c d+2.83 c X \tag{84}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{u}=11 c d \tag{85}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma=\text { effective unit of soil } \\
& X=\text { depth from soil surface } \\
& c=\text { conesion of clay }
\end{aligned}
$$

Equations 84 and 85 are usually plotted (Figure 26), and the smaller of the two values is used in constructing p-y curves. Equation 84 will control near the surface since it is based on the occurrence of a wedgetype failure, and Equation 85 will control at depth since it is based on

Figure. 26. Ultimate soil resistance for clays
the soil failing by flowing around the pile. At such depths, there is sufficient restraint to prevent the upward movement of the soil. Early part of curve
85. The early part of the curve is obtained by Equations 80 and 83. Since no stress-strain curve is available, values of σ_{Δ} and ε must be found. These are found by approximating the stress-strain curve. The following assumptions are made for drawing approximate stress-strain diagrams:

$$
\begin{aligned}
\sigma_{\Delta 50} & =c=q_{u} / 2 \\
\varepsilon_{50} & =0.005 \text { (brittle or stiff clays) } \\
\varepsilon_{50} & =0.02 \text { (soft plastic clay) } \\
\varepsilon_{50} & =0.01 \text { (no consistency data available) }
\end{aligned}
$$

where

$$
\sigma_{\Delta 50}=\text { deviator stress corresponding to } 50 \text { percent strain }
$$

$$
\begin{aligned}
q_{u}= & \text { unconfined compressive strength } \\
\varepsilon_{50}= & 50 \text { percent of the maximum axial strain from triaxial } \\
& \text { compression test }
\end{aligned}
$$

The values of $\sigma_{\Delta 50}$ and ε_{50} are plotted as shown in Figure 27. A

Figure 27. Approximate $\log -\log$ plot of stress-strain curve
straight line with a slope of 0.5 is drawn through this point to represent the stress-strain curve for the soil. With this curve the early part of the curve may be obtained by applying Equations 80 and 83. Criteria for sand
86. For sand the following two equations for calculating the ultimate soil resistance ${ }^{19}$ are used:

$$
\begin{align*}
p_{u}=\gamma d X\left[\frac{\tan \beta}{\tan (\beta-\phi)}-K_{A}\right] & +\gamma X^{2}\left[\frac{\tan ^{2} \beta \tan \alpha}{\tan (\beta-\phi)}+\frac{K_{0} \sin \beta \tan \phi}{\cos \alpha \tan (\beta-\phi)}\right. \\
& \left.+K_{0} \tan \beta \tan \phi \sin \beta-K_{o} \tan \beta \tan \alpha\right] \tag{86}
\end{align*}
$$

and

$$
\begin{array}{r}
p_{u}=\gamma \operatorname{dx}\left\{\left(\tan ^{2} 45^{\circ}-\frac{\emptyset}{2}\right)\left[\tan ^{8}\left(45^{\circ}+\frac{\phi}{2}\right)-1\right]\right. \\
 \tag{87}\\
\left.+K_{0} \tan \emptyset \tan ^{4}\left(45^{\circ}+\frac{\phi}{2}\right)\right\}
\end{array}
$$

where

$$
\begin{aligned}
\beta & =45^{\circ}+\emptyset / 2 \\
\emptyset & =\text { angle of internal friction of sand } \\
K_{A} & =\text { active earth pressure coefficient } \\
K_{o} & =\text { coefficient of earth pressure at rest } \\
\alpha & =\left\{\begin{array}{l}
\emptyset / 2 \text { to } \emptyset / 3 \text { (loose sand) } \\
\emptyset \text { (dense sand) }
\end{array}\right.
\end{aligned}
$$

$$
:-
$$

Equation 86 is for wedge-type failure (near surface), and Equation 87 is for flow around failure (at depth). Equations 86 and 87 axe shown plotted in Figure 28a. The lower of the two values obtained from the equations will be used in constructing the $p-y$ curves.

Early part of curve

87. The early part of the curve is obtained by applying theory developed by Terzaghi. ${ }^{20}$ This results in a linear variation between p and y, with the slope defined as

$$
\begin{equation*}
\text { Slope }=\frac{H Y X}{1.35} \tag{88}
\end{equation*}
$$

where H is the constant depending on relative density of sand. Suggested values for H are 200 for loose sand, 600 for sand with medium density, and 1500 for dense sand. The unit weight used is the effective unit weight.
88. If the slope of the early part of the curve is known, the $p-y$ curve can be constructed by connecting a straight line through the origin, with a slope (expressed by Equation 88) to the horizontal line defined by the ultimate soil resistance. This results in a p-y curve Which consists of two straight lines (Figure 28b). When one considers the behavior of a sand, it will be noted its behavior is not linear.

Figure 28. Reese's criteria for $p-y$ curves in sands

As a result, the $p-y$ curve obtained should be considered as an approximation.

Program MAKE

89. A computer program MAKE, documented in Appendix B, is programmed for computing Equations 80 through 88. The program can also produce $p-y$ curves at various depths and various size piles embedded in clays or sands.

Other criteria for
computing p $-y$ curves
90. There are various other criteria for computing $p-y$ curves for laterally loaded piles in clays and sands. Worthy of particular mention are Matlock's ${ }^{21}$ criteria for constructing $p-y$ curves for static and cyclic loading in soft clay and Parker and Reese's ${ }^{22}$ criteria for developing $p-y$ curves in sands. A summary of these two and other criteria is contained in Reference 15. General comments on $p-y$ curves
91. It must be emphasized that the procedures explained herein to develop p-y curves are based on semi-empirical relations. This points out that these procedures need to be carefully evaluated with regard to the problem environment before being used in anazyses. Perhaps the most important consideration regarding $p-y$ curves is whether or not there are validating experimental results. The oil industry has funded several experimental (both laboratory and field) programs to obtain confidence in the methods employed for constructing these curves. When the results become available in the public domain, the level of confidence in the techniques proposed is likely to increase.

Axially Loaded Pile

Type of interaction curves needed

92. The mechanics of the axially loaded pile problem described in Part II requires the determination of a set of load transfer curves along the pile and the point resistance curve at the tip of the pile. The load transfer curve refers to a relationship between the skin friction developed on the side of a pile and the absolute axial displacement of a pile section. The point resistance curve expresses the total axial soil resistance on the base of the pile tip in terms of the pile-tip movement. Factors affecting interaction curves
93. The properties of soil which determine the load transfer curve and the point resistance curve may be considerably affected by
pile driving. In the case of clays, seed and Reese ${ }^{9}$ reported that soon after the pile driving a loss in shear strength was observed in clays adjacent to the pile equal to 70 percent of that for total remolding. They also observed that the recovery of shear strength with the passage of time resulted in a five-fold increase in the load-carrying capacity of a pile, even in insensitive clays. As is pointed out by Kishida, 23 the pile driving in a loose sand results in the increase in the relative density and in the confining pressure, both of which are major factors affecting the load transfer curves and the point resistance curve. The action of arching observed in sands around a pile (Robinsky and Morrison ${ }^{24}$), may be another important factor to be considered.
94. In spite of all these complex factors, presently available soil criteria are based only on the soil properties before pilne driving. In view of the fact that the effect of different methods of pile installation on the soil properties with the passage of time are excluded from the soil criteria, in the following paragraphs the soil criteria described must be regarded as tentative.

Criteria for Clay

Coyle and Reese's criteria for load transfer curves

95. To develop soil criteria for the load transfer curves for a pile in clays, Coyle and Reese ${ }^{1 . l}$ proposed (after Woodward, Lundgren, and Boitano ${ }^{25}$) a reduction factor K to express the relationship between the cohesion of a clay and the shear strength that can be assumed to be effective in resisting axial load on a pile. Figure 29 shows that the reduction factor K is less than unity if the shear strength of a clay is over 1000 psf.
96. Coyle and Reese expressed the rate of load transfer developed on the side of a pile as a function of absolute pile movement. Curves were given for various depths (Figure 30).
97. The procedure for developing a load transfer curve for the side of a pile is summarized as follows:

Figure-29. : Reduction factor for maximum adhesion

Figure 30. Nondimensional load transfer curves of a pile in clays

Step 2. Estimate the distribution of cohesion of the clays along the length of the pile from available soil data.

Step 2. Compute the effective shear strength as a function of depth from Figure 29 using the reduction factor K .

Step 3. Obtain the distance from the ground surface to the midpoint of the section where the load transfer curve needs to be developed.

Steo 4. Select the curve A, B, or C in Figure 30 depending on the depth.
Step 5. Choose a pile movement; obtain the ordinate from the selected curve in Figure 30.
Step 6. Compute load transfer for the selected pile movement by multiplying the ordinate obtained in step 5 by the effective shear strength obtained in step 2 and the circumferential area of the pile.
Step 7. Repeat steps 5 and 6 for other pile movements to construct the entire load transfer curve at that depth.
Step 8. Repeat steps 2 through 7 for varying depths to obtain a set of load transfer curves along a pile.

Skempton's criteria for tip resistance curves
98. The point resistance curve for a pile in a clay may be generated by Skempton's ${ }^{18}$ criteria. Starting with the theory of elasticity, Skempton found a correlation between the load-settlement curve of the shallow foundation and the stress-strain curve for the undrained triaxial compression test. The validity of the same correlation for a deep foundation was attested by examining the effect of the foundation depth on the pertinent variables in the basic equation. The correlation for piles can be expressed by

$$
\begin{align*}
& z_{b}=2 A_{b} \varepsilon \tag{89}\\
& q_{b}=m \sigma_{\Delta} A_{b} \tag{90}
\end{align*}
$$

where
$z_{b}=$ axial movement of base of pile
$A_{b}=$ area of base of pile
$q_{b}=$ normal pressure on base of pile
$\mathrm{m}=$ coefficient that can be taken as 5.0 to 5.5
99. If a stress-strain curve from undrained triaxial test is available, it is readily transformed to a point resistance curve as described for a laterally loaded pile earlier in this part. If no stressstrain curve is available, the procedure shown in Figure 27 can be followed to develop approximate stress-strain curves.

Criteria for Sand

100. Limited studies have been made for sands to establish generally applicable soil criteria for generating a set of load transfer curves along a pile and a point resistance curve at the tip of the pile. Two soil criteria are described below. Coyle and Sulaiman's criteria
101. Coyle and Sulaiman ${ }^{26}$ experimentally investigated the load transfer curves of a pile in sand. The ultimate shear transfer or skin friction on the side of a pile wall is expressed in the simplest form by

$$
\begin{equation*}
f_{u}=K \gamma X \tan \delta \tag{91}
\end{equation*}
$$

where
$f_{u}=$ maximum shear transfer in psi.
$K=$ horizontal earth pressure coefficient at pile-soil interface whose value may lie somewhere between the active earth pressure coefficient K_{A} and the passive earth pressure coefficient K_{p}
$\delta=$ friction angle between the pile and the surrounding sand
102. Assuming that the earth pressure coefficient K is equal to one and the friction angle is equal to the angle of internal friction of the sand before disturbance, Coyle and Sulaiman found the relationship between the load transfer of a pile in a sand and the pile displacement.
103. Their conclusion, however, does not agree with the
experimental observation by Parker and Reese. ${ }^{22}$ Coyle and Sulaiman state that at shallow depth there is a considerable increase in the actual maximum load transfer over that calculated by Equation 91 with the assumption of constant K and constant δ throughout the length of the pile. They further state that the maximum load transfer is reached at the lower portion of the pile with smaller pile displacement than at the upper portion. The observation by Parker and Reese indicated that the actual maximum load transfer at shallow depth is close to that obtained from Equation 91 with the same K and δ at all depths. Parker and Reese also found that the pile displacement necessary to reach the maximum load transfer increases linearly with depth. Parker and Reese's criteria
104. Empirical criteria were established by Parker and Reese ${ }^{22}$ for generating a set of load transfer curves along a pile in sand. The criteria correlates the load transfer curve with the stress-strain curve of a triaxial compression test. Their criteria includes a recommendation for the estimation of a point resistance curve.
105. The description of the procedure for generating a set of load transfer curves and a point resistance curve is given as follows:

Step 1. Determine the relative density of sand and the stress-strain curve of a triaxial test with the ambient pressure equal to the overburden pressure.
Step 2. Obtain the correction factor for the maximum load transfer as a function of the relative density of sand (Figure 31).

Step 3. Obtain modified correlation coefficients, which relate the deviator stress in the triaxial test with the load transfer on the side of the pile. The modified correlation coefficient for uplift loading is calculated by dividing the value obtained by Equation 92 with the correction factor (step 2).

$$
\begin{equation*}
U_{t}=\frac{D_{t}}{\tan ^{2}\left(45^{\circ}+\emptyset / 2\right)-1} \tag{92}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{U}_{\mathrm{t}}= & \text { correlation coefficient for uplift } \\
& \text { loading }
\end{aligned}
$$

Figure 31. Correction factor for maximum load transfer
$D_{t}=$ tension skin friction coefficient which is a function of the earth pressure coefficient and the friction angle. The value of 4.06 is assumed by Parker and Reese.

The modified correlation coefficient for a compression pile is calculated by dividing the value of Equation 93 with the correction factor (step 2).

$$
\begin{equation*}
U_{c}=\frac{D_{c}}{\tan ^{2}\left(45^{\circ}+\phi / 2\right)-1} \tag{93}
\end{equation*}
$$

where
$U_{c}=$ correlation coefficient for compression loading
$D_{c}=$ compression skin friction coefficient which is a function of the earth pressure coefficient and the friction angle. Parker and Reese assume the value 5.3 or the value computed from 7.0-0.04x.

Step 4. Compute a load transfer curve from a stress-strain curve. Multiply the deviator stresses with the modified correlation coefficient (step 3) to obtain the values of load transfer. Then calculate the displacement of the pile by multiplying the axial strain in the triaxial test with the value obtained from Equation 94 or 95.

$$
\begin{align*}
& B_{t}=0.15+0.012 x \tag{94}\\
& B_{c}=0.4+0.016 x \tag{95}
\end{align*}
$$

where

$$
\begin{aligned}
B_{t}= & \text { factor correlating upward pile movement } \\
& \text { to axial strain }
\end{aligned}
$$

$B_{c}=$ factor correlating downward pile movement to axial strain
Step 5. Repeat steps 1 through 4 for depths up to 15 times the pile diameter. The curve for a depth of 15 pile diameters is used for the remainder of the pile.
Step 6. Construct a point resistance curve by combining any one of the bearing capacity formulas with the theory of elasticity solution for the settlement of a rigid footing on an elastic material (Skempton ${ }^{18 \text {). }}$

Meyerhof's criteria for tip resistance
106. After Skempton, Yassin, and Gibson, ${ }^{27}$ Meyerhof ${ }^{28}$ proposed a simple criterion (Equation 96) for generating a point resistance of a pile in sands.

$$
\begin{equation*}
z=\frac{d q_{b}}{30 q_{b u}} \tag{96}
\end{equation*}
$$

where $q_{b u}=$ unit ultimate bearing capacity
107. Considering the diversity of values of $q_{\text {bu }}$ by various bearing capacity formulas (Vesic, ${ }^{29}$ McClelland, Focht, and Emrich ${ }^{30}$), the unit ultimate bearing capaci.ty of a pile point may be readily obtained from the empirical relationship with the standard penetration test (Meyerhof ${ }^{28}$).

$$
\begin{equation*}
q_{b u}=60 \mathrm{~N} \tag{97}
\end{equation*}
$$

where N denotes the number of blows per foot penetration in the standard penetration test.

Summary

108. A set of load transfer curves along a pile in clays can be computed from the criteria by Coyle and Reese. ${ }^{11}$ A point resistance curve for a pile in clays can be constructed from Skempton's criteria.
109. The load transfer curves along a pile in sands may be determined by the procedure given by Parker and Reese. ${ }^{22}$ A point resistance curve for a pile in sands may be computed either according so the recommendation by Parker and Reese or according to Meyerhof's criteria.
110. Existing soil criteria can only make a rough prediction of the axial behavior of a pile. For a more accurate prediction of axial behavior of a pile, future development is needed of the theory for the mechanism of load transfer and of point resistance. The employment of the finite element method to solve the pile-soil interaction problems can perhaps eliminate the use of semi-empirical criteria to develop load transfer and point resistance curves.

PART VI: DISCRETE ELEMENT THEORY FOR

 BEAM-COLUMNS111. The computer code BMCOL51, developed by Matlock and Taylor, ${ }^{3}$ utilizes a discrete element mechanical model for describing the loaddeformation response of a beam-column. The equations obtained from the discrete element model are similar to those obtained with finitedifference approximations for the differential equations for bending, and the results are approximately the same. However, the equations obtained from the discrete element model can be grouped into a system of equations that allows a variety of boundary conditions to be applied; whereas the system of equations obtained with finite difference theory permit only the application of certain boundary conditions at adefinite locations along the beam-column, i.e. two at both ends. As a result, BMCOL51 is a more versatile program than COM62 since a wide variety of problems can be solved with BMCOL5l while COM62 is designed exclusively for the analysis of piles or beams on grade. However, BMCOL51 is limited to problems where the reactions can be characterized by linear springs, whereas COM62 can consider nonlinear soil response. It must be noted that BMCOL51 is one of the earlier BMCOL programs written under the guidance of Prof. Matlock. Currently available versions of BMCOL programs are more versatile and can account for nonlinear material and geometric properties.
112. The discrete element model for representing a beam-column will be described in subsequent paragraphs. The development of the model and equations for describing the model are taken directly from Matlock and Haliburton. 31 Likewise, the figures used in the development were extracted from Matlock and Haliburton with changes made to the notation to ensure compatiblity with the remainder of the report. Equations expressing the response of the discrete element model will be derived and used in formulating a set of simultaneous equations for predicting the response of a beam-column. Finally, the procedure utilized in BMCOL51 for solving the simultaneous equations will be presented. This code also has the capability of solving problems with moving loads.

Discrete Element Representation of the Response of a Simple Beam

113. To begin the development, a mechanical model representing a conventional beam will be considered. The model shown in Figure 32 was developed by Matlock and Haliburton. 31 Figure $32(a-c$) illustrates how the deformation of a linear elastic beam element under the action of pure bending may be represented. If we consider the overall behavior of the element, then a mechanical analog of the element in Figure 32c may be formed by the rigid plates, hinge, and linear springs in Figure 32 d . The stiffness of the springs represent the flexural stiffness of the beam element. To form a beam a number of the mechanical elements can be strung together as shown in Figure 32e. The mechanical model thus formed would truly represent the behavior of the beam if the individual mechanical elements were infinitely small. However, for practical problems, as with any mechanical model or approximate numerical procedure, accuracy must be sacrificed in order that the number of calculations required be kept within practical limits. As it turns out, a cruder model (Figure $32 f$), where the rigid plates are replaced by rigid. bars of length h, may be used to represent the beam without serious loss of accuracy.
114. The equations describing the behavior of the mechanical model may be formulated by considering the deformed segment of a finiteelement beam model in Figure 33. The deformable element of the model. is represented schematically as a deformable joint with the same behavior as the spring and hinges in Figure 32. If we assume that the effect of a lateral force w distributed along the beam for a distance $h / 2$ on either side of a joint) may be represented by a concentrated force

$$
\begin{equation*}
W_{i}=h w_{i} \tag{98}
\end{equation*}
$$

acting at the deformable joint, then the equation describing the behavior of the beam may be formulated.
115. The change in slope, \emptyset_{i}, between bars A and B may be written as

f.

Figure 32. Finite mechanical representation of a conventional beam

$$
\begin{equation*}
\phi_{i}=\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h} \tag{99}
\end{equation*}
$$

In order to establish the similarities between the equations obtained using finite difference approximations and discrete element theory, Equation 99 is written as

$$
\begin{equation*}
\phi_{i}=n\left(\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}\right) \tag{100}
\end{equation*}
$$

The expression in the parenthesis is equivalent to Equation 2, the expression for the second derivative of deflection. The second derivative represents the curvature of the elastic curve and the finite difference expression represents an approximation of the curvature so that the moment-curvature relationship could be approximated by Equation 12. If we assume that ϕ_{i} represents the concentration of the beam curvature for one increment, then the moment curvature relationship for an arbitrary joint i may be expressed as

$$
\begin{equation*}
M_{i}=\frac{R_{i} \emptyset_{i}}{h} \tag{101}
\end{equation*}
$$

If we assume that all external forces are applied to the beam as concentrated forces at the deformable joints, then the summation of forces on the deformable joint yields

$$
\begin{equation*}
W_{i}+V_{A}-V_{B}=0 \tag{102}
\end{equation*}
$$

where V_{A} and V_{B} are the shear in bars A and B, respectively. Summation of moments about bars A and B yield, respectively,

$$
\begin{equation*}
M_{i-1}-M_{i}+V_{A} h=0 \tag{103}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{i}-M_{i+1}+V_{B} h=0 \quad: \cdots= \tag{104}
\end{equation*}
$$

Equations 103 and 104 may be substituted into Equation 102 and the shear V_{A} and V_{B} eliminated to yield

$$
\begin{equation*}
M_{i-1}-2 M_{i}+M_{j+1}=h W_{i} \tag{105}
\end{equation*}
$$

The expression for moment in Equation 101 when substituted into Equation 105 yields

$$
\begin{equation*}
R_{i-1} \emptyset_{i-1}-2 R_{i} \emptyset_{i}+R_{i+1} \phi_{i+1}=h^{2} W_{i} \tag{106}
\end{equation*}
$$

Substituting the expression for the beam curvature, Equation 99 into Equation 106 yields
$R_{i-1}\left(\frac{y_{i-2}-2 y_{i-1}+y_{i}}{h}\right)-2 R_{i}\left(\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h}\right)$

$$
\begin{equation*}
+R_{i+1}\left(\frac{y_{i}-2 y_{i+1}+y_{i+2}}{h}\right)=h^{2} W_{i} \tag{107}
\end{equation*}
$$

Simplifying Equation 1.07 yields

$$
y_{i+2}\left(R_{i+1}\right)+y_{i+1}\left(-2 R_{i+1}-2 R_{i}\right)+y_{i}\left(R_{i+1}+4 R_{i}+R_{i-1}\right)
$$

$$
\begin{equation*}
+y_{i-1}\left(-2 R_{i}-2 R_{i-1}\right)+y_{i-2}\left(R_{i-1}\right)=h^{3} W_{i} \tag{108}
\end{equation*}
$$

The above equation is identical to Equation 10 if the effects of axial load are omitted in Equation 10 and the expressions for the applied lateral load are equated. The effects of lateral load in Equation 10 are represented by the expression $y_{i} E_{s i} h^{h^{4}}$, where the distributed lateral force that resulted from the soil reaction was given by the expression

$$
\begin{equation*}
w_{i}=E_{s i} y_{i} \tag{109}
\end{equation*}
$$

Since the expression for the concentrated force at the joint is given by the expression

$$
\begin{equation*}
\mathrm{W}_{\mathrm{i}}=\mathrm{h} w_{\mathrm{i}} \quad \tag{110}
\end{equation*}
$$

it can be seen that expressions 108 and 10 are identical except for the sign of the term for the lateral force. This difference results simply from the sign convention used in developing the equations and has no physical significance.

Discrete Element Representation of the Response of a Generalized Beam-Column

116. For simple beams, with only lateral forces applied, closed form solutions are available for most cases. However, realistic engineering problems usually involve the application of axial loads and a variety of external loading and restraint conditions. The mechanical model representation of a beam-column and the equations describing the response of the beam-column will be developed below.
117. The external forces and restraints that will be considered are presented in Figure 34. The forces and restraints are shown acting in the positive sense. Lowercase letters represent distributed loads and restraints while corresponding capital letters denote concentrated forces and restraints.

UNITS SHOWN ARE TYPICAL. ANY CONSISTENT SYSTEM OF UNITS MAY BE USED
Figure 34. Loads and restraints considered in the generalized beam-column solution. All effects are shown acting in a positive sense in relation to the x-direction
118. Equations describing the behavior of a generalized beamcolumn may be derived by considering the beam-column element in Figure 35 deflected a distance y and rotated through an angle $d y / d x$. Summing moments about the right end of the element yields

$$
\begin{equation*}
d M-V d x-t d x-w \frac{(d x)^{2}}{2}+\operatorname{sy} \frac{(d x)^{2}}{2}-g d y-Q d y-d Q \frac{d y}{2}=0 \tag{111}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{t}=\text { distributed externally applied moment or torque } \\
& \mathrm{W}=\text { distributed lateral force } \\
& \mathrm{s}=\text { distributed lateral restraint } \\
& \mathrm{g}=\text { distributed rotational restraint } \\
& \mathrm{Q}=\text { axial force }
\end{aligned}
$$

Neglecting higher order terms and dividing both sides of the equation by dx yields

Figure 35. Generalized beam-column element deflected a distance y and tilted through some angle $d y / d x$

$$
\begin{equation*}
\frac{d M}{d x}=V+t+(g+Q) \frac{d y}{d x} \tag{112}
\end{equation*}
$$

Summation of vertical forces on the element in Figure 35 yields

$$
\begin{equation*}
\frac{d V}{d x}=w-s y \tag{.113}
\end{equation*}
$$

Differentiating Equation 112 and substituting Equation 113 into the resulting equation to eliminate the shear yields

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}}=w-s y+\frac{d}{d x}\left[t+(g+Q) \frac{d y}{d x}\right] \tag{114}
\end{equation*}
$$

The above equation corresponds to Equation 7 but with the addition of the effects of externally applied moments, rotational resistance, an axial load that is variable with x, and externally applied lateral loads. The term $E_{s} y$ in Equation 7 is analogous to the term sy in the above equation in that they both represent the effects of lateral restraints. However, the variable E_{S} is a secant modulus value obtained from a nonlinear curve while s symbolizes a linear
relationship between load and deflection. The above equation is next converted into finite difference forms and the effects of distributed applied loads and restraints concentrated in order to develop a mechanical model that will represent the response of the beam as predicted by the finite difference equations.
119. The left side of Equation 114 is converted into finite difference form by first writing the expression

$$
\begin{equation*}
\left(\frac{d^{2} M_{1}}{d x^{2}}\right)_{i} \approx \frac{M_{i-1}-2 M_{i}+M_{i+1}}{h^{2}} \tag{115}
\end{equation*}
$$

The equations for the moment at the nodal points given by Equation 101 are substituted into Equation 115 yielding ... $=$

$$
\begin{align*}
\left(\frac{d^{2} M}{d x^{2}}\right)_{i} \approx & \frac{1}{h^{4}}\left[y_{i+2}\left(R_{i+1}\right)+y_{i+1}\left(-2 R_{i+1}-2 R_{i}\right)\right. \\
& +y_{i}\left(R_{i+1}+4 R_{i}+R_{i-1}\right)+y_{i-1}\left(-2 R_{i}-2 R_{i-1}\right) \\
& \left.+y_{i-2}\left(R_{i-1}\right]^{\prime}\right] \tag{116}
\end{align*}
$$

The right-hand side of Equation 114 is converted to finite difference form by writing w as w_{i} and sy as $s_{i} y_{i}$. The remainder of the expression is converted by writing

$$
\begin{equation*}
\left(\frac{\partial t}{d x}\right)_{i} \approx \frac{t_{i+1}-t_{i-1}}{2 h} \tag{117}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d}{d x}\left[(g+Q) \frac{d y}{d x}\right]= & \frac{1}{2 h}\left[\left(g_{i+1}+Q_{i+1}\right) \frac{y_{i+2}-y_{i}}{2 h}\right. \\
& \left.-\left(g_{j-1}+Q_{i-1}\right) \frac{y_{i}-y_{i-2}}{2 h}\right] \tag{118}
\end{align*}
$$

Writing the right-hand side in its entirety yields

$$
\begin{align*}
\left(\frac{d^{2} M}{d x^{2}}\right)_{i}=w_{i}-s_{i} y_{i}+\frac{1}{2 h}\left[t_{i \neq 1}\right. & +\left(g_{i+1}+Q_{i+1}\right) \frac{y_{i+2}-y_{i}}{2 h} \\
& \left.-t_{i-1}-\left(g_{i-1}+Q_{i-1}\right)\left(\frac{y_{i}-y_{i-2}}{2 h}\right)\right] \tag{119}
\end{align*}
$$

Equating Equations 116 and 119 yields for nodal point i the expression

$$
\begin{align*}
& \frac{1}{h^{4}}\left[y_{i+2}\left(R_{i+1}\right)+y_{i+1}\left(-2 R_{i+1}-2 R_{i}\right)+y_{i}\left(R_{i+1}+4 R_{i}+R_{i-1}\right)\right. \\
& \left.+y_{i-1}\left(-2 R_{i-1}\right)+y_{i-2}\left(R_{i-1}\right)\right] \\
& =w_{i}-s_{i} y_{i}+\frac{1}{2 h}\left[t_{i+1}+\left(g_{i+1}+Q_{i+1}\right)\left(\frac{y_{i+2}-y_{i}}{2 h}\right)\right. \\
& \left.-t_{i-1}-\left(g_{i-1}+Q_{i-1}\right)\left(\frac{y_{i}-y_{i-2}}{2 h}\right)\right] \tag{120}
\end{align*}
$$

Combining terms, Equation 120 is written as

$$
\begin{align*}
& y_{i+2}\left[R_{i+1}-\frac{h^{2}}{4}\left(g_{i+1}+Q_{i+1}\right)\right]+y_{i+1}\left(-2 R_{i+1}-2 R_{i}\right) \\
& +y_{i}\left[R_{i+1}+4 R_{i}+R_{i-1}+h^{4} s_{i}+\frac{h^{2}}{4}\left(g_{i+1}+Q_{i-1}+g_{i-1}+Q_{i-1}\right)\right] \\
& +y_{i-1}\left(-2 R_{i}-2 R_{i-1}\right)+y_{i-2}\left[R_{i-1}-\frac{h^{2}}{4}\left(g_{i-1}+Q_{i-1}\right)\right] \\
& =h^{4} w_{i}+\frac{h^{3}}{2}\left(t_{i+1}-t_{i-1}\right) \tag{121}
\end{align*}
$$

The distributed externally applied loads and restraints may be lumped at the nodal points as concentrated forces, W_{i}, concentrated springs S_{i}, concentrated moments T_{i} and concentrated rotational restraints G_{i}, by the following equations:

$$
\begin{align*}
& W_{i}=h w_{i} \tag{122}\\
& s_{i}=h s_{i} \tag{123}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{T}_{\mathrm{i}}=\mathrm{h} \mathrm{t}_{\mathrm{i}} \tag{124}\\
& \mathrm{G}_{\mathrm{i}}=\mathrm{h} \mathrm{~g}_{\mathrm{i}} \tag{125}
\end{align*}
$$

Substituting Equations 122-125 into Equation 121 results in an equation describing the behavior of the mechanical model shown in Figure 36. The flexural stiffness R_{i} is concentrated at the increment point in the

Figure 36. Mechanical model corresponding exactly to beam-column equations
form of a spring-restrained hinge between two rigid segments. All load and support values are ultimately felt by the beam as transverse forces applied at nodal points. This is obvious for the lateral load W_{i} and for the couple created by forces $T_{i} / 2 h$. It is also true for the reaction from the spring S_{i} as well as for two equal but opposite reactions from the angular restraint mechanism which acts as an exact analog for the combined effect of a rotational spring G_{i} and the axial tension (or compression) Q_{i}.
120. The deflections that result from the solution of Equation 121 represent a set of deflections for the nodal points of the mechanical model for the beam-column that will satisfy compatibility and equilibrium at each nodal point and of each nondeformable bar in the model. In the subsequent paragraphs the procedure for solving the equations will be described.

Recursive Solution Technique

121. Equation 121 may be written in the following form:

$$
\begin{equation*}
a_{i} y_{i+2}+b_{i} y_{i+1}+c_{i} y_{i}+d_{i} y_{i-1}+e_{i} y_{i-2}=f_{i} \tag{126}
\end{equation*}
$$

where

$$
\begin{gather*}
\ldots a a_{i}=R_{i+1}-\frac{h}{4}\left(G_{i+1}+Q_{i+1} h\right) \tag{127}\\
b_{i}=-2\left(R_{i+1}+R_{i}\right) \\
c_{i}=R_{i+1}+4 R_{i}+R_{i-1}+h^{3} S_{i}+\frac{h}{4}\left(G_{i+1}+h Q_{i+1}+G_{i-1}+h Q_{i-1}\right)
\end{gather*}
$$

$$
\begin{equation*}
d_{i}=-2\left(R_{i}+R_{i-1}\right) \tag{130}
\end{equation*}
$$

$$
\begin{equation*}
e_{i}=R_{i-1}-\frac{h}{4}\left(G_{i-1}+h Q_{i-1}\right) \tag{131}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}=h^{3} W_{i}+\frac{h^{2}}{2}\left(T_{i+1}-T_{i-1}\right) \tag{132}
\end{equation*}
$$

For a beam-column represented by a mechanical model as illustrated in Figure $37 a$, a set of simultaneous equations composed of Equation 1.26 written for each nodal point may be formulated. The simultaneous equations when written in matrix form result in the matrix equation

$$
\begin{equation*}
[K]\{y\}=\{f\} \tag{133}
\end{equation*}
$$

The stiffness matrix $[K]$ is a diagonally banded matrix containing terms a through e. The deflection matrix \{y\} is a single column matrix as is the load matrix $\{f\}$. The unknown matrix in the matrix equation is the deflection matrix. A recursive technique is utilized to solve for the deflections. Once the deflections are found, the moments, shear, or any force exerted by a restraint spring may be computed by substituting the appropriate deflections into the appropriate equation.
122. In order to begin and end the recursive process, it is necessary to establish three fictitious stations at each end of the beam-column. The fictitious stations have no flexural stiffness and thus act as multiple hinges. If such a system were added to the mechanical model, the response of the remainder of the model would not be affected; therefore, the solution obtained for the equations is not affected by this addition. These fictitious stations are added for computational purposes only and are generated automatically by the computer code BMCOL51.
123. The recursive solution technique is illustrated in Figure 37d. Each equation contains five unknown deflections. In the first pass, two unknown deflections are eliminated from each equation. Starting from the top, the deflections y_{i-2} and y_{i-1} are eliminated. The resulting equations form a diagonally banded matrix in which each equation contains only three unknown deflections. During the reverse pass the solution for the deflection at sta i is computed. The deflection y_{i} can be determined only when y_{i+1} and y_{i+2} are known. During the forward pass the application of boundary and specified conditions will establish values or relationships between deflections such that y_{i+1} and y_{i+2} are known after completion of the forward pass. This permits the computation of y_{i} during the reverse pass. After the reverse pass is completed, the deflections at each nodal point are known. With these values, moments, shear slope, or reaction may be obtained by applying the appropriate finite difference equation.

1. Hrennikoff, A., "Analysis of Pile Foundation with Batter Piles," Proceedings, American Society of Civil Engineers, Vol 76, No. 1 , Jan 1950, pp 123-126.
2. Robertson, R. N., The Analysis of a Bridge Foundation with Batter Piles, M. S. Thesis, Civil Engineering Department, University of Texas, Austin, Tex., Jan 1961.
3. Matlock, H. and Taylor, T. P., "A Computer Program to Analyze BeamColumns Under Movable Loads," Research Report 56-4, 1968, Center for Highway Research, University of Texas, Austin, Tex.
4. Gleser, S. M., "Lateral Load Tests on Vertical Fixed-Head and FreeHead Piles," Special Technical Publication 154, 1953, American Society for Testing Materials, Philadelphia, Pa., pp 75-101.
5. Matlock, H. and Reese, L. C., "Generalized Solutions for Laterally Loaded Piles," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 86, SM5, Oct 1960, pp 63-91.
6. Reese, L. C. and Matlock, H., "Numerical: Analysis of Laterally Loaded Piles," Proceedings, Second Structural Division Conference on Electronic Computation, American Society of Civil Engineers, 1960, Pittsburgh, Pa.
7. Winkler, E., Die Lehre von Elastizität und Festigkeit (On Elasticity and Fixity), Prague, 1867.
8. Vijayvergiya, V. N., Hudson, W. R., and Reese, L. C., "Load Distribution for a Drilled Shaft in Clay Shale," Research Report 89-5, 1969, Center for Highway Research, The University of Texas, Austin, Tex.
9. Seed, H. B. and Reese, L. C., "The Action of Soft Clay Along Friction Piles," Transactions, American Society of Civil Engineers, Vol 122, Paper No. 2882, 1957, pp 731-754.
10. Reese, L. C., "Load Versus Settlement for an Axially Loaded Pile," Proceedings, Symposium on Bearing Capacity of Piles, 1964, Central Building Research Institute, Roorkee, India.
11. Coyle, H. M. and Reese, L. C., "Load Transfer for Axially Loaded Piles in Clay," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 92, SM2, Mar 1966, pp 1-26.
12. Matlock, H. and Reese, L. C., "Foundation Analysis of Offshore Pile Supported Structures," Proceedings, Fifth Internatinal Conference,

International Society of Soil Mechanics and Foundation Engineering, Paris, Vol 2, 1961, pp 91-97.
13. Reese, L. C. and Matlock, H., "Behavior of a Two-Dimensional Pile Group Under Inclined and Eccentric Loading," Proceedings, Offshore Exploration Conference, Long Beach, Calif., 1966, p 123.
14. Reese, L. C., "Analysis of a Bridge Foundation Supported by Batter Piles," Proceedings, Fourth Annual Engineering Geology and Soils Engineering Symposium, Moscow, Idaho, 1966, p 61.
15. Awoshika, K. and Reese, L. C., "Analysis of Foundation with Widely Spaced Batter Piles," Research Report 117-3F, 1971, Center for Highway Research, University of Texas, Austin, I'ex.
16. Parker, F., Jr., and Cox, W. R,, "A Method for the Analysis of Pile Supported Foundations Considering Nonlinear Soil Behavior, "Research Report 117-1, 1969, Center for Highway Research, University of Texas, Austin, Tex.
17. McClelland, B. and Focht, J. A., Jr., "Soil Modulus for Laterally Loaded Piles," Iransactions, American Society of Civil Engineers, Vol 123, Paper No. 2954, 1958, pp 1049-1063.
18. Skempton, A. W., "The Bearing Capacity of Clays," Proceedings, Building Research Congress, Vol I, Part III, 1951, pp 180-189.
19. Reese, I. C. Discussion of "Soil Modulus for Laterally Loaded Piles," Transaction, American Society of Civil Engineers, Vol 123, 1958, pp 1071.-1074.
20. Terzaghi, K., "Evaluation of Coefficients of Subgrade Reaction," Geotechnique, Vol 5, Dec 1955, pp 297-326.
21. Matlock, H., "Correlations for Design of Laterally Loaded Piles in Soft Clay," Offshore Technology Conference, Vol I, Paper OTC 12-04, 3970, pp 577-594.
22. Parker, F., Jr., and Reese, L. C., "Experimental and Analytical Studies of Behavior of Single Piles in Sand Under Lateral and Axial Loading," Research Report 117-2, 2969, Center for Highway Research, University of Texas, Austin, Tex.
23. Kishida, H., "Ultimate Bearing Capacity of Piles Driven into Loose Sand," Soil and Foundation, The Japanese Society of Soil Mechanics and Foundation Engineering, Vol VII, No. 3, Aug 1967, pp 20-29.
24. Robinsky, E. I. and Morrison, C. F., "Sand Displacement and Compaction Around Model Friction Piles," Canadian Geotechnical Journal, Vol 1, No. 2, Mar 1964, pp 81-93.
25. Woodward, R. J., Lundgren, R., and woitano, J. D., "Pile Loading Tests in Stiff Clays," Proceedings, Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol 2, 1961 , pp 177-184.
26. Coyle, H. M. and Sulaiman, I. H., "Skin Friction for Steel Piles in Sand," Journal, Soil Mechanics and Foundation Engineering, American Society of Civil Engineers, Vol 93, No. SM6, Nov 1967, pp 261-278.
27. Skempton, A. W., Yassin, A. A., and Gibson, R. E., "Theorie de la force portante des pieux dans le sable (Theory of the Bearing Capacity of Piles in Sands)," Annales de l'Institut Technique du Batiment et des Travaux Publics, No. 63-64, 1953, pp 285-290.
28. Meyerhof, G. G., "Compaction of Sands and Bearing Capacity of Piles," Journal, Soil Mechanics and Foundation Engineering, American Society of Civil Engineers, Vol 85, Part I, No. SM6, Dec 1959, pp 1-29.
29. Vesić, A. S., "Bearing Capacity of Deep Foundations in Sand," Highway Research Record No. 39, 1963, National Academy of Sciences National Research Council, p 112.
30. Micclelland, B., Focht, J. A., and Emirich, W. J., "Problems in Design and Installation of Offshore Piles," Journal, Soil Mechanics and Foundation Engineering, American Society of Civil Engineers, Vol 95, No. SM6, Nov 1969, pp 1491-1514.
31. Matlock, H. and Haliburton, T. A., "A Finite-Element Method of Solution for Linearly Elastic Beam-Columns," Research Report 56-1, 1966, Center for Highway Research, The University of Texas, Austin, Tex.

$a_{i}, b_{i i}, c_{i}$	Recursive coefficients computed (in solution of finite difference equations
A	Cross-sectional area of pile
A_{b}	Area of base of pile
. ${ }^{3} \mathrm{c}$	Factor correlating downward pile movement to axial strain
B_{t}	factor correlating upward pile movement to axial strain
c	Cohesion of clay
C	Pile circumference
d	Diameter of pile for circular piles or equivalent diameter of other shapes
D_{c}	Compression skin friction coefficient
D_{t}	Tension skin friction coefficient
E	Modulus of elasticity of pile material
E_{3}	Soil modulus (lateral soil reaction divided by lateral deflection)
f	Shear force per unit area (as a function of the location along a pile)
f_{u}	Maximum shear transfer in psi
F	Shear force per unit length
$\mathrm{F}_{u}, \mathrm{~F}_{\mathrm{v}}, \mathrm{M}_{s}$	Forces and moment exerted by each pile
g	Distributed rotational restraint
G	Concentrated rotational restraint
h_{1}	Increment; length
11	Constant depending on relalive density of sand
I	Moment of inertia of pile section
J_{x}, J_{y}, J_{m}	Secant modulus values
- K	Horizontal earth pressure coefficient at pile-soil interface
k_{Λ}	Coerricient of active earth pressure
Ko	Coefricient of earth pressure at rest
1.	Leength of pile
m	Coerficient
. M	Bending moment

```
    Me, Pu, Pv Rxternal moment, horizontal force, and vertical force
                                    (applied at origin of u-v coordinate systen)
M
    M
                                    Number of blows per foot penetration
            p Lateral soil reaction per unit length
            pu Ultimate latexal soil reaction
            P. Resultant force per unit length of pile
            P
            q}\mp@subsup{|}{}{\prime}\mathrm{ Normal pressure on base of pile
            q}\mp@subsup{q}{bu}{}\mathrm{ Unit ultimate bearing capacity in psi
                    qu Unconfined compressive strength
                    Q Axial load; axial force
                    Qb Load due to the normal pressure on the base or a pile
                    Qc Constant axial load in pile
                    Q Axial load applied to top of pile
                    R EI (flexural rigidity)
                    -s Distributed lateral restraint
                    S Concentrated lateral restraint
                    SF Force representing concentration of shear transfer at a
                    joint
            t Distributed externally applied moment or torque
            T Concentrated externally applied moment or torque
        u-v Coordinate system (for describing geometry of the.
                foundation)
            U& Correlation coefficient for compression loading
            Ut
            :V Shear
                    VA},\mp@subsup{V}{B}{}\mathrm{ Shears in bars A and B
            w Distributed lateral force
            W Concentrated lateral force
            x Distance along axis of pile
            X Depth from soil surface
            .y Jateral deflection
            z Axial movement of pile
```

```
    zb}\mathrm{ Axial movement of base of pile.
    a Consiant (values for loose and dence sand)
    B Constant = L,5 ' C \/2
    \gamma Effective unit wejght of soil
    \delta Friction angle (between the pile and the surrounding sand)
\Deltav
            e fxial soil strain (from triaxial compression test)
        \varepsilon}50 lifty percent of the maximum elastic axial soil strai
        (from triaxial compression test)
        0 Angular measure of pile batter
    \mp@subsup{\lambda}{1}{}},\mp@subsup{\nu}{1}{}\mathrm{ . Boundary condition coefficients (computed in solution of
        finite difference equations)
        \mp@subsup{\sigma}{\Delta}{}}\mathrm{ Soil deviator stress ( }\mp@subsup{\sigma}{1}{}-\mp@subsup{\sigma}{3}{}
    \sigma50 Deviator stress corresponding to }50\mathrm{ percent maximum
        elastic axial strain
    \sigma},\mp@subsup{\sigma}{3}{}\mathrm{ Axial and confining stress (in triaxial compression test)
    \emptyset ~ A n g l e ~ o f ~ i n t e r n a l ~ f r i c t i o n ~ o f ~ s a n d ~
    \psi A runction roldting axial load to the relative axial
        movement between the pile and soil
        Slope at top of pile
```


General Introducton

1. Documentation for the computer program COM62 - to analyze laterally loaded piles in nonlinear soil media - is presented in this appendix and includes a general introduction, program listing, flow charts, guide for data input, and input-output data for two example problems.
2. COM62 is a finite difference computer code (developed by Dr. L. C. Reese, University of Texas (UT), Austin, Texas) that can solve for deflection, shear, moment, and reactions in a single pile under a variety of boundary conditions specified at the top of the pile. The quantities input at the top of the pile can be one of the following combinations: lateral load and a moment; lateral load and wspeified slope; lateral load and a specified moment/slope value. The forcedeformation characteristics of the soil are represented by a series of nonlinear springs.
3. Typical curves that relate the soil resistance to the lateral movement of the pile are shown in Figure Bl. Procedures for obtaining

Figure Bl. Examples of p-y curves at various depths in soil
such curves from laboratory soil test data are described in the text (Part V). The computer program MAKE that can automatically generate such curves from laboratory soil data is documented in Appendix D. COM62 can handle variable flexural rigidity (EI) of the pile and layered soil media. If an axial load is specified at the top of the pile, it is assumed to be constant throughout the length of the pile.
4. In the analysis used in COM62, compatibility is achieved between the inelastic soil and the elastic pile (which is elastically restrained by the superstructure) by repeated application of the elastic theory. The soil stiffness constants are adjusted for each trial in accordance with the specified force-deformation relations for the soil. Thus, the iterative analysis consists of a conventional beam on elastic foundation analysis coupled with the proper prediction of forcedeformation characteristics of the soil. . : $=$
5. Input may be input interactively at execute time, or input may be in a prepared data file. Output will be directed to an output file.

Flow Charts

6. A flow chart for the program is shown in Figure B2. The sequence of operations for subroutine soil is diagramed in Figure B3.

Figure B3. Flow chart of subroutine soil for COM62
7. Data should be input to program COM62 according to the following guide. All input is in free-field format. Group 1 - Title

RUN

RUN $=60$ character problem heading

Group 2 - Problem Parameters
$\mathrm{PT}, \mathrm{BC} 2, \mathrm{D}, \mathrm{H}, \mathrm{TOL}, \mathrm{N}, \mathrm{KODE}, \mathrm{NEWPY}$
$P T=$ Lateral load at top of pile, lb $\because=$
$\mathrm{BC} 2=$ Secondary boundary condition value (i.e., value of MT (in.-lb), ST, or MT/ST - see KODE below)
$D=P i l e$ diameter, in.
$H=$ Increment length, in.
TOL $=$ Increment tolerance for deflections, in.
$N=$ Number of increments
(Product of N and H equals length of pile.)
KODE $=$ Boundary condition control parameter
1.-- use lateral load (PI) and moment (MT).
$2-\infty$ use lateral load (PT) and slope (ST).
3 --- use lateral load (PT) and MT/ST.

$$
\begin{aligned}
\text { NEWPY }= & \text { Control parameter to specify if a new p-y curve will } \\
& \text { be read in. } \\
& 0-\infty \quad \text { Program will not read p-y curves (will use old } \\
& \text { p-y data) (Do not specify Group } 3 \text {). } \\
& 1--- \text { A new set of p-y curves will be read. }
\end{aligned}
$$

Group 3 - Soil Resistance-Pile Movement Data
A. $\mathrm{NX}_{2} \mathrm{NUM}$

$$
\begin{aligned}
N X & =\text { Number of } p-y \text { curves } \\
\text { NUM } & =\text { Number of points on each } p-y \text { curve }
\end{aligned}
$$

B. (i) $X(K)$
(ii) $\operatorname{YM}(J, K), \operatorname{PP}(J, K)$
$X(K)=$ Distance from top of pile to the $K^{\text {th }} p-y$ curve, ft $X M(J, K)=$ Deflection at $J^{\text {th }}$ point on $K^{\text {th }} p-y$ curve. J goes from 1 to NUM and K goes from 2 to $N X$, in.
$\operatorname{PP}(J, K)=$ Soil resistance at $J^{\text {th }}$ point on $K^{\text {th }} \mathrm{p}-\mathrm{y}$ curve. J goes from l to NUM and K goes from 1 to $N X, l b / i n$.

Note: Set B is repeated until NX number of $p-y$ curves have been supplied.
Line (ii) of Set B is repeated within each set until NUM deflections and soil resistances have been supplied for that set.
A p-y curve must always be specified at the top of the pile.

Group 4 - Flexural Rigidity Data
A. I
B. $\mathrm{RR}(\mathrm{J}), \mathrm{XX}(\mathrm{J})$

$$
\begin{aligned}
I= & \text { Number of different flexural rigidity values for a } \\
& \text { pile. }
\end{aligned}
$$

$$
\operatorname{RR}(J)=\text { The } J^{\text {th }} \text { flexural rigidity value, } 1 \mathrm{~b} x \text { in }^{2} . J \text { goes }
$$ from 1 to I.

$$
\begin{aligned}
X X(J)= & \text { The distance from top of pile to point where } J^{\text {th }} \\
& \text { flexural rigidity value occurs. J goes from } \\
& \text { lo I. }
\end{aligned}
$$

Note: Set B should be repeated until I number of flexural rigidity and their location values have been supplied.

Group 5 - Axial Load Data
$P X=$ Axial load at the top of pile, lb
8. To illustrate the preparation of input data for program COM62, two example problems (in one run) will be solved. Figuxes B4 and B5 show the physical problems; Figure B6, the input p-y curve for both examples; and Table B1, the input data to the program. The computer outputs for the first and second examples are given in Tables B2 and B3, respectively, The results are also plotted in Figures B7-B9 for Example Problem 1 and in Figures Blo-812 for Example Problem 2.

Figure B4. Physical problem for Example Problem 1

Figure B5. Physical problem for Example Problem 2

Figure B6. Input p-y curves for Example Problems 1 and 2
*LIST DAT6Z

```
1% RUN 1 COM62 - LAYERAL LOAD=100000 AXIAL LOADF1
2n 100000.0,30,10,0,001.100.1.1
3. 2.2
40 0.0
50 0.0.0.0
60 20..1000.
7% 1000.
8^ 0.0.0.0
90 20.11000.
1001
110 2.1E11:1000.
190 1, (U0 RUN 2 COM62 - LATERAL LOAD=100000 AXIAL LOAD=10000
140100000.,0.0,30.,10.,0,001,100.1,0
150 1
1AO 2.1E11,1000.
170 10000.
```

Table B2
Output for Example Problem 1

```
LIST OUT62
RUN 1 COM62 - LAYERAL LOADEIDOOOO AXIAL LOADEI
ITERAYION INFORMATION
    ITER. NO. YT,IN.
            llll
                    LATERALLY LOADED PILE PROGRAM ..::- =-
INPUT INFORMATION
        PT,LB BC2 BC CASE DIAMETERIIN
A.1.0000E 06 0. O. O.30000E.02
    INCREMENT LENGTHIIN NUMBER OF INCREMENTS
        0.10000E.02 100
ÄXIAL COMPRESSION AT PILE TOP = 0.10000E 01
LENGTH OF PILE,FT ITERATION POLERANCE:IN
    0.83333E 02 0.10000E602
    DEPTH TO P-Y CURVE.IN. Y,IN. P.LB/IN.
        O.
    0. O.
    0.20000E 02 0.10000E O4
AUTPUT INFORMATION
    0. 0.
    0.20000E 02 0.10000E O4
AUTPUT INFORMATION
    X,FT. Y,IN. M,IN-LB ES,LB/IN2 PILB/IN. EIILB/IN2
A. 0.1129E 02 0. O.5000E 02-0.5644E 03 0.2100E 12
#.8333E 00 0.1098E 02 0.9721E O6 0.5000E 02-0.5489E 03 D.2100E 12
A.1667E 01 0.1067E 02 0.1889E 07 0.50NOE 02-0.5334F 03 0.2100E 12
A.2500E 01 0.1036E O2 0.2752E 07 O.5000E O2-0.5180E O3 0.2100E 12
0.3333E O1 0.1005E 02 0.3504E 07 0.5000E 02-0.5026E 03 0.2100E 12
A.4167E O1 0.9747E 01 0.4324E 07 0.5000E 02-0.4874E 03 0.2100E 12
```

(Continued)

Table B2 (Continued)

(Continued)
(Sheet 2 of 3)

Table B2（Concluded）

						01		
9．4667E	02－0．8859E＝02	E 07	0.5000	02	9 E	0	0.2100 E	2
		0.6320 E 07	0.5000 E	02	424	01	0.2100 E	2
	02～0．1580E 00	0.6085 E 07		02		01		
9．4917E	00	07		02	E	02	0.2100	2
n． 5000 E	02－0．2955E 00	$0.5616 E 07$	0.5000 E	02	0．1477E	02	，	2
5083E	02－0．3602E 00	$0.5384 E 07$	$0.5000 E$	22	0.1801	02	． .2100	2
	00	0.5153 E 07		02		02		2
－	02－0．4820E 00	$0.4925 E 07$	0.5000 E	02		02	咗	2
5333E	02－0．5393E 00	0．4699E 07	0.5000 E	02	0.2697	02	100	2
7 F	0．5944E 00	476E 07	000E	2		02		2
	02－0．6474E 00	07		02		02		2
A．5583E	02－0．6983E 00	．9039E 07	0.5000 E	02	0.3491	02	0.2100	2
¢． 5667 E	02－0．7473E 00	825E 07	0．5000E	02	0.3736	02	0.2100 E	
	02－0．7945E 00	07	， 5	02	0.3	2	0.	2
	02－0．8400E 00	409E 07	0.5000 E	02	0.4200	02	0.2100 E	2
¢．5917E	02－0．8838E 00	3208E 07	0.5000 E	02	位			2
	261E 00	$0.3011 E 07$		02			0.2100 E	2
．${ }^{\text {．}} 6$	02－0．9670E 00	．2818E 07	$0.5000 E$	02	0.	02	0.2100 E	2
．${ }^{\text {．}} 6$	02－0．1007E 01	30 E 07	0.5000 E	02	0.5033	02	OOE	2
A．6250E	02－0．1045E 01	07	0.5000 E	02	0.5224	02	$0.2100 E$	2
	2 E 01	22705.07	0.95000	02	0.	02	0	2
A． 64	02～0．1118E O1	$0.2098 E .07$	0．5000 E	02	0.5590 E	02	0.2100 E	2
9.	02－0．1153E 01	．1931E 07	0．5000E	02	仡	02	0.2100 E	2
¢， 65	02－0．1187E	． 1	0.500	02	0.5936 F	02	0．2100E	2
A．	02－0．1220E O1	$0.1616 E 07$	0.5000 E	02	0.6102	02	E	2
	02－0．1253E 01	467E 07	0.5000 E	02	退	02	0.2100 E	2
	02－0．1285E 01	07	0.5000 E		0.6424	02	0.2100 E	2
	02－0．1316E 01	188E 07		，	0.6580 E	02		2
．${ }^{\text {．}}$	02－0．1347E 01	．1059E 07	0.5000 E	02	． 6733	02	OE	2
A	02－0．1377E 01	$0.9362 E 06$	5000 E	02	0.6883	02		
	02－0．1406E 01	$0.8203 E 06$	0.5000	02	732	02		2
n． 7	02－0．1436E 01	$0.7113 E 06$	0.5000 E	02	0.7178 E	02	0.2100 E	2
	02－0．1465E 01	0.6095 E 06	0．5000E	02	323	02	0.2100 E	2
	1493E 01	OE 06	000		0.7466 F	02		12
A．7500E	02－0．1522E O1	$0.4280 E 06$	5000E	02	760BE	02	2100 E	2
	02－0．1550E O1	0.3485 E 06	$0.5000 E$	02	． 7749 E	02	－ 2100 E	12
	8 E 01	7E 06	OOOE		8	02		2
ค．7750E	02－0．1606E 01	0.2129 E 06	， 5000 E	02	0.8029 E	02	2100E	12
n． 7833 E	02－0．1633E 01	0.1572 E 06	0.5000ε	02	0.8167 f	02	2100	2
¢．7917E	02－0．1661E 01	．1097E 06	0，5000E	02	0．8306E	02		2
\rightarrow ．	02－0．1689E 01	063E 05	0.	02	0.8444 E	02	O．	2
A．8083E	02－0．1717E 01	0．4005E 05	$0.5000 E$	02	0.8583 E	02	0.2100 E	2
	02－0．1744E 01	$0.1793 E 05$	0.5000 E	02	0．87210	02		2
	02－0．1772E 01		000E	02				2
9．8333E	01		0，5000E	02	0.8997 F	02	2100E	

Table B3
Output for Example Problem 2

```
RUN 2 COM62 - LATERAL LOAD=100000 AXIAL LOADFI0000
    ITERATION INFORMATION
        IYER,NO. YT,IN.
\begin{tabular}{lll}
1 & \(0.72177 E\) & 01 \\
2 & \(0.11324 E\) & 02 \\
3 & \(0.11324 E\) & 02
\end{tabular}
```


Laterally loaded pile program

(Continued)
(Sheet 1 of 3)

Table B3 (Continued)

H. 9	01	01	0.	07	0.5000 E		03	0.2100 E	
$\cdots .1$	02	$0.7705 E 01$	0.8416 E	07	0.5000 E	02-0.3853E	03	0.2100 E	
0.1083	02	$0.7423 E 01$		07			03		
	02	0.7145 E 01		07			03		
A. 1250 E	02	0.6872 E 01	0.9556	07	0.5000	02	03	0.2100E	
A.1333E	02	$0.6603 E 01$	$0.9866 E$	07	$0.5000 E$	02-0.3302	03	21008	12
7	02	0.6339 E 01	-	08			03		12
¢. 15	02	$0.6080 E 01$		08	- 5000	02-0.	03		12
1.1583E	02	0.5826 E 01	0.1060 E	08	0.5000 E	02-0.2913F	03	0.2100 E	12
, 1667E	02	$0.5576 E 1$		08	0.5000 E	02-0.2788	03		2
ค.	02	0.5332 E		08			03		12
¢. 18	02	$0.5093 E 01$	$0.1107 E$	08	0.5000 E	02-0.2547E		0,2100E	12
9. 191	02	$4860 E 01$		08		02-0.243	03		12
A. 2000 E	2			08			03		12
, 208	02	0.4408 E O1		08	0.5000 E	02-0.2204	03		2
N. 216	02	$0.4191 E 01$	0.1135	08	0.5000 E	02-0.2095	03	O	12
ค. 225	02	. 3979E 02	O	08	,		03		-
A. 2	02	$0.3772 E 01$	0.1	08	0.5000 E	02-0.1886	03		2
- 2	02	0.3570 E 01	$0.1133 E$	08	0.5000 E	02-0.1785	03	O	12
¢. 2	02	0.3374 E 01	$0.1129 E$	08	0.5000 E	02-0.1687	03	0.2100 E	12
A.	02	0.3184 E 01.		08	0.5000 L	02-0.159	03	0.2100	1.2
i, 2	02	$0.2999 E$ O1	0.1116 E	08	0.5000E	02-0.1499	03	0.2100	12
9.2750 E	02	.2819E 01	-	08	E	02	03	0.2100E	12
\cdots.	02	01	$0.1096 E$	08	0.5000 E	02-0.1322E	03	0.2100	2
A.2917E	02	0.2475 E 01	0.1044 E	08	O00E	02-0.1237	03	0.2100 E	12
A. 3000 E	02	0.2310 E 01	$0.1071 E$	08	OE	02-0.1155E	03	00	12
¢,	02	0.2151E 01	0.1057 E	8	$0.5000 E$	02-0	03	0.2100E	12
A.3167E	02	0.1997E 01	0	08		02-0.998	02	,	12
A. 3250 E	02	0.1848 E O1	$0.1026 E$	08	$5000 E$	02-0.9239E	02		12
A. 3333 E	02	0.1704 El	8E	08	5000 E				12
	02	$0.1564 E 01$		07	0.50	02		0.2100 E	12
ก. 3	02	$0.1429 E 01$		07	0.5000	02-0.7147E	02		12
ก. 3	02	$0.1299 E 01$	0.9519E	07	. 5000 E	02-0.6496F	02	-	12
A. 3	02	$0.1174 E$ O1	7	07	5000E	02-0.5868	02	21	12
9.3	02	0.1052 E 01	0.9109	07	0.5000	02-0.526	02	0.2100E	12
A. 3833 E	02	0.9355 E 00	$0.8896 E$	07	0.5000E	02-0.46785	02	0.2100E	
A. 391	02	$0.8229 E 00$	$0.8677 E$	07	5000 E	02-0.4115E			
n. 400	02	0.7145 E 00	0.84	07	$0.5000 E$	02-0.357	02	0.2100 E	
¢. 4083 E	02	0.6100 E O 0	$0.8229 E$	07	0.5000 E	02-0.3050F	02	O.2100E	2
M. 4167 E	02	$0.5095 E 00$	0.8000E	07	0.5000 E	02-0.2547		0.2100E	
n. 425	02	0.4128 E 00		07	0.5000E	02-0.2064	02	0.2100E	
ก. 0.4333 E	02	$0.3197 E 00$	$0.7534 E$	07	0.5000 E	02-0.1599	02	0.2100 E	12
9.4417 E	02	$0.2303 E 00$	0.7299 E	07	0.5000E	02-0.1152F	02	0.2100E	
n. 4	02	0.1443 E 00		07	0.5000E	02-0.72	01		12
n. 4583 E		6176E-01	$0.6825 E$	07	0.5000 E	02-0.3088E	01	$0.2100 E$	2
n. ${ }^{\text {a }}$. 667 E		1759E-01	0.6587E	07	$0.5000 E$	020.8793 E	00	0.2100E	1
. 4750 E		01	0.6350 E	07		02			
, 4833E		00	0.6112 E	07	0.5000 E				

(Continued)
(Sheet 2 of 3)
B. 4

Table B3 (Continued)

	01	$0.7991 E 01$	4.7960	07	0.5000E			0.2100E	
	02			07					
	02	$0.7145 E 01$		07					
	02	01		07					
	02	01		08					
	02	$0.6080 E 01$	0.1039	08	0.5000				
	02	$0.5826 E 01$							
	02	01							
	0	332E 01	0.1094	08		02-0.2666	0		
	02	01		08					
. 1	02	01		-			03		
. 2	02	331E 01		-	O00E	02-0.231	03	,	
, 2	02	408 E		08					
	02	0.4191 E 01		08					
. 2	02	$0.3979 E 1$		08	5000 E	-			
,	02	0.3772 E 01		08	0.5000 E				
,	02	01		08			0		
, 2	02	$0.3374 E^{01}$		08			03		
	2	0.3184 E 01							
A,	02	01							
. 2	02	9E OL	0.1107	08			03		
,	02	$0.2644 E 01$		08	$0.5000 E$				
. 2	02	01		08	0.5000 E		03		1
	02	$0.2310 E^{01}$		08	-				
	02	. 2		08					
	02	$0.1997 E 01$		08			02		
	02	.1848E 01		08					
	02	0.1704 E 01		08					
. 3	02	$0.1564 E 01$		07			02		
	02	$0.1429 E 01$		07					
	02	$0.1299 E 01$		07					
		0.1174 E 01							
	02	0.1052 E 01		07		02-	2		
	02	355 E 00		07				0,2100E	
	02	0.8229 E 0					2	E	
	02	$0.7145 \mathrm{E} \quad 00$		07	0.5000 E				12
	02	0.6100 E 00		07	5000	02-0.3050			
		-		07	-	02-0	02	E	12
, 4250 E	02	$0.4128 E 00$		07		02-0.2064E	02		
3	02	$0.3197 E 00$		07	500	02-0.1599			
	02	00		07	,	02-0.115	02	2100E	
OE	02	1443E 00	-.7062E	07	O00E	02-0.7217E	01		
		E-01							
				07			00		
		E-01		07	OE	020.4690 F			

(Continued)
(Sheet 2 of 3)

Table B3 (Concluded)

		0		,				2		
ค. 5000 E	02	00		07	0.5000 E	02	0.1524 F	02	0.2100 E	2
i. 5083 E	02-0.3695E	00	0.5407 E	07	0.5000 E	02	0.1848 F	2		2
¢. 5167 E	02-0.4317	00	0.5175 E	07	$0.5000 E$	02	0.2159	02	0.2100 E	2
M. 5250 E	02-0.491	00	$0.4945 E$	07	0.5000	02	0.2457	02	0.2100	12
9.5333E	02-0.5489	00	0.4718 E	07	0.5000 E	02	0.2744 F	02	0.2100E	2
5417E	02-0.6040	00	$0.4493 E$	07	0.5000	02	0.302	02	0.2100 E	12
500 E	02-0.65	00	$0.4272 E$	07	0.5000	02	0.3285	02	0.2100 E	12
त. 5583 E	02-0.7080E	00	$0.4053 E$	07	0.5000	02	0.3540 E	02	0.2100 E	2
i. 5667 E	02-0.7570E	00	0.3838 E	07	$0.5000 E$	02	$0.3785 E$	02	0.2100 E	2
. .575	02-0.804	00	$0.3627 E$	07	0.5000	02	0.4021	02	0.2100	2
$\cdots .5833 \mathrm{E}$	02=0.849	00	0.3420 E	07	0.5000	02	0.4249	02	0.2100 E	2
ก. 5917 E	02-0.8936E	00	0.3218 E	07	0.5000E	02	0.4468 F	02	0,2100E	2
A. 6000 E	02-0.9359E	00	0.3020 E	07	0.5000 E	02	0.4680	02	0.2100 E	2
n. 6	02-0.9	00	0.28	07	O	02	0.4884		0	2
ก. 616	02-0.1016E	01	0.2637E	07	$0.5000 E$	02	0.5082 E	02	D. 2-100E	2
A. 6	02-0.1055E	01	0.2453 E	07	0.5000 E	02	0.5273	02	0.2100E	2
n.	02-0,1092E	01	. 2275	07	. 5000	02	0.	02	0	12
${ }^{\text {in }}$, 6	02-0.1128E	01	0.2102 E	07	0.5000 E	02	0.5639	02	0.2100 E	12
ก.6500E	02-0.1163E	01	$0.1935 E$	07	0.5000 E	02	0.5814 F	02	0.2100 E	2
n. 6583 E	02*0.1197E	01	773 E	07	. 50	02	0.5985	02	0.2100 E	2
n:	02-0.12	01				2	0.	02	0.	2
A.6750E	02-0.1263E	01	0.1468E	07	$0.5000 E$	02	$0.6314 E$	02	0.2100 E	2
H. 0.683 E	02-0.1295E	01	$0.1325 E$	07	0.5000E	02	0.6473 E	02	0.2100 E	12
	02-0.1326E	01	.1188E	07	0.5000 E	02	0.6629	02	0.2100 E	2
त.	02-0.1356E	01	-. 105	07	0,5000E	02	0.6782	02	0.2100 E	2
9.7083E	02-0.1386E	01	$0.9356 E$	06	0.5000 E	02	0.6932	02	0.2100 E	2
n. 7	02-0.1416E	01	0.8195 E	06	0.5000E	02	0.7080	02	0.2100 E	2
A. 72	02-0.1445E	01	0.7106 E	06	0.5000 E	02	0.7227	02		+
n. 7333 E	02-0.1474E	01	0.6088 E	06	0.5000 E	02	0.73715	02	0.2100 E	2
ค.7417E	02-0.1503E	01	$0.5144 E$	06	0.5000 E	02	0.7514 E	02	0.2100 E	12
9.7500 E	02-0.1531E	01	$0.4275 E$	06	5000 E	02	656	02	2100 E	12
A. 7583 E	02-0.1559E	01	3480 E	06	5000E	02	7797	-2	21	12
n,7867E	02-0.1587E	01	0.2762 E	06	5000 E	02	. 7937 E	02	0,2100E	12
¢. 7750 E	02-0.1615E	01	$0.2124 E$	06	0.5000E	02	0.8077E	02	0.2100 E	12
n. 7833 E	02-0.1643E	01	0.1567E	06	0.5000 E	02	0.8216	02	0.2100 E	12
A.7917E	02-0.1671E	01	$0.1091 E$	06	0.5000 E	02	$0.8354{ }^{\circ}$	02	0.2100 E	2
万. 8000 E	02-0.1699E	01	$0.6991 E$	05	0.5000 E	02	$0.8493 E$	02	0.2100 E	12
A.8083E	02-0.1726E	01	$0.3933 E$	05	0.5000 E	02	0.8631 E	02	0,2100E	12
A. ${ }^{\text {A. }}$, 167 E	02-0.1754E	01	1740E	05	0.5000 E	02	0.8769 E	02	0.2100 E	12
A.8250E	02-0.1781E	01.	0.4224 E	04	0.5000E	02	0.8907 F	02	0.2100 E	12
. 8333 E	02-0.1809E	01	,		$0.5000 E$	02	0.9045 E	02	0.2100 E	12

Figure Bll. Variation of moment along pile for Example Problem 2

APPENDIX C: USER'S GUIDE FOR PROGRAM PX4C3

General Introduction

1. Documentation for the computer program PX4C3 - to analyze axially loaded piles in nonlinear soil media - is presented in this appendix and includes a general introduction, program listing, guide for data input, and input-output data for two example problems.
2. PX4C3 is a finite difference computer program (developed by Drs. L. C. Reese, UT at Austin, and H. M. Coyle, Texas A\&M University)* that may be used to compute load-displacement relationships for axially loaded piles, where the pile has a constant outside diameter. The program employs a set of load transfer curves along the pile and a point resistance curve at the tip of the pile. Piles of different outside diameters can be solved using PX4C3 by adjusting the load transfer curves for a constant diameter.
3. A load transfer curve relates the skin friction developed on the side of a pile to the absolute axial displacement of a pile section. The point resistance curve refers to a relationship between the total axial soil resistance on the base of the pile tip and the pile tip movement. PX4C3 can handle nonlinear curves for both the above relationships. Some procedures for obtaining these nonlinear soil relations are described in the text (Part V).
4. PX4C3 employs finite difference equations to achieve compatibility between pile displacement and load transfer along the pile and between soil resistance and displacement at the tip of the pile. The method has been found to give good prediction for piles in clays. The program needs to be used with caution as load transfer curves used in the program are presently derived from semi-empirical criteria.

[^2]5. Input may be input interactively at execute time, or input may be in a prepared data file. Output will come directly back to the terminal, or output will be directed to an output file.
$$
:=
$$
6. Data should be input to program PX4C3 according to the following guide. All input is in free-field format.

Group I - Title

RUN

RUN $=60$ charactex problem heading

Group 2 - Problem Parameters

IQ, IJ, NA, IT, LSO
$I Q=$ Number of increments on pile
$I J=$ Number of assumed tip movements (see Group 7)
$N A=$ Number of depths at which AE values are specified (see Group 4) (AE = cross-sectional area of pile X modulus of elasticity of pile)
$I T=$ Number of points on the point bearing vs tip movement curve (see Group 5)

LSO $=$ Option control to print out load-settlement data only l --- if only load settlement results are desired Fl -- all results are printed

Group 3 - Load Transfer Curve Data
A. NX, NUM

$$
\begin{aligned}
N X= & \text { Number of } T-Z \text { curves along the depth of the pile } \\
N U M= & \text { Number of points on a T-Z curve. A zero point on a } \\
& T-Z \text { curve is required to be input. }
\end{aligned}
$$

B. (i) $X(K)$
(ii) PP, ZM

$$
\begin{aligned}
X= & \text { Distance from top of pile to } K^{\text {th }} \mathrm{T}-\mathrm{Z} \text { curve. } \mathrm{K} \text { goes } \\
& \text { from } 1 \text { to } \mathrm{NX}
\end{aligned}
$$

```
PP = Load transfer Ib/sq ft in T-Z curve
ZM = Pile movement (in.) in T-Z curve
```

Note: Set B should be repeated until NX T-Z curves have been specified.
Line (ii) of Set B should be repeated with each set until NUM number of PP and ZM values have been specified for that set.

Group 4 - AE' Data
$\mathrm{AE}(\mathrm{M}), \mathrm{ZAE}(\mathrm{M})$

$$
\begin{aligned}
\mathrm{AE}= & \text { Cross-sectional area times modulus of elasticity, } \\
& \mathrm{lb} \\
\mathrm{ZAE}= & \text { Depth to } \mathrm{AE} \text { value, ft }
\end{aligned}
$$

Note: Repeat until NA sets of $A E$ and $Z A E$ values have been specified by putting one set per line.

Group 5 - Tip Load-Movement Data

$$
\operatorname{TIPLD}(M), \operatorname{TIPMV}(M)
$$

Note: Repeat until IT sets of TIPLD and TIPMV values have been specified by putting one set per line.

Group 6 - Pile Data
U, ALGTH, OD

$$
\begin{aligned}
U & =\text { Tolerance for convergence on displacements (in.) } \\
\text { ALGTH } & =\text { Length of pile, ft } \\
O D & =\text { Outside diameter of pile, ft }
\end{aligned}
$$

Group 7 - Desired Tip Movements

P

```
    P = Assumed tip displacements, in.
Note: This line is repeated IJ number of times.
```


Example Problems

Example Froblem 1

7. The first example problem illustrating the use of program PX4C3 shows a pile being subjected to a pullout test (Figure Cl). The input $\mathrm{T}-\mathrm{Z}$ curves and the input data for this example are shown in Figure C2 and Table Cl, respectively. The computer output is presented in Table C2, and the load-displacement curve is plotted in Figure C3.

Figure Cl. Physical problem (prediction of pullout curve for pile) for Example Problem 1

Figure C2. Input load transfer (T) versus pile movement (Z). curves for Example Problem 1

```
10 PREDICTYON OF PULLOUY CURVE FOR A PYLE
20 33.13.2:2:1
307.9
40 0
5 0 0 . 0
60 0.0.1
700.0.2
80 0.0.3
90 0.0.4
100 0.0.5
1100.0.6
1200.10
1300.10
1400.75
1500.0
160 11.52.0.0009 ..: =- 
170 81.36.0.0027
$80 100.8.0.0045
190 112,0.0062
200 120.3.0.008
210 126.0.0008
220 126.6.0.01
230 126.6.30
240 2
2500.0
260 132.2,0.0016
270268.8,0.0048
280337.2.0.008
290381.6.0.011
300 410.4.0.0145
320 432,0.0177
320 441.6.0.0192
330 44i.6.30
340 3.5
350 0.0
360 237.6.0.0025
390 486.0.0074
$80 618.0.0124
390697.2,0.01%4
400 750.0.0222
410 789.6.0.0272
420 805.2.0.0296
430 811.2.10
4 4 0 5
450 0,0
460 338.4.0.0033
40 700.8.0.01
```

(Continued)

```
460 890.4.00.0167.
A90 1008,0.0233
500 1086.0.03
520 1146.0.0367
520 1188,0.0433
5301188,10
540 6.5
550 0.0
560 436.8.0.004
570 906,0.0126
580 1158.0,021
590 1317.0.0294
600 1440.0.0378
610 1488,0.046
620 1554.0.0545
630 1560.10
640 8.25 ..:= =-
650 0,0
660 549.6.0.00535
670 1152.0.0165
80 1.476.0.02676
690 1674.0.0374
700 1806.0.0482
710 1908.0.0588
720 1986,0.0695
70 1992.10
70 1150000000
75011500000.8.25
7600.0
7000.10
780 0.0001:8.25.0.567
7 9 0 0 . 0 0 0 1
800 0.0007
810 0.0015
8 2 0 ~ 0 . 0 0 3 ~
830 0.005
800.01
850 0.016
8000.02
870 0.03
800.05
890 0.1
900 0.11
910 0.12
```

```
PREDICTION OF PULLOUY CURVE F.OR A PILE
    AXYALLY LOADED PILE, GCNSYAN% BO
Paz CURVENO. 1 NO. OF RCINYS 9 DEPYH TO CURVE,PT O.
        LB/SO FY
    0.
    0. 0.$00SE OO
    0. 0.2000E OB
    0: O.300GE OO
    O: 0.1008E 00
    0. 0.3000E OO
        0.6000E OC
        0.1000E 02
        0.$000E 02
PaZ CURVENO. 2 NO. OF RCINTS 9 DEPYM TO CURVE,FT O.7SOE OR
            LOAN
        MRANSFEA
        LB/SO FT
        0:
        0.4152E 02
        0.8136E 02
        0.1008E OS
        0.1120E OS
        0.1203E O3
        0.1260E O3
        0:1266E OJ
        0.1266E OS
paz Curve no, 3
    LOAB
    TRANSFER
        LB/SQ FT
    0.
    0.1322E 03
    0.2688E 03
    0.3372E OS
    0.3816E 03
    0.4104E OJ
    0:4320E OS
    0.4416E OS
    NO, OF ROINTS
        9
        DEPYH TO CURVE,FT 0.200E OS
    1!LE
    MOVEMENT
    INCHES
    0.
    0.160日E-02
    0.4800E-02
    0.8000E-02
    0.2100E-01
    0.1450E-01
    0.4778E-0. 
    0.$920E-01
```

LOAB TRANSFE

Table C2（Continued）

$0.4416 E 08$ p－z Curve no． 4 LOAD
PRANSFER LB／SQ FY 0 ；
$0.2376 E$ OS
0.486 EE O8 0．0180E OS $0.6972 E$ OS $0: 7500 E$ O8 0.7896 O8 0.8052 E 03 0.8112 E 03
－-2 CURVE NO． 5

LOAD
PRANSFER
LB／SQ fi
0.3384 E O3
0，7008E OS
0.8904503
0.1008 EA
$0.1086 E$ O4
0：1146E OA
0.1188 EA
0.1188 E Of

－Z CURVE NO． 6
LOAP TRANSFER LB／SO F＂ 0 ，
$0.4368 E 03$ 0.9060 E OS 0.1158 E 04 $0.1312 E 04$ $0.1440 E \quad 0$ 0.1488 E O $0.1554 E 04$ 0.1560 EA

0． 2000 E 02

NO．OF ROINTS 9 DEPTK PO CURVE，FY O．35OE OL
－1LE
MOVEMENT
INCHES
0.
0.250 EE－02

0． 240 白E－02
0． $224 \mathrm{BE}-\mathrm{DS}$
0． $2748 \mathrm{E}-0 \mathrm{i}$
$0.2228 E-01$
0．2728E－0
$0.296 \mathrm{BE}-01$
0．3008E 02
HO．OF FOINTS 9 DEPYH TO CURVE，FFY O．500E O2
－1LE
MOUEMEN
INCHES
0．830日E－02
$0.1000 \mathrm{E}-01$
0．$\$ 678$ E－0
0．2338E－0i
0．8008E－0i
$0.3670 E-01$
0．433日E－0．
0．200日E 02
NO，OF POINTS 9 DEPTH TO CURVE，FT O．650E OS
RILE
MD VEMENT
INCHES
0.

0,100 EE－02
0． 126 BE－OI
0．2108E－0
0．2940E－01
O． 8788 E － 04
0．1600E－01
0,545 EE－0
$0.3000 E 02$
－ 2 CURVE NO． 7
LOAB
MRANSER
LB／SQ FY

```
            NO. OF ROINTS 9 DEPYH TO CURVE,FT 0.825E 01
            ClLE
            MOVEMENg
            INCHES
```

0.	0.
$0.5496 E$	03
$0.1152 E$	$0.5350 E-02$
$0.1476 E$	04
$0.1674 E$	$0.9658 E-01$
$0.1806 E$	$0.2676 E-01$
$0.1908 E$	$0.8749 E-04$
$0.1886 E$	04
$0.1992 E$	$0.4828 E-01$
	$0.5880 E-01$
	$0.695 \theta E-01$
	$0.1006 E 02$

AE PILE
LES
$0.31500 E$ O8
$0.31500 E 08$

$$
0.11500 \mathrm{E} 08
$$

$$
\begin{array}{r}
\text { DEPYA } \\
\text { FY. } \\
0.82500 E 01
\end{array}
$$

ASSUMED TYP MOVEMENTPOIAY bEARING

0.7000 E. 03 O.
$0.1500 \mathrm{E}=02 \quad 0$. $0.3000 E=02$
$0.5000 \mathrm{E}=02$ O.
$0.1000 E=01 \quad 0$.
$0.1600 \mathrm{E}=1$
$0.2000 E=01$
$0.3000 E=01$
$0.5000 \mathrm{E}-01$ 0.
0.1000 E 00
$0.2100 E 00$
0.22005000 0.
LB
0.
0 .
0 .
0 0.
$0.3000 \mathrm{E}=01$
0.1200 O.
AXTALLY LOADED PIGE, CONSYANT OD
(Continued)
(Sheet 3 of 4)
C 12

TOP LOAD	
LS	
0.5811 E	02
0.39185	03
0.7652 E	63
0.1315 E	04
$0.1809 E$	04
$0.2552 E$	04
0.3113 E	84
0.3366E	04
$0.3756 E$	04
0.4096 E	04
0.41905	04
0.4190 E	${ }^{6} 4$
0.4190 E	04

IOP	P NOVEMEN I NCHES
	$0.2372 \mathrm{E}-02$
	0.4950E-02
	0.9311E-02
	0.3406E-01
	0.2338E-01
	0.3294E-01
	0.3855E-01
	0.5119E-01
	0.7361E-01
	0.1243 E 00
	$0.1343 E 00$
	0.1443 E 00

Manishan

Example Problem 2

8. To demonstrate further the use of program PX4C3, a second example problem is given. Figure C 4 shows the physical problem for this example. The input $T-Z$ curves and the input data for this problem are shown in Figure C5 and Table C3, respectively. The computer output is presented in Table C4, and the load-deflection curve for the pile is plotted in Figure C6.

Figure C4. Physical problem (compression

- testing) for Example Problem 2

Table C3

Input Data for Example Problem 2

```
0040 TEST 201 <2.75 DIA PILE LOADED IN COMPRESSION FROM ARKANSAS RIVER
0020 32,10:2,8:1
00307.8
0040 0
0050 0.0
0060 0.5
0070 0.5
0080 0.5
00900.5
0100 0.5
0110 0.5
0120 0.5
0130 1.6662
0140 0.0
0150 59.5.0.0183
0160 81.5.0.0366
0170 91,0,055
0180 100.0.0735
0 1 9 0 ~ 1 0 0 . 1 ~
0 2 0 0 1 0 0 . 2
0210 1.00.5
02205
0230 0.0
0240 169.0.0346
0250 238.0.0691
0260 272,0.1035
0270 295,0,138
0200 310.0.173
0290 310.2
0300 310.5
0310 8:3333
0320 0.0
0330 273.0.051
0340 387.0.102
0350 448.0.153
0350 4B6.0.204
0370 510.0.255
0380 510.2
0 3 9 0 ~ 5 1 0 . 5
0400 11.6667
0410 0.0
0420 379.0.0674
0430 535.0.1450
0440 615.0.202
0450675.0.27
```

(Continued)

Table C3 (Concluded)

```
0460 713.0.336
0470 713,2
0480713.5
0490 15
0500 0.0
05:0 480.0.0835
0520 682.0.167
0530 793.0.25
0540 864.0.334
0 5 5 0 ~ 9 1 0 . 0 . 4 1 8 ~
0560 950.0.5
0570 950.5
0580 53.3333
0590 0.0
0600 480.0.0835
0610 682.0.167
0620 793.0.25
0630 864.0.334
0610 910.0.418
0650 950.0.5
0660950.5
067.0.4.96000000%0%....
06804960000000253.8333
0690 0.0
0700 20000%0.04
071040000:0.02
0720 50000:0.01
0750 70000;0.1
0740 80000%0.32
0750 90000%1
0760 90000;10
0770 0:0001.53:3333.1.06
0780 0.02
0790 0.04
0800 0.08
0810 0.1
0820 0.15
0830 0.2
0840 0.3
0850 0.6
0860 1,2
08702
```

Table C4
Output Data for Example Problem 2

```
TEST 2O1 $2.75 DIA PILE LOADEF IN COMPRESSION FROM ARKANSAS RIVER
    AXYALLY LOADED PILE, GONSTANY OD
PHZ CURVENO. 1 NO. OF ROINYS 8 DEPYH TO CURVE,FT O.
    LOAD RILE
    TRANSFER MOVEMENT
    LB/SQ FY \NCHES
    O
    0:
    0. 0.500日E OL
    0. 0.5000E OL
    0. 0.50008 O1
    O: 0.5008E OS
    0.5000E OK
PMZ CURVE NO, 2 NO, OF BOINTS 8. DEPTH TO CURVE,FT O.IG7E OY
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{LOAD.} \\
\hline \multicolumn{2}{|l|}{RANSFER} & MOVEMENT \\
\hline LB/SO & Fi & INCHES \\
\hline 0 : & & 0. \\
\hline 0.5950 EE & 02 & 0. \(5830 \mathrm{E}-01\) \\
\hline 0.8150 E & 02 & 0.5660E-01 \\
\hline 0.9100 E & 02 & 0.5508E-01 \\
\hline 0.1000 E & 03 & 0.7350E-0\% \\
\hline 0.1000 E & 03 & 0.1000801 \\
\hline 0.1008 E & 03 & 0.2008 E \\
\hline 0.1006E & 03 & 0,5006E O¢ \\
\hline
\end{tabular}
PmZ CURVENO. 3 NO. OF ROINYS 8 DEPTH TO CURVE,FY O.5OOE O&
\begin{tabular}{ll} 
LOAZ & RILE \\
PRANSFER & MOVEMEN \\
LB/SO FY & INCHES
\end{tabular}
0.
0.169 AE OJ
0.
0.8460E-0.
\(0.2380 \mathrm{E} \quad 03 \quad 0.6916 \mathrm{E}-0.0\)
0.2720 E OS O.2035E OG
\(0.295 \mathrm{DE} 03 \quad 0.3380 \mathrm{EO}\)
0.3100 E O 0.5730 EO
0.3100 E 03 0.2006E OI
0.3100 EO O.500AE Oi
```

P-2 CIJRVENO. 4 NO. OF RCINTS 8 DEPTH TO CURVE,FY $0.833 E$ OI
(Continued)

(Continued)
(Sheet 2 of 3)

Figure c6. Load-deflection curve for compression loading of a 12.75-in.-diam pile for Example Problem 2

1. Documentation for the computer program MAKE - to generate soil resistance versus lateral pile movement curves based on laboratory triaxial test results - is presented in this appendix and includes a general introduction, program listing, guide for data input, and inputoutput data for two example problems.
2. MAKE is a computer program (developed by Dr. Frazier Parker, WES) that can generate soil. resistance (p) versus pile movement (y) curves for soils surrounding a laterally loaded pile based on certain laboratory soil test results. The program uses different criteria for clays and sands (as explained in Part V of this report) and can be used (with some minor modifications) as a subroutine to the laterally loaded pilhe program (COM6?) or to the BENTl program.: MAKE can hande any number of stratums of clay or sand and can also account for various pile diameters.

Input may be input interactively at execute time, or input may be in a prepared data file. Output will be directed to an output file.
4. Data should be input to program MAKE according to the following guide. All input is in free-field format and should be in units of pounds, inches and radians. A flow chart for data input is shown in Figure Dl.
Group 1 - Profile Data
NSOTLP

NSOILP $=$ Number of soil profiles (one value per run)
Group 2 - Soil Data
A. NSTYPE

NSTYPE $=$ Number of soil stratums (one value per profile)
B. TSOIL

$$
\begin{aligned}
\text { TSOLL }= & \text { Alphanumeric designation of type of soid in stratum } \\
& \text { (sand or clay) (one value per stratum) } \\
= & \text { Sand -- input line set } C \text { and omit line set } D \text { for } \\
& \text { this stratum } \\
= & \text { Clay -- input line set } D \text { and omit line set } C \text { for } \\
& \text { this stratum }
\end{aligned}
$$

Note: A space (blank) must be left between the file line number and the parameter TSOII.
C. Sand Properties

GAMMA, PHI, DISI, DIS2, KDENSE

$$
\begin{aligned}
\text { GAMMA } & =\text { Unit weight of soil } \\
\text { PHI } & =\text { Angle of internal friction } \\
\text { DISI } & =\text { Distance from ground line to top of stratum } \\
\text { DIS2 } & =\text { Distance from ground line to bottom of stratum } \\
\text { KDENSE } & =\text { Alphanumeric designation for relative density of sand } \\
& =\text { DENSE, MEDIUM, OR LOOSE }
\end{aligned}
$$

D. Clay Properties
(i) GAMMA, SHEARS, DIS1, DIS2, INFO, ICON

```
GAMMA = Unit weight of clay
SHEARS = Cohesion of clay
    DISI = Distance from ground line to top of stratum
    DIS2 = Distance from ground line to bottom of stratum
    INFO = Control for input of stress-strain curve
        0 --- Omit data for curves by omitting cards that
                        follow in this group
        l --- Input data for curves by specifying cards that
        follow in this group
    ICON = Alphanumeric designation for consistency 苂f clay
        (SOFTL or STIF)
```

 (ii). NCURVS
 NCURVS \(=\) Number of curves per stratum
 DIST, NPOTNT
 DIST \(=\) Distance from ground line to curve
 NPOINT \(=\) Number of points on curve
 (iv) SIGD, EP
 SIGD \(=\) Principal stress difference \(\left(\sigma_{1}-\sigma_{3}\right)\)
 \(E P=\) Axial strain
 Note: Repeat (iv) until NPOINT number of points have been specified for that curve.

Note: Repeat (iii) until NCURVS number of curves have been specified for that stratum.

Note: Repeat Group $2 B$ and 2C or Group 2B and 2D NSTYPE times.
A. NPISP

$$
\begin{aligned}
\text { NPISP }= & \text { Number of different piles in this soil profile (one } \\
& \text { value per soil profile) }
\end{aligned}
$$

Note: Repeat set B until NPISP sets have been specified.
B. (i) KS, NOC, NDD
$K S=$ Numeric identifier for set of p-y curves
NOC $=$ Number of curves in set
$N D D=$ Number of different diameters used for $p-y$ curves
(ii) D, DISDI, DISD2

2
$D=$ Pile diameter
DISDI \doteq Distance from top of pile to top of section
DISD2 $=$ Distance from top of pile to bottom of section
Note: Repeat (ij) until NDD sets of values have been specified.
$D T C=$ Distance from top of pile to p-y curve
Note: Repeat (iii) until NOC values have been specified.
Note: Repeat Groups 2 and 3 NSOTLP number of times.

PROGRAM MAKE

Figure Dl. Input flow chart for MAKE

Example Problems

5. To illustrate the use of program MAKE two example problems will be demonstrated. The soil profiles and the pile dimensions used in the two examples are shown in Figure D2. The soil profile for the first example consists of two layers of clay and for the second example,

SOIL PROFILE I
EXAMPLE PROBLEM I

SOIL PROFILE II EXAMPLE PROBLEM 2

Figure D2. Soil profiles for Example Problems 1 and 2
two layers of sand. Each example requires the generation of two sets of $p-y$ curves corresponding to two different pile configurations. The input and output data for both examples are given in Tables D1 and D2. The generated $p-y$ curves are shown plotted in Figures D3 and Dif for Example Problem 1 and Figures D5 and D6 for Example Problem 2.

Table Dl.
MAKE Input Data for Example Problems 1 and 2
0010
00202
0030 clay
0040 0.09.40.0 2000×0.0
0050 CLAY
$00000.07 .60 .2 \% 400 \times 0.0 \quad$.
00702
00801.4 .1
009010.0 .100
01000
0110100
0120300
0130400
01402.3 .2
015010.0 .100
$01605,100: 400$
01700
0180100
0190300
02002
0210 SAND
0220 0.05, 0.524, 0.200 2 MED UM
0230 SAND
0240 0.06, 0.7855,200.400. DENSE
02502
02604.5 .1
027010.0 .100
02800
0290100
0300200
0310300
0320400
0330 5.5.2
$034020,0,100$
0350 10,108,400
03600
037050
0380200
0390300
0400400

INPUT OF SOIL PARAMEPERS


```
DIAMETER GISTRIBUYIDN FOR PILF
    DIAMETER TOR DIS BOT DIS
    O.1000E O2 O. O.4000E O3
\begin{tabular}{cc} 
CURVE NO. & 1 DEPTH TQ CURVF O. \\
SOIL REACYION & DEFLEGYION \\
0. & 0. \\
0. & \(0.9000 E 01\) \\
0. & \(0.1000 E 03\)
\end{tabular}
CORVE NO, 2 DEPTH TO CURVE O.1000E OJ
SOIL REAC*ION
    0.11244 04
    0.1124e 04
    DEELECTION
    0.5057E 00
    0.5057E OO
Curve NO.'.. 3.DEpTH.TO CurVE:- O.200OE OJ
SOIL REACFION DEFLECYION
    0.
        0.2908:04
    0.2908E 04
    0.6543E 00
    0.1000E O3
\begin{tabular}{cl} 
CURVE NO, & 4 DEPTH TO EURVE O.3ODOE O3 \\
SOIL. REACYION & DEFLEGTION \\
\(0.3491 E ~ 05 ~\) & 0. \\
\(0.3491904 E 01\) \\
\(0.3491 E ~ O 5\) & \(0.2904 E\) \\
\end{tabular}
CURVE NO, }5\mathrm{ DEPTH TO CURVE 0,4000E OJ
SOIL REACYION DEELECYION
    0. 0.
    0.4654E 05
    0.4654E 05
    0.2904E 01
    0,{000E O3
SET IDENTIFIER NOV S NUMBER OF CURYES IN SET S
DIAMETER OISTRIBUTION FOR PILF
\begin{tabular}{rlr} 
DIAMETER & TOFDIS & BOT DIS \\
\(0.2000 E\) O2 & \(0.1000 E 03\) \\
\(0.1000 E 02\) & \(0.1000 E 03\) & \(0.4000 E 03\)
\end{tabular}
```

(Continued)
(Sheet 4 of 5)

Table D2 (Concluded)

Figure D3. p-y curves for Example Problem 1 - Set 1

Figure D4. p-y curves for Example Problem 1-Set 2

Figure D5. p-y curves for Example Problem 2 - Set 1

Figure D6. p-y curves for Example Problem 2 - Set 2

APPENDIX E: USER'S GUIDE FOR PROGRAM BENTI

General Introduction

1. Documentation for computer program BENTl - to analyze twodimensional group pile problems - is presented in this appendix and includes a general introduction, a computational flow chart, a glossary of notation, program listing, guide for data input, and two example problems with input-output data.
2. BENTL is a computer program (developed by Drs. L. C. Reese, UT at Austin, and F. Parker,* WES) written to solve two-dimensional problems involving pile-supported foundations subjected to inclined and eccentric loadings. It is a modification of programs deyezoped previously at UT, Austin. It consists of an iterative solution for the three equilibrium equations developed in Part IV using methods described in Part V to handle the nonlinear behavior of individual piles. The purpose of the iterative procedure is to find the deflected position of the structure so that equilibrium and compatibility are satisfied. The pile cap is assumed to be rigid in the analysis. BENTI uses COM62 and MAKE as subroutines in the program.
3. Input for BENTI consists essentially of the geometry of the foundation and the axial load-settlement curve. The lateral behavior of individual piles may be either described by inputting a table of p-y curve values or by inputting soil properties and activating subroutine MAKE to generate the p-y curves. Subroutine COM62 is used to compute response of individual piles in the group to lateral loads.
4. The program outputs the lateral load, bending moment, and axial load sustained by each pile in a group pile foundation besides providing other supplementary information. Successive applications of the program can be made to determine the optimum design of pile

[^3]foundations including pile sizes and arrangement of pile in the foundation.
5. Input may be input interactively at execute time, or input may be in a prepared data file. Output will be directed to an output file. $\quad:-{ }^{-}$
6. A group pile program called GROUP developed by Dr. Katsuyuki Awoshika* under the guidance of Prof. L. C. Reese is presently available. GROUP can perform the. same type of analysis as BENTl but is considered more efficient.

[^4]
Flow Chart

7. A flow chart for the iterative solution used in the program is shown in Figure El.

SET λ_{v}, Λ_{u}, AND I
EQUAL TO ZERO

SET THE DEFLECTION OF EACH PILE TOP ($\mathrm{x}_{\mathrm{it}}, \mathrm{y}_{\mathrm{ti}}$) EQUAL TO 1.0

SET INITIAL BOUNDARY CONDITIONS FOR USE IN LATERALLY LOADED PILE SOL.UTION

CALCULATE $J_{k i}$ USING $x_{t i}$ ANO L.OAD SETTLEMENT CURVE FOR PILE

CALCULATE Jyi AND J
USI
PILE LATERALLY LOADED
PROPRIATE BOUNTHARY
CONDITIONS

Calculate Λ_{v}, Λ_{u}, and
I' by shal taneous solu-
TION OF THREE EQUILIB.
rium equations
closure not obtained. Calculate new values FOR DEFLECTION OF PILE TOPS. SET NEW BOUNOARY CONDITIONS FOR LATERALLY LOADEO pILE SOLUTION

CLOSURE OBTAINED. MAKE GINAL CALCULATIONS

Figure El. Flow chart for iterative solution in BENTL
8. Data should be input to program BENTI according to the following guide. All input is in free-field format and should be in units of pounds, inches, and radians. The data input for subroutine MAKE with its input flow chart (Figure E 2) is also included. Group 1-「Title

ANUM

ANUM $=60$ character variable to identify problem
Group 2 - Foundation Load and Control Data
PV, PH, TM, TOL, KNPL, KOSC
$\mathrm{PV}=$ Vertical load on foundation $\quad . .=\approx$
$\mathrm{PH}=$ Horizontal load on foundation
$T M=$ Moment on foundation
$T O L=$ Iteration tolerance (tolerable deflection difference)
KNPL $=$ Number of pile locations
KOSC $=$ Switch to control oscillating solution $0-\infty$ for normal use 1 --- if solution oscillates

Group 3 - Control Data for Pile Locations
DISTA, DISTB, THETA, POTT, KS, KA

DISTA $=$ Horizontal coordinate of pile top

DISTB $=$ Vertical coordinate of pile top

THETA = Pile batter

POTT = Number of piles at a location
$K S=$ Identifier to relate to $p-y$ curve
$K A=$ Identifier to relate to axial settlement curve
Note: Repeat Group 3 until KNPI sets have been specified

Group 4 - Control Data for Piles
A. NN, HH, DPS, NDEI, TC, FDBET, E
$\mathrm{NN}=$ Number of increments
HH = Increment length
DPS = Distance from pile top to soil surface
NDEI $=$ Number of different flexural stiffness values specified
$T C=$ Alphanumeric designation for top connection of pile (FIX; PIN; or RES)

FDBET $=$ Rotational restraint value (not needed unless $T C=R E S$)
$E=$ Pile diameter or width
B. $\mathrm{RRI}, \mathrm{XXI}, \mathrm{XX} 2$

$$
\begin{aligned}
& \mathrm{RRI}=\text { Flexural stiffness (EI) of a section } \\
& \mathrm{XXI}=\text { Distance from pile top to top of section } \\
& X X 2=\text { Distance from pile top to bottom of section }
\end{aligned}
$$

Note: Repeat Set B until NDEI sets have been specified.
Note: Repeat Group 4 until KNPL sets have been specified.

Group 5 - Control Data for Soil Properties

NKA, NKS, KOK

$$
\begin{aligned}
\text { NKA }= & \text { Number of load settlement curves } \\
\text { NKS }= & \text { Number of sets of } p-y \text { curves } \\
\text { KOK }= & \text { Switch for input of p-y curves } \\
& (\text { KOK }=0 \text { p-y curves input } \\
& K O K=1 \text { p-y curves generated })
\end{aligned}
$$

Group 6 - Control and Data for Axial Load Settlement Curves
A. IDEN, IO

IDEN $=$ Identifier for axial load settlement curve (corresponds to KA)

IO $=$ Number of points on curve
B. $\quad 2 Z 2, \operatorname{SSS}$

ZZZ $=$ Axial settlement

SSS = Axial load
Note: Repeat Set B until IO sets have been supplied.
Note: Repeat Group 6 until NKA sets have been supplîed.

Group 7 - Control Data for p-y Curves
(Necessary only if KOK $=0$, NKS sets per problem)
A. IDPY, KNC

IDPY $=$ Identifier for set of $\mathrm{p}-\mathrm{y}$ curves (correspond to KS)
KNC = Number of curves in set
B. NP, XS
$N P=$ Number of points on curve
$X S=$ Distance from ground line to curve

Note: Repeat Set B until KNC values have been supplied.
C. $\quad \mathrm{YC}, \mathrm{PC}$
$Y C=$ Deflection on curve
$P C=$ Soil reaction on curve

Note: Repeat Set C within each Set B until NP sets are specified.

Note: Repeat Group 7 until NKS sets have been supplied.
If $p-y$ curves are to be generated (i.e., $K O K=1$), the data for subroutine MAKE will follow.

Subroutine MAKE

Group 8 - Profile Data

NSOILP

NSOILP $=$ Number of soil profiles (one value per run)

Group 9 - Soil Data
A. NSTYPE

NSTYPE $=$ Number of soil stratums (one value per profile)
B. TSOTL

$$
\begin{aligned}
\text { TSOIL }= & \text { Alphanumeric designation of type of soil in } \\
& \text { stratum (sand or clay) - one value per stratum } \\
= & \text { Sand -... input line Set } C \text { and omit line } \\
& \text { Set } D \text { for this stratum } \\
= & \text { Clay --- input line Set } D \text { and omit line } \\
& \text { Set } C \text { for this stratum }
\end{aligned}
$$

Note: A space (blank) must be left between the file line number and the parameter TSOIL.
C. Sand Properties

GAMMA, PHI, DIS1, DIS2, KDENSE,

GAMMA = Unit weight of soil
PHI $=$ Angle of internal friction

DISI $=$ Distance from ground line to top of stratum

$$
\begin{aligned}
\text { DIS2 }= & \text { Distance from ground line to bottom of stratum } \\
\text { KDENSE }= & \text { Alphanumeric designation for relative density of } \\
& \text { sand } \\
= & \text { DENSE, MEDIUM, or LOOSE }
\end{aligned}
$$

D. Clay Properties
(i) GAMMA, SHEARS, DIS1, DIS2, INFO, ICON

GAMMA = Unit weight of clay
SHEARS = Cohesion of clay
DISI $=$ Distance from ground line to top of stratum
DIS2 $=$ Distance from ground line to bottom of stratum
INFO $=$ Control for input of stress-strain curve
0 -m omit data for curves by omitting cards that follow in this group
l--- input data for curves by specifying cards that follow in this group

ICON $=$ Alphanumeric designation for consistency of clay (SOFT or STIF)
(ii) NCURVS

NCURVS $=$ Number of curves per stratum
(iii) DIST, NPOINT

DTST $=$ Distance from ground line to curve
NPOINT $=$ Number of points on curve
(iv) SIGD, EP

$$
\begin{aligned}
\mathrm{SIGD} & =\text { Principal stress difference }\left(\sigma_{1}-\sigma_{3}\right) \\
E P & =\text { Axial strain }
\end{aligned}
$$

Note: Repeat (iv) until NPOINT number of points have been specified for that curve.

Note: Repeat (iii) until NCURVS number of curves have been specified for that stratum.

Note: Repeat Group $9 B$ and 9 C or Group $9 B$ and $9 D$ NSTYPE times.

Group 10 - Pile Data
A. NPISP
$\begin{aligned} \text { NPISP }= & \text { Number of different piles in this soil profile - } \\ & \text { one value per soil profile }\end{aligned}$
Note: Repeat Set B until NPISP sets have been specified.
B.
(i) KS, NOC, NDD
$K S=$ Numeric identifier for set of $p-y$ curves
$\mathrm{NOC}=$ Number of curves in set
$N D D=$ Number of different diameters used for $p-y$ curves
(ii)

D, DISD1, DISD2
$D=$ Pile diameter
DISDI $=$ Distance from top of pile to top of section
DISD2 $=$ Distance from top of pile to bottom of section
Note: Repeat (ii) until NDD sets of values have been specified.

DTC
$D T C=$ Distance from top of pile to p-y curve
Note: Repeat (iii) until NOC values have been specified.
Note: Repeat Groups 9 and 10 NSOILP number of times.

INPUT FLOW CHART

PROGRAM MAKE

Figure E2. Input flow chart for subroutine MAKE

Example Problems

9. The two example problems (extracted from Parker and Cox*) are associated with actual bents, used by the Texas Highway Department for supporting bridges on the Gulf Coast of Texas. The geometry of the bents, properties of the piles and soil, and loads on the bents were obtained from highway department files.
10. The bents considered in the example problems are used in bridges located on the Gulf Coast of Texas. There are two basic reasons why bents of this type were selected for analysis by the proposed method. The first reason is that soil conditions in this area are consistently bad which makes piles necessary for bridge foundations. The second reason is that high lateral loads are common. These are due primarily to wind and wave action. During hurricanes the lateral loads may be quite high. The use of long piles and high lateral loads makes the proposed method of analysis seem very attractive for these bents. Copano Bay Causeway
11. The first example problem considered will be one of the bents used in the Copano Bay Causeway. The bridge is located in Aransas County on State Highway 35 between Port Lavaca and Rockport. The bridge is 920 ft in length and provides 50 ft vertical clearance at the center of the span. The roadway is supported by precast-prestressed concrete girders. The bent caps, columns, and footings are reinforced concrete. The bent heights vary from 20 to 50 ft. The bent analyzed is shown in Figure E3. The piles used are battered in four directions to resist horizontal forces perpendicular and parallel to the roadway. Only the case where the horizontal load is perpendicular to the roadway will be considered. For this case, the two interior piles in each footing, which are battered parallel to the roadway, will be treated as vertical piles. The bottom tie beam is considered to provide sufficient rigidity so that the assumption that the pile heads remain in the same plane after movement is valid.
12. The geometry necessary for describing the foundation for the

* Ibid p. El

Figure E3. Copano Bay Causeway bent - Example Problem 1
computer solution is presented in Figure El and the following tabulation.

Figure E4. Foundation representation for Example Problem 1

Pile Location	a Coordinate in.	
1	-126	
2	-90	
3	+90	
4		+126

b
Coordinate in.
0
0
0
0

No. Piles at	Batter Location
1	-0.244
2	0.0
2	0.0
1	+0.244

The coordinate system and the resulting forces on the bent are also shown in this figure. The piles are 18 -in. -square prestressed concrete piles. They have an effective flexural rigidity of $4.374 \times 10^{10} 1 \mathrm{~b}-\mathrm{in} .^{2}$ (assuming a modulus of elasticity for concrete of $5 \times 10^{6} \mathrm{psi}$) and a length of 93 ft .
13. A pile similar to the ones used in the bent was driven near the site of the bent. A load test was performed on this pile. The load settlement curves obtained and used in the computer solution are shown in Figure E5.

Figure E5. Load deflection curve for Example Problem 1
$\therefore \because \because \because \quad \because \quad \because \quad . \quad \because 4 \%$ The piles are driven through what is classified as muck or very soft clay to bearing on a dense sand or firm sandy clay. The location of the stiffer strata is variable, and so the length of pile and length of embedment in the stiffer strata will be variable. For this analysis, the piles are assumed to be 93 ft in length with an embedment length of 83 ft .
15. For generation of pay curves, the soil is treated as a clay. That is, the soil is treated as a frictionless material with the shear strength composed entirely of cohesion. Some thin sand layers are encountered, but their effect is considered insignificant. The tip of the pile may also be buried to several feet in a sand or sandy clay, but the effect on the lateral behavior will be insignificant and will be ignored.
16. After considering boring logs from the vicinity of the bent and after a review of triaxial data, a variation of cohesion with depth was assumed and used for predicting lateral pile-soil interaction. This assumed distribution of cohesion along the pile length is shown in Figure E6. The depth given is the distance from the soil surface. The top of the piles is located at the water surface which is 10 ft above

Figure B6. Soil properties for generation of p-y curves for Example Problem 1
the soil surface. The scourline is assumed to be 5 ft below the soil. surface. The saturated unit weight of the soil is taken as 92 pef , and the consistency is soft.
17. A solution was obtained for this problem by using the program BENTI. The movement of the bent is described by the following movements of the origin of the $a-b$ coordinate system:

$$
\begin{aligned}
& \Delta_{v}=7.664 \times 10^{-2} \mathrm{in} \\
& \Delta_{u}=1.004 \times 10^{-1} \mathrm{in} \\
& \Gamma=8.536 \times 10^{-5} \text { radians }
\end{aligned}
$$

The loads transferred to each pile and the movements of each pile top are given in the following tabulation:

- Pile Location	Axial Load	Lateral Load	Moment	Axial	Lateral
	:per..Pile...	\therefore per Pime	per Pile	Movement	Movement
	kips	kips	in.-kips	in.	in.
1	78.7	1.7	-253.3	0.0397	0.1134
2	133.4	1.5	-218.9	0.0689	0.1004
3	156.5	1.5	-218.8	0.0843	0.1004
4	193.6	1.1	-155.2	0.1091	0.0763

The forces and movements at the pile tops are related to the $x-y$ coordinate system set up for each pile.
18. The deflection of the $a-b$ coordinate system defines the equilibrium position for the structure. When the foundation is in this position, the piles exert on the foundation the given forces and moments which satisfy the three equilibrium equations. A complete listing of the coded input and output is presented in Tables El and E2 beginning on page E38.

19: If the movement of the structure and the loads carried by each pile are considered, it would appear that the design is conservative. This is probably true, but it should be pointed out that factors such as settlement caused by consolidation and cyclic loading have not been considered.

Input Data for Example Problem I

```
10\emptyset EX 1 COPANO BAY CAUSEWAY,ARANSAS COUNTY TEXAS,US HIGHWAY 35
110 844000.0.36400.0.16817000.0,0.001.4,0
120-12G.0,0.0,-0.244,1.0,1,1
130-90.0,0.0,0.,2,0,1,1
140 90,0,0,0,2.0,1,1
150 126.0,0.0,0.244,1.0,1,1
160 31,36.0,120.0,1, FIX,0,18.0
17043740000000.0,0.0,1116.0
180 31,36.0,120.0,1, F1X,0,18.0
190 43740000000.0.0.0,1116.0
200 31,36.0,120.0,1,F1X,0,18.0
21043740000000.0,0.0.1116.0
220 31,36.0,120.0,1, F1X , D,18.0
230 43740000000.0,0.0.1116.0
240 1.1.1
250 1,15
060-10.0,-350000.0
270-65.0,-360000.0
280-0.19,-280000.0
290-0.16,-260000.0
300-0.14,-240000.0
3100.0.0.0
3200.03,40000.0
330 0.04,80000.0
3400.05.100000.0
3500.06.120000.0
3600.14,240000.0
370 0.16,260000.0
3800.19.280000.0
390 0.65,360000.0
400 10.0.360000.0
4101
420 3
430 CLAY
4400.0,0.001,0.0,60.0.0, SOFT
450 CLAY
460 0.0174,3.8,60.0,894.0,0, SOFT
47B CLAY
480 0.0174,15.0,894.0,1000.0,0, SOFT
490 1
500 1,9,1
510 18.0,0.0,1000.0
520 0.0
53060.0
54061.0
550 96.0
560 132.0
570 168.0
580 204.0
590 240.0
600 996.0
```

Table E2
Output Data for Example Problem 1

2 EX 2 copano gay causeway.aransas county yexas.us highway 35

LIST OF INPUT DATA ---

PV	PH	TM	TOL	KNPL KO
0.8440E+06	0.364 OE +05	$0.1682 E+08$	0,1000E-02	40

CONTROL DATA FOR PILES AT EACH hOCATION

PILE NO	DISTA	DISTR	BATYER	POTT	KS		
1	$-1260 E+03$	$0.0000 E+00$	$-.2440 E+00$	$0.1000 E+01$	1	1	
2	$-.9000 E+02$	$0.0000 E+00$	$0.0000 E+00$	$0.2000 E+01$	1	1	
3	$0.9000 E+02$	$0.0000 E+00$	$0.0000 E+00$	$0.2000 E+01=$	1	1	
4	$0.1260 E+03$	$0.0000 E+00$	$0.2440 E+00$	$0.1000 E+01$	1	1	

PILE NO 1

RRI
XXI
xx2

PILENO 2
PILE NO 3
Pile NO 4

$0.43740 E+11$	$0.00000 E+00$	$0.11160 E+04$
$0.43740 E+11$	$0.00000 E+00$	$0.11160 E+04$
$0.43740 E+11$	$0.00000 E+00$	$0.11160 E+04$
$0.43740 E+11$	$0.00000 E+00$	$0.11160 E+04$

axial load settlement data

IDENTIFIER

222
$-10000 \mathrm{E}+02$
$-.65000 \mathrm{E}+02$
$-.19000 \mathrm{E}+00$
$-.16000 \mathrm{E}+00$
$-14000 E+00$
$0.00000 \mathrm{E}+00$ 0.30000E-01 0.40000E-01 $0.50000 \mathrm{E}-01$ 0.60000E-01 $0.14000 E+00$
(Continued)
(Sheet 1 of 9)

```
0.16000E+00 0.26000E+06
0.19000E+00 0.28000E+06
0.65000E+00 0.36000E+06
0.10000E+02 0.36000E+06
INPUT OF SOIL PaRAMETERS
```

GAMMA	COHESION	TOP DEPTH BOTTEM	
$0.1740 E-01$	$0.3800 E+01$	$0.6000 \mathrm{E}+02$	$0.8940 E+03$

```
\begin{tabular}{lll} 
DIAMETER & TOP DIS & BOT DIS \\
\(0.1800 E+02\) & \(0.0000 E+00\) & \(0.1000 E+04\)
\end{tabular}
```

```
            SOIl PROFILE NO. 1 STRATUMNO. 1 TYPE SOILClAY
```

 SOIl PROFILE NO. 1 STRATUMNO. 1 TYPE SOILClAY
 GAMMA COHESION TOP DEPTH BOTTEM DEPTH CONSISTENCY
 GAMMA COHESION TOP DEPTH BOTTEM DEPTH CONSISTENCY
 0.0000E+00 0.1000E-02 0.0000E+00 0.6000E+02 SOFT
 0.0000E+00 0.1000E-02 0.0000E+00 0.6000E+02 SOFT
 SOIL PROFILE NO. }1\mathrm{ STRAPUM NO. 2 TYPE SOILGLAYE
    ```
            SOIL PROFILE NO. }1\mathrm{ STRAPUM NO. 2 TYPE SOILGLAYE
```



```
            DIAMETER DISTRIBUTION FOR PILE
```

 DIAMETER DISTRIBUTION FOR PILE
 SET IDENTIFIER NO, 1 NUMBER OF CURVES IN SET Q
CuRVE NO. 1 DEPTH TO CURVE O,0000E\$00
SOIL REACTION DEFLECTION
U.0000E+00 0.0000E+00
0.3600E-01 C.4320E-01
U.J60OE-01 O.1800E+03
CuRVE NO, 2 DEPTH TO CURVE 0.6000E\$02

```
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
\text { SOIL REAC. } 10 \mathrm{~N} \\
0.0000 \text { \& }+00
\end{array}
\] & & \[
\begin{aligned}
& \text { DEFLEC } 1 \text { ION } \\
& 0.0000 \mathrm{E}+00
\end{aligned}
\] \\
\hline 0.6261E-01 & & 0.1440E*00 \\
\hline 0.8855E-01 & & \(0.2880 \mathrm{E}+00\) \\
\hline \(0.1084 E+00\) & & 9.4320E+00 \\
\hline \(0.1252 E+00\) & & \(0.5760 \mathrm{E}+00\) \\
\hline \(0.1400 \mathrm{E}+00\) & & \(0.7200 \mathrm{E}+00\) \\
\hline \(0.1534 E+00\) & & \(0.8640 E+00\) \\
\hline U.16ら7E-00 & & \(0.1008 \mathrm{E}+01\) \\
\hline 0,1771E*00 & & 0.1152 E -01 \\
\hline \(0.1878 \mathrm{E}+00\) & & \(0.1296 \mathrm{E}+01\) \\
\hline \(0.1980 E+00\) & & 0.1440 E -01 \\
\hline 0.1980E+00 & & \(0.2800 E+03\) \\
\hline Curve no. & 3 DEPTH & Yo Curve 0.6100E*02 \\
\hline SOIL REACTION & & DEFLECTION \\
\hline 0.0000E-00 & & 0.0000E+00 \\
\hline 0.2379E*03 & & \(0.1440 E+00\) \\
\hline 0,3365E+03 & & \(0.2880 \mathrm{E}+00\) \\
\hline 0.4121 E 03 & & \(0.4320 \mathrm{E}+00\) \\
\hline -.0.4759E\%03. & & - \(0.5760 \mathrm{E}^{\circ} \mathrm{O} 0\) \\
\hline U.5320E+03 & & 0.7200E+00 \\
\hline 0,5828E*03 & & 0.8640E-00 \\
\hline \(0.6295 E+03\) & & 0.1008E+01 \\
\hline 0,6730E+03 & & 0.1152E+01 \\
\hline \(0.7138 \mathrm{E}+03\) & & 0.1296E-01 \\
\hline 0.7524E+03 & & 0.1440E+01 \\
\hline U, 1524E+03 & & 0.1800E+03 \\
\hline Curve no. . 4 & 4 DEPTH & To Curve 0.9600e*02 \\
\hline SOIL REACTION & & DEFLECTION \\
\hline U.0000E*00 & & 0.0000E+00 \\
\hline U.2379E+03 & & \(3.1440 E+00\) \\
\hline U.3365E+03 & & 0.2880E 00 \\
\hline U.4121E+03 & & 0.4320E+00 \\
\hline U.4759E+03 & & \(0.5760 \mathrm{E}+00\) \\
\hline \(0.5320 E+03\) & & 0.7200E*00 \\
\hline U.5828E+03 & & \(0.8640 \mathrm{E}+00\) \\
\hline 0.6295E*03 & & 0.1008 E -01 \\
\hline \(0.6730 E+03\) & & 0.1152E-01 \\
\hline \(0.7138 \mathrm{E}+03\) & & 0.1296E+01 \\
\hline \(0.7524 \varepsilon+03\) & & \(0.1440 \mathrm{E}+01\) \\
\hline \(0.7524 E+03\) & & \(0.1800 \mathrm{E}+03\) \\
\hline Curve no. 5 & 5 DEPYH & TO Curve 0.1320e +03 \\
\hline SOIL REACTION & & DEFLECTION \\
\hline 0.0000E+00 & & \(0.0000 E+00\) \\
\hline 0.2379E+03 & & 0.1440E-00 \\
\hline
\end{tabular}
\(0.3365 E+03\)
\(0.4121 E+03\)
\(0.4759 E+03\)
\(0.5320 E+03\)
\(0.5828 E+03\)
\(0.6295 E+03\)
\(0.6730 E+03\)
\(0.7138 E+03\)
\(0.7524 E+03\)
\(0.7524 E+03\)

CuRVE NO. \(\quad\) DEPTH TO CURVE \(0.1680 E+03\)
SOIL REACTION
\(0.0000 E+00\)
U. \(2379 E+03\)
\(0.3365 E+03\)
\(0.4121 E+03\)
\(0.4759 E+03\)
\(0.5320 E+03\)
\(0.5828 \mathrm{E}+03\)
\(0.6295 E+03\)
\(0.6730 \mathrm{E}+03\)
\(0.7138 E+03\)
\(0.7524 E+03\)
\(0.7524 E+03\)

Curve no. 7
\(0.2880 E+00\)
\(0.4320 E+00\)
C. \(5760 \mathrm{E}+00\)
\(0.7200 E+00\)
\(0.8640 E+00\)
\(0.1008 E+01\)
C. \(1152 \mathrm{E}+01\)
\(0.1296 E+01\)
\(0.1440 E+01\)
\(0.1800 \mathrm{E}+03\)

DEFLECTION
\(0.0000 E+00\)
\(0.1440 E+00\)
\(0.2880 E+00\)
\(0.4320 E+00\)
\(0.5760 E+00\)
\(0.7200 \mathrm{E}+00\)
\(0.8640 E+00\)
\(0.1008 \mathrm{E}+01\)
\(0.11 .52 E+01\)
\(0.1296 E+01\)
\(0.1440 E+01\)
\(0.1800 E+03\)

SOIL REACTION
\(0.0000 E+00\)
\(0.2379 E+03\)
\(0,3365 E+03\)
\(0.4121 E+03\)
\(0.4759 E+03\)
\(0.5320 E+03\)
\(0.5828 \mathrm{E}+03\)
\(0.6295 E+03\)
\(0.6730 E+03\)
\(0.7138 \mathrm{E}+03\)
\(0.7524 E+03\)
U. \(7524 E+03\)

DEFLECTION
\(0.0000 E+00\)
C. \(1440 \mathrm{E}+00\)
\(0.2880 E+00\)
\(0.4320 E+00\)
\(0.5760 E+00\)
\(0.7200 E+00\)
\(0.8640 E+00\)
\(0.1008 E+01\)
\(0.1152 \mathrm{E}+01\)
\(0.1296 E+01\)
\(0.1440 E+01\)
\(0.1800 E+03\)

CuRve no, 8 DEPTH TO CURVE 0.2400 e 03
SOIL REACTION
\(0.0000 E+00\)
\(0,2379 E+03\)
\(0.3365 E+03\)
\(0.4121 E+03\)
\(0.4759 \mathrm{E}+03\)

DEFLECTION
\(0.0000 E+00\)
\(0.1440 E+00\)
\(0.2880 E+00\)
\(0.4320 E+00\)
\(0.5760 E+00\)

\section*{Table E2 (Continued)}
\[
\begin{aligned}
& 0.5329 E+03 \\
& 0.5828 E+03 \\
& 0.6295 E+03 \\
& 0.6730 E+03 \\
& 0.1138 E+03 \\
& 0.7524 E+03 \\
& 0.7524 E+03 \\
& \text { SOIL REACTION } \\
& 0.0000 E+00 \\
& 0.9392 \mathrm{E}+03 \\
& 0.1328 E+04 \\
& 0.1627 E+04 \\
& 0.1878 E+04 \\
& \text { U.2100E+04 } \\
& 0.23 U 1 E+04 \\
& 0.2485 E+04 \\
& 0.2656 E+04 \\
& \text { U. } 2818 \mathrm{E}+04 \\
& \text { U. } 2970 \mathrm{E}+04 \\
& 0.2970 \varepsilon+04
\end{aligned}
\]
\(0.7200 E+00\)
9.8640E+00
0. \(1008 \mathrm{E}+01\)
\(0.1152 \mathrm{E}+01\)
\(0.1296 E+01\)
\(0.1440 E+01\)
\(0.1800 E+03\)

CuRVE NO. 9 DEPYH TO CURVE 0.9960 - 03

1
ITERATION DATA
DEflection
\(0.0000 E+00\)
\(0.1440 E+00\)
\(0.2880 \mathrm{E}+00\)
\(0.4320 E+00\)
\(0,5760 E+00\)
\(0.7200 E+00\)
\(0.8640 E+00\)
\(0.1008 \mathrm{E}+01\)
\(0.1152 E+01\)
\(0.1296 E+01\)
\(0.1440 E+01\)
\(0.1800 E+03\)
\begin{tabular}{lll} 
DV & \(D H\) & ALPHA \\
\(0.3985 E+00\) & \(0.1261 E+01\) & \(-.4492 E-03\) \\
\(0.1824 E+00\) & \(0.3865 E+00\) & \(0.2338 E-03\) \\
\(0.1038 E+00\) & \(0.1578 E+00\) & \(0.2297 E-03\) \\
\(0.8262 E-01\) & \(0.1080 E+00\) & \(0.9721 E-04\) \\
\(0.7757 E-01\) & \(0.1032 E+00\) & \(0.8648 E-04\) \\
\(0.7678 E-02\) & \(0.1008 E+00\) & \(0.8561 E-04\) \\
\(0.7664 E-01\) & \(0.1004 E+00\) & \(0.8536 E-04\)
\end{tabular}

PX,L8 XT,IN PT,L日 M M,IN-LB YT,IN
\(0.78721 E+05 \quad 0.39680 E-01 \quad 0.17341 E+04 \quad=.25328 E+060.11335 E+00\)
INPUT INFORMATION
TC TOP DIA.IN INC. LENGTHINNO, OF INC KS KA
\(F: \quad 0.1800 E+02 \quad 0.3600 E+02 \quad 31 \quad 1\)
(Continued)
PILELENGTH,IN DEPTH TO SOIL ITERATION TOL. 80 UNDRY COND. 2
\(0.1116 E+04\)
\(3.1200 E+03\)
\(0.1000 \mathrm{E}-02\)
\(0.0000 E+00\)
OUYPUT INFORMAYION



IEX 1 COPANO BAY CAUSEWAY,ARANSAS COUNTY TEXAS, US HIGHWAY 35


INPUT INFORMATION
\begin{tabular}{ccccc} 
TC TOP DIA.IN & INC.LENGTH.IN NO. OF & INC KS KA \\
FIX & \(0.1800 E+02\) & \(0.3600 E+02\) & 31 & 1
\end{tabular}

PILE LENGTH.IN DEPTH TO SOIL ITERATION TOL.BO UNDRY COND. 2
(Continued)
(Sheet 7 of 9 )
\(0.1110 E+04 \quad 0.1200 E+03 \quad 0.1000 E-02 \quad 0.0000 E+00\)

OUTPUT INFORMATION

(Continued)
(Sheet 8 of 9 )

\section*{Table E2 (Concluded)}


Houston Ship Channel
20. The second example problem considered will be one of the bents used in a bridge across the Houston Ship Channel. The bridge is located in Harris County on Interstate Highway 610. Details of the bent analyzed are shown in Figure E7. The bent is reinforced concrete and is supported by 142 eighteen-inch-square, precast-prestressed concrete piles. The piles in this example are battered parallel to the roadway to resist horizontal loads from the superstructure. It is assumed that the 7 -ft-thick pile cap provides sufficient rigidity so that the assumption of plane movement is valid.
21. The geometry necessary for describing the foundation for the computer solution is shown in Figure \(E 8\) and the following tabulation:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Pile \\
Location
\end{tabular} & \(\qquad\) & \[
\begin{gathered}
\text { b } \\
\text { Coordinate } \\
\text { in. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
No. Pile \\
at Iocation
\end{tabular} & Batter radians \\
\hline 1 & -150 & 0 & 2.4 & -0.166 \\
\hline 2 & -90 & 0 & 23 & -0.083 \\
\hline 3 & -30 & 0 & 24 & -0.042 \\
\hline 4 & 30 & 0 & 24 & 0.042 \\
\hline 5 & 90 & 0 & 23 & 0.083 \\
\hline 6 & 150 & 0 & 24 & 0.166 \\
\hline
\end{tabular}

The coordinate system and the loads on the structure are also designated in the figure. The piles have an effective flexural rigidity of \(4.374 \times 10^{10} \mathrm{lb}-1 \mathrm{n}^{2}{ }^{2}\) (assuming a modulus of elasticity of concrete of \(5 \times 10^{6} \mathrm{psi}\) ) and a length of 44 ft .
22. No axial load-deflection curves obtained from load tests are available for the piles used in the bent. As a result, it was necessary to estimate the axial behavior of the piles. The ultimate bearing capacity of the piles was estimated as 650 kips in compression and 600 kips in tension. The ultimate deflection is estimated as 0.5 in. The loaddeflection relationship is assumed to be linear resulting in a curve as shown in Figure E9.
23. The properties of the soil used for predicting the lateral pile-soil interaction were obtained from the highway department borings.



Figure \(\mathbf{E 8}\). Foundation representation for Example Problem 2

The properties used for generation of \(p-y\) curves are illustrated in Figure ElO. It should be pointed out that the profile shown is a simplification of the actual profile. The top 13 ft of soil, defined as very dense sandy silt, will be treated as a sand when p-y curves are generated. That is, it will be treated as a cohesionless material. The bottom 31 ft , defined as very stiff silty clay, will be treated as a clay. That is, it will be treated as a frictionless material. Depths given are measured from the top of the pile. From the given soil properties, p-y curves are generated.
24. A solution was obtained for the Ship Channel problem by using the program BENTI. The movement of the bent, when loaded, is described


Figure E9. Estimated axial load deformation for Example Problem 2

by the following movements of the origin of the \(a-b\) coordinate system:
\[
\begin{aligned}
& \Delta_{v}=1.512 \times 10^{-1} \mathrm{in} \\
& \Delta_{u}=3.321 \times 10^{-2} \mathrm{in} \\
& \Gamma=4.183 \times 10^{-4} \text { radians }
\end{aligned}
\]

The loads transferred to each pile and the movements of each pile top are given in this tabulation:
\begin{tabular}{ccccccc}
\begin{tabular}{c} 
Pile \\
Location
\end{tabular} & \begin{tabular}{c} 
Axial Load \\
per Pile \\
kips
\end{tabular} & \begin{tabular}{c} 
Lateral Load \\
per Pile \\
kips
\end{tabular} & \begin{tabular}{c} 
Moment \\
per Pile \\
in.-kips
\end{tabular} & \begin{tabular}{c} 
Axial \\
Movement \\
in.
\end{tabular} & \begin{tabular}{c} 
Lateral \\
Movement \\
in.
\end{tabular} \\
2 & 106.3 & 3.3 & & \begin{tabular}{c}
-46.0
\end{tabular} & 0.0818 & 0.0474 \\
3 & 143.6 & 2.5 & & 0.4 & 0.1104 & 0.0425 \\
4 & 178.3 & 214.5 & 2.0 & 0.3 & 32.8 & 0.1372
\end{tabular}

The forces and movements at the pile tops are related to the \(x-y\) coordinate systems set up for each pile. A complete listing of the coded input and output for the program is given in Tables E3 and El beginning on page E 53.
25. The small deflections and loads obtained for the piles would tend to indicate that the design is conservative. This is probably true and is to be expected. However, it should be pointed out that a number of factors, such as consolidation and cyclic loading, have not been considered and that the load deflection curve used is only a rough approximation. The value used for ultimate load is probably fairly reliable, but the deflection at which the load stops increasing is only an educated guess. Because of this, a linear variation of load with movement was considered to provide sufficient refinement. The effect will be disclosed in the loads and deflections obtained for the piles. The loads obtained will probably be fairly accurate, but the accuracy of the movements obtained will depend on the accuracy of the value which was assumed for the deflection at which the load stops increasing.

Table E3
```

10\emptyset EX 2 HOUQTON SHIP CHANNEL BRIDGE,HARRIS CO.,HIGHWAY I - 6IO
110 2.7600E+07,1.1260E+D6,8.6568E+08,0.001,6,0
120 -150.0.0.0.-10.166,24.0,1,1
130-90.0.0.0,-0.083.23.0.1,1
140-30.0,0.0,-0.042,24.0,1,1
150 30.0,0.0,0.042,24.0,1,1
160 90.0,0.0,0.083,23.0,1,1
170.150.0,0,0.166,24.0,1,1
180 33,16.0,0.0,1, FIX,0,18.0
1904.3740E+10,0.0.528.0
200 33,16.0,0.0,1,F1X ,0,18.0
2104.3740E+10.0.0.528.0
220 33.16.0.0.0,1, FIX,0,18.0
2304.3740E+10,0.0,528.0
240 33,16.0,0.0,1, FIX ,0,18.0
2504.3540E+10,0.0,528.0
260 33,16,0,1, F1X ,0,18
270 4.3740E+10.0.528.0
280 33,16.0,0,1, F1X,0,18.0
290 4.3740E+10,0,5.2800E)02
300 1,1,1.
310 1,5
320-10.0,-6.000E+05
330-0.5,-6.000E+05
340 0,0
3500.5.6.5000E+05
360 10.0.6.5000E+05
370 1
380 2
390 SAND
4000.03,0.6.0.156.0, DENSE
410 CLAY
4200.017,14.0.156.0,528.0,0, ST1F
4 3 0 ~ 1
440 1.10.1
45018.0,0,528.0
4 6 0 ~ 0
470 12.0
480 24.0
49048.0
500 96.0
510144.0
520 228.0
530 229.0
540240.0
550 528.0
READY

```

Table E4
Output Data for Example Problem 2

IEX 2 HOUSTON SHIp CHANNEL BRIDGE,HARRIS CO.eHIGHWAY I-610

LIST OF INPUT DATA -..
\begin{tabular}{|c|c|c|c|c|}
\hline PV & PH & TM & TOL & KNPL KOSC \\
\hline 0.2760E+08 & 0.1126E*07 & 0.8657E+09 & 0,1000E-02 & 60 \\
\hline
\end{tabular}

CONTROL DATA FOR PILES AT EACH LOCATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PILE NO & dista & Dista & gATTER & POTT & & KS \\
\hline 1 & -. 1500E+03 & 0.0000E+00 & -.1660E +00 & \(0.2400 E+02\) & 1 & 1 \\
\hline 2 & -.9000E+02 & \(0.0000 E+00\) & -.8300E-01 & \(0.2300 E+02\) & 1 & 1 \\
\hline 3 & \(-.3000 E+02\) & \(0.0000 E+00\) & -.4200E-01 & \(0.2400 E+02\) & 1 & 1 \\
\hline 4 & \(0.3000 E+02\) & 0.0000E +00 & 0.4200E-01 & \(0.2400 E+02\) & 1. & 1 \\
\hline & \(0,9000 \mathrm{E}+02\) & \(0.0000 \mathrm{E}+00\) & 0.6300E-01 & \(0.2300 \mathrm{E}+02 \mathrm{C}\) & & 1 \\
\hline 6 & C. \(1500 \mathrm{E}+03\) & \(0.0000 E+00\) & \(0.1660 E+00\) & 0,2400E+02 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PIWE & NO. & NN & HH... & DPS & NDE! & CONN & ON FDBET \\
\hline & & 33 & 0.16000E*02 & 0,00000E+00 & 1 & Fix & \(0.0000 \mathrm{E}+00\) \\
\hline 2 & & 33 & \(0.16000 \mathrm{E}+02\) & \(0.00000 E+00\) & 1 & \(F!x\) & \(0.0000 \mathrm{~F}+00\) \\
\hline 3 & & 33 & \(0.16000 \mathrm{E}+02\) & \(0.00000 \mathrm{E}+00\) & 1 & Fix & \(0.0000 \mathrm{E}+00\) \\
\hline 4 & & 33 & \(0.16000 \mathrm{E}+02\) & \(0.00000 E+00\) & 1 & FIX & \(0.0000 E+00\) \\
\hline \(b\) & & 33 & \(0.16000 E+02\) & \(0,00000 E+00\) & 1 & Fix & \(0.0000 E+00\) \\
\hline 6 & & 33 & \(0.16000 E+02\) & 0.00000E +00 & 1 & FIX & \(0.0000 \mathrm{E}+00\) \\
\hline
\end{tabular}

\begin{tabular}{ccccc} 
PILE NO & 1 & RRI & XXI & XX2 \\
PILE NO & 2 & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\) \\
PILE NO & 3 & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\) \\
PILE NO & 4 & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\) \\
PILE NO & 5 & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\) \\
PILE NO & 6 & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\) \\
& & \(0.43740 E+11\) & \(0.00000 E+00\) & \(0.52800 E+03\)
\end{tabular}
axial load settlement data
\begin{tabular}{|c|c|c|c|}
\hline IDENTIFIER & 1 & \[
\begin{gathered}
222 \\
-.10000 \mathrm{E}+02 \\
\cdots .50000 \mathrm{E}+00 \\
0.00000 \mathrm{E}+00
\end{gathered}
\] & \[
\begin{aligned}
& \text { SSS } \\
& -.60000 \mathrm{E}+06 \\
& -.60000 \mathrm{E}+06 \\
& 0.00000 \mathrm{E}+00
\end{aligned}
\] \\
\hline & & Continu & \\
\hline
\end{tabular}
(Sheet 1 of 10)
```

0.50000E+00 0.65000E+06
0.10000E+02 0.65000E+06

```

INPUT OF SOIL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOIL PROFILE & E NO. & 1 & STRATUM NO. & 1 TYPESO & \\
\hline \[
\begin{aligned}
& \text { GAMMA } \\
& 0.5000 E-01
\end{aligned}
\] & \[
\begin{array}{r}
\text { ANGLE } \\
0 .
\end{array}
\] & OF FRIC.
\[
6000 E+00
\] & \[
\begin{aligned}
& \text { TOP DEPTH } \\
& 0.0000 E-00
\end{aligned}
\] & \[
\begin{aligned}
& \text { BOTTEM DEPTH } \\
& 0.1560 E * 03
\end{aligned}
\] & DENSITY DENSE \\
\hline SOIL PROFILE & E NO. & 1 & STRATUM NO, & 2 TYPE SOI & \\
\hline gamma
\[
0.1700 \mathrm{E}-01
\] & 0.1 & OHESION
\(400 \mathrm{C}+02\) & \[
\begin{gathered}
\text { TOP DEPTH } \\
0.1560 E+O J
\end{gathered}
\] & \[
\begin{aligned}
& \text { BOTTEM } \\
& 0.5280 E+03
\end{aligned}
\] & CONSISTENCY If \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DIAMETER & DISTRIEUTION & FOR PILE \\
\hline \[
\begin{aligned}
& \text { DIAMETER } \\
& 0.18 \cup 0 E+02
\end{aligned}
\] & \[
\begin{aligned}
& 10901 S \\
& 0,0000 E+00,
\end{aligned}
\] & \[
\begin{aligned}
& 80 \mathrm{Y} D \mathrm{~S} \\
& 0.5280 \mathrm{E}+03
\end{aligned}
\] \\
\hline
\end{tabular}

1
SET IDENTIFIER NO. 1 number of Curves in set 10
```

CuRVE NO, 1 DEPTH TO CURVE 0.0000E@00
SOIL REACTION
DEFLECTION
0.0000E+00
U.00UOE+00 C.1000E+01
O.0000E+00 O.1800E+03
CURVE NO. 2 DEPTH TO CURVE 0.1200E*02
SOIL REACTION
O.00V0E+00
0.3363E+02
0.3363E+02
DEFLECTION
0.0000E*OO
0.8409E-01
0.1800E+03
CURVE NO, 3 DEPTH TO CURVE 0.2400E*02
SOIL REACTION DEFLECTION

```
(Continued)

\section*{Table 84 (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline  & &  & \\
\hline CURVE NO. \({ }^{-}\) & DEPTH & TO CURVE \(0,4800 \mathrm{E}+02\) & \\
\hline \[
\begin{aligned}
& \text { SOIL REACYION } \\
& \text { U.000OE } \\
& 0.28 \cup 3 E+03 \\
& 0.2803 E+03
\end{aligned}
\] & & \[
\begin{aligned}
& \text { DEFLECT10N } \\
& 0.0000 \mathrm{E}+00 \\
& 3.1752 \mathrm{E}+00 \\
& 0.1800 \mathrm{E}+0.3
\end{aligned}
\] & \\
\hline Curve no, 5 & DEPTH & TO CURVE \(0.9600 E+02\) & \\
\hline \[
\begin{aligned}
& \text { Soll REACTION } \\
& 0.0000 \mathrm{E}+00 \\
& 0.9494 \mathrm{E}+03 \\
& 0.9494 \mathrm{E}+03
\end{aligned}
\] & & \[
\begin{aligned}
& \text { DEFLECTION } \\
& 0.0000 \mathrm{E}+00 \\
& 0.2967 \mathrm{E}+00 \\
& 0.1800 \mathrm{E}+03
\end{aligned}
\] & .2\% \\
\hline \begin{tabular}{l}
CuRve No. \\
SOIL REACTION
\[
\begin{aligned}
& 0.0000 E+00 \\
& 0.2007 E+04 \\
& 0.2007 E+04
\end{aligned}
\]
\end{tabular} & DEPTH & TO. CURVE \(0.1440 E+03\)
\[
\begin{aligned}
& \text { DEFLEECIION } \\
& 0.0000 E+00 \\
& 0.4182 E+00 \\
& 0.1800 E+03
\end{aligned}
\] & '. \\
\hline CURVE NO. 7 & DEPYH & TO CURVE \(0.2280 E+03\) & \\
\hline SOIL REACTION
\[
\begin{aligned}
& 0.0000 \mathrm{E}+00 \\
& 0.8766 \mathrm{E}+03 \\
& 0.1239 \mathrm{E}+04 \\
& 0.1518 \mathrm{E}+04 \\
& 0.1753 \mathrm{E}+04 \\
& 0.1960 \mathrm{E}+04 \\
& 0.2147 \mathrm{E}+04 \\
& 0.2319 \mathrm{E}+04 \\
& 0.2479 \mathrm{E}+04 \\
& 0.2630 \mathrm{E}+04 \\
& 0.2772 \mathrm{E}+04 \\
& 0.2772 \mathrm{E}+04
\end{aligned}
\] & & DEFLECTION
\[
\begin{aligned}
& 0.0000 \mathrm{E}+00 \\
& 0.3600 \mathrm{E}-01 \\
& 0.7200 \mathrm{E}-01 \\
& 0.1080 \mathrm{E}+00 \\
& 0.1440 \mathrm{E}+00 \\
& 0.1800 \mathrm{E}+00 \\
& 0.2160 \mathrm{E}+00 \\
& 0.2520 \mathrm{E}+00 \\
& 0.2880 \mathrm{E}+00 \\
& 0.3240 \mathrm{E}+00 \\
& 0.3600 \mathrm{E}+00 \\
& 0.1800 \mathrm{E}+03
\end{aligned}
\] & \\
\hline Curve no. 8 & DEPYH & TO CURVE \(0,2290 E * 03\) & \\
\hline SOIL REACTION
\[
\begin{aligned}
& 0.0000 E+00 \\
& 0.8766 E+03 \\
& 0.1239 E+04 \\
& 0.1518 E+04 \\
& 0.1753 E+04
\end{aligned}
\] & & \[
\begin{aligned}
& \text { DEFLECTION } \\
& 0.0000 E+00 \\
& 0.3600 E-01 \\
& 0.7200 E-01 \\
& 0.1080 E+00 \\
& 0.1440 E+00
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Table E4 (Continued)}

(Continued)
(Sheet 4 of 10)
\(0.1512 \mathrm{E}+00 \quad 0.3310 \mathrm{E}-01 \quad 0.4185 \mathrm{E}-03\)

1EX 2 HOUSTON SHIP CHANNEL BRIDGE,HARRIS CO. HHIGHWAY I-610

\begin{tabular}{cccccc} 
TC & TOP DIA.IN & INC. LENGTH,IN NO, OF & INC KS KA \\
FIX & \(0.1800 E+02\) & \(0.1600 E+02\) & 33 & 1
\end{tabular}

PILE LENGTH,IN DEPTH TO SOIL ITERATION TOL.BO UNDRY GONB. 2
\(0.5280 E+03 \quad 0.0000 E+00 \quad 0.1000 E=02 \quad 0.0000 E+00\)

OUTPUT INFORMATION

MOMENT:IN-iB
ES.LB/
IN
\(0.00000 E+00\)
\(-21188 E+02\)
\(-.35136 E+02\)
\(-.42352 E+02\)
\(-.43815 E+02\)
\(-40810 E+02\)
\(-34750 E+02\)
\(-.27012 E+02\)
\(-18818 E+02\)
\(-.11144 E+02\)
\(-.74842 E+01\)
\(0.35809 E+00\)
\(0.83058 \mathrm{E}+01\)
\(0.14064 E+02\)
\(0.26835 E+02\)
\(0.15117 E+02\)
\(0.11721 E+02\)
\(0.82584 E+01\)
\(0.52445 E+01\)
\(0.28930 E+01\)
\(0.12256 E+01\)
\(0.15848 \mathrm{E}+00\)
\(-.43773 E+00\)
\(-.69824 E+00\)
\(-.74254 E+00\)
\(-.66479 E+00\)
\(-53212 E+00\)
\(-38747 E+00\)
\(-.25436 E+00\)
\(-.14214 E+00\)
\begin{tabular}{lllll}
\(U .48000 E+03\) & \(0.20906 E-05\) & \(0.11132 E+03\) & \(0.24350 E+05\) & \(-.50904 E-01\) \\
\(0.49600 E+03\) & \(-.10047 E-05\) & \(0.62309 E+02\) & \(0.24350 E+05\) & \(0.24465 E-01\) \\
\(0.51200 E+03\) & \(-.37353 E-05\) & \(0.19518 E+02\) & \(0.24350 E+05\) & \(0.90954 E-01\) \\
\(0.52800 E+03\) & \(-.63517 E-05\) & \(0.15323 E+04\) & \(0.24350 E+05\) & \(0.15466 E+00\)
\end{tabular}

IEX 2 HOUSTON SHIP CHANNEL BRIDGE,HARRIS CO. HIGHWAY I-610
\begin{tabular}{|c|c|c|c|}
\hline \[
\text { PILE } N \text { NUM }
\] & \[
\begin{gathered}
0!S T A, 1 N \\
-90000 E+02
\end{gathered}
\] & \[
\begin{aligned}
& \text { DISY日.IN } \\
& 0.00000=00
\end{aligned}
\] & \[
\begin{aligned}
& \text { THE TA, RAD } \\
& -.83000 \mathrm{EmO}
\end{aligned}
\] \\
\hline Px,t. 8 & XT,IN & Pr.L日 & M T.IN-LB YT,IN \\
\hline 0.14357E+06 & 0.11043E+00 & 0.24860E404 & 0.33676E+04 0.42397E-01 \\
\hline INPUT INFOR & ATION & & \\
\hline
\end{tabular}
\begin{tabular}{cccccc} 
TC TOP DIA.IN & INC, LENGTM,IN NO, OF & INC & KS KA \\
FiX & \(0.1800 E+02\) & \(0.1600 E+02\) & 33 & 1 & 1
\end{tabular}

PILE LENGTH,IN DEPTH TO SOIL ITERATION TOL.BO . = UNDRY "COND, 2
\[
0.5280 E+03 \quad 0.0000 E+00 \quad 0.1000 E-02 \quad 0.0000 E+00
\]

OUTPUT INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline MOMENT, IN-LE & ES.L.8/ & IN P & LB/IN \\
\hline \(0.29538 \mathrm{E}+03\) & \(0.00000 \mathrm{E}-00\) & \(0.000006+00\) & \\
\hline \(0.11033 E+05\) & \(0.53333 E\) - 03 & -. \(18766 E+02\) & \\
\hline \(0.76932 \mathrm{E}+05\) & \(0.10666 E+04\) & -. \(30648 \mathrm{C}+02\) & \\
\hline \(0.10492 \mathrm{E}+06\) & \(0.16000 E+04\) & \(\cdots\)-.36366E*02 & \\
\hline 0.12351E+06 & \(0.21333 E+04\) & *.36989E+02 & \\
\hline \(0.13253 E+06\) & \(0.26667 E+04\) & \(-33791 E+02\) & \\
\hline 0.13278E+06 & \(0.32000 E+04\) & -. \(28097 \mathrm{E}+02\) & \\
\hline 0.12574E+06 & \(0,37333 E+04\) & -. \(21154 \mathrm{E}+02\) & \\
\hline \(0.11316 E+06\) & \(0.42667 E+04\) & -14029E*02 & \\
\hline \(0.96910 E+05\) & \(0.48000 E+04\) & -.75460E+01 & \\
\hline \(0.78640 \mathrm{E}+05\) & \(0.85237 E+04\) & -.36085E+01 & \\
\hline \(0.59381 E+05\) & \(0.12247 \mathrm{E}+05\) & \(0.32471 E+01\) & \\
\hline \(0.40903 E+05\) & \(0.15971 E+05\) & \(0.96793 E+01\) & \\
\hline 0.24869E+05 & \(0.19695 E+05\) & \(0.13936 E+02\) & \\
\hline 0.12380E*05 & \(0.23419 \mathrm{E}+05\) & 0.15540E + 02 & \\
\hline \(0.38604 E+04\) & \(0.24350 E+05\) & \(0.13321 E+02\) & \\
\hline - \(-12528 E+04\) & \(0.24350 E+05\) & \(0.99346 E+01\) & \\
\hline -. \(38217 E+04\) & \(0,24350 E+05\) & \(0.67268 E+01\) & \\
\hline -. \(46653 E+04\) & \(0.24350 E+05\) & \(0.40635 E+01\) & \\
\hline -. \(44648 \mathrm{E}+04\) & \(0.24350 E+05\) & 0.20651E+01 & \\
\hline -. \(37319 E+04\) & O. \(24350 \mathrm{E}+05\) & 0.70307E400 & \\
\hline -. \(28158 \mathrm{E}+04\) & \(0.24350 E+05\) & -. 12717E+00 & \\
\hline -.19299E+04 & \(0.24350 E+05\) & -. 55613E+00 & \\
\hline \(\cdots .11847 E+04\) & \(0.24350 E+05\) & -. \(71005 \mathrm{E}+00\) & \\
\hline -. \(62040 E+03\) & \(0.24350 E+05\) & -.69513E+00 & \\
\hline -. \(23347 E+03\) & \(0.24350 E+05\) & -. \(59179 \mathrm{E}+00\) & \\
\hline \(0.21639 E+01\) & \(0.24350 E+05\) & -. \(45519 E+00\) & \\
\hline \(0.12126 E+03\) & \(0.24350 E+05\) & -. \(31889 \mathrm{E}+00\) & \\
\hline \(0.15863 E+03\) & \(0.24350 E+05\) & \(\cdots .19987 E+00\) & \\
\hline
\end{tabular}

\section*{Table E4 (Continued)}
\begin{tabular}{llllll}
\(0.48400 E+03\) & \(0.42489 E-05\) & \(0.14469 E+03\) & \(0.24350 E+05\) & \(-.10345 E+00\) \\
\(0.48000 E+03\) & \(0.11362 E-05\) & \(0.10414 E+03\) & \(0.24350 E+05\) & \(-.27668 E-01\) \\
\(0.49600 E+03\) & \(-.13668 E-05\) & \(0.56434 E+02\) & \(0.24350 E+05\) & \(0.33280 E-01\) \\
\(0.51200 E+03\) & \(-.35395 E-05\) & \(0.17193 E+02\) & \(0.24350 E+05\) & \(0.86186 E-01\) \\
\(0.52800 E+03\) & \(-.56116 E-05\) & \(0.13128 E+04\) & \(0.24350 E+05\) & \(0.13664 E+00\)
\end{tabular}

IEX 2 HOUSTON SHIP CHANNEL BRIDGE,HARRIS CO.,HIGHWAY I-610

\begin{tabular}{ccccc} 
TC TOP DIA.IN INC, LENGTHIINNO. OF & INC KS KA \\
FIX O.180OE O O & \(0.1600 E+O 2\) & 33 & \(1:=\) \\
PILE LENGTH, IN DEPTH TO SOIL ITERATIONTOL.BO & UNDRY COND. 2
\end{tabular}
\(0.5280 E+03 \quad 0.0000 E+00 \quad 0.1000 E=02 \quad 0.0000 E+00\)

OUTPUT INF ORMATION
\(X, I N\)
\(0.00000 E+00\)
\(0.16000 \mathrm{E}+02\)
\(0.32000 \mathrm{E}+02\)
\(0.48000 \mathrm{E}+02\)
\(0.64000 \mathrm{E}+02\)
\(0.80000 \mathrm{E}+02\)
\(0.96000 \mathrm{E}+02\)
\(0.11200 \mathrm{E}+03\)
\(0.12800 \mathrm{E}+03\)
\(0.14400 \mathrm{E}+03\)
\(0.16000 \mathrm{E}+03\)
\(0.17600 \mathrm{E}+03\)
\(0.19200 \mathrm{E}+03\)
\(0.20800 \mathrm{E}+03\)
\(0.22400 \mathrm{E}+03\)
\(0.24000 \mathrm{E}+03\)
\(0.25600 \mathrm{E}+03\)
\(0.27200 \mathrm{E}+03\)
\(0.28800 \mathrm{E}+03\)
\(0.30400 \mathrm{E}+03\)
\(0.32000 \mathrm{E}+03\)
\(0.33600 \mathrm{E}+03\)
\(0.35200 \mathrm{E}+03\)
\(0.36800 \mathrm{E}+03\)
\(0.38400 \mathrm{E}+03\)
\(0.40000 \mathrm{E}+03\)
\(0.41600 \mathrm{E}+03\)
\(0.43200 \mathrm{E}+03\)

\begin{tabular}{l} 
MOMENT.IN-L8 \\
\(0.31607 E+05\) \\
\(0.64343 E+05\) \\
\(0.92634 E+05\) \\
\(0.11377 E+06\) \\
\(0.12653 E+06\) \\
\(0.13089 E+06\) \\
\(0.12770 E+06\) \\
\(0.11835 E+06\) \\
\(0.10450 E+06\) \\
\(0.87796 E+05\) \\
\(0.69698 E+05\) \\
\(0.51286 E+05\) \\
\(0.34163 E+05\) \\
\(0.19724 E+05\) \\
\(0.88114 E+04\) \\
\(0.16399 E+04\) \\
\(-.24394 E+04\) \\
\(-.42877 E+04\) \\
\(-.46795 E+04\) \\
\(-.42345 E+04\) \\
\(-.34026 E+04\) \\
\hline \(.24794 E+04\) \\
\(-.16367 E+04\) \\
\(-.95569 E+03\) \\
\(\sim .457 .59 E+03\) \\
\hline \(.12864 E+03\) \\
\(0.61805 E+02\) \\
\(0.14923 E+03\)
\end{tabular}

\section*{Table E4 (Continued)}

\begin{tabular}{ccccc} 
TC TOP DIA.IN INC. LENGTH.IN NO. OF & INC KS KA \\
FIX O.1800E+O2 & \(0,1600 E+02\) & 33 & 1 \\
OILE LENGTH,IN DEPTH TO SOIL ITERATION TOL.BO & UNDRFE COND. 2
\end{tabular}
\(0.5280 E+03 \quad 0.0000 \mathrm{E}+00 \quad 0.1000 \mathrm{E}=02 \quad 0.0000 \mathrm{E}\)-00
\begin{tabular}{|c|c|}
\hline \(x, 1 \mathrm{~N}\) & Y, IN \\
\hline 0.00000E+00 & \\
\hline \(0.16000 \mathrm{E}+02\) & 0.23152E-01 \\
\hline 0.32000E+02 & 0,17581E-01 \\
\hline \(0.48000 \mathrm{E}+02\) & 0.12816E-01 \\
\hline U.64000E +02 & 0.88653E-02 \\
\hline 0.80000E+02 & 0.57050E-02 \\
\hline \(0.96000 E+02\) & 0.32824E-02 \\
\hline \(0.11200 E+03\) & 0 \\
\hline \(0.12800 \mathrm{E}+03\) & 0.32697E-0 \\
\hline \(0.14400 E+03\) & -.40142E-03 \\
\hline \(0.160010 E+03\) & -.76948E-03 \\
\hline 0.1760 UE+03 & -.87984E-03 \\
\hline \(0.19200 E+03\) & \(82564 \mathrm{E}-\) \\
\hline 20800E+03 & -. \(684 \mathrm{fj}^{\mathrm{j}}\) \\
\hline 0.22400E-03 & -. 51272E-03 \\
\hline \(0.24000 E+03\) & -.34895E-03 \\
\hline 0,25600E+03 & -.21218E-03 \\
\hline 0.2720nE+03 & -.10904E-03 \\
\hline \(0.28800 \mathrm{E}+03\) & -.384C4E-04 \\
\hline \(0.30400 E+03\) & 0.49050E-05 \\
\hline \(0.32000 E+03\) & 0.27482E-04 \\
\hline \(0.33600 E+03\) & 0.35775E-04 \\
\hline \(0.35200 E+03\) & 0.35243E-04 \\
\hline \(0.36800 E+03\) & 0.30053E-04 \\
\hline U.38400E* 03 & 0.23094E-04 \\
\hline U.40000E+03 & 0.16158E-04 \\
\hline \(0.41600 E+03\) & 0.10195E-04 \\
\hline U. \(43200 E+03\) & 0.55659 E-05 \\
\hline 0:44800E+03 & 0:22555E-05 \\
\hline \(0.46400 E+03\) & 0.45585E-07 \\
\hline
\end{tabular}

\section*{OUYPUT INFORMATION \\ OUPPUT INFORMATION}

1Ex. 2
pile lengithin depth to soil iteration tol.bo
\(0.0000 E * 00\)
\begin{tabular}{|c|c|c|}
\hline MOMENT, IN-LB & ES.LB/ & IN P \\
\hline \(0.12162 E+06\) & 0.00000E-00 & 0.00000E+00 \\
\hline \(0.13132 \mathrm{E}+06\) & 0.53333E403 & -.12347E402 \\
\hline 0.13769E+06 & \(0.10666 \mathrm{E}+04\) & -. \(18753 \mathrm{E}+02\) \\
\hline \(0.13909 E+06\) & 0.16000E+04 & -. \(20506 \mathrm{E}+02\) \\
\hline \(0.13507 E+06\) & \(0.21333 E+04\) & -. 18913E+02 \\
\hline \(0.12603 E+06\) & \(0.26667 E+04\) & \(-.15213 E+02\) \\
\hline \(0.11293 E+06\) & 0.32000E+04 & -. \(10503 E+02\) \\
\hline 0.97017E+05 & 0.37333E-04 & -.56776E+01 \\
\hline \(0.79521 E+05\) & 0.42667E+04 & \(-.13951 E+01\) \\
\hline \(0.61567 E+05\) & \(0.48000 E+04\) & \(0.19268 \mathrm{E}+01\) \\
\hline 0.44030E +05 & 0.85237E+04 & \(0.65586 \mathrm{E}+01\) \\
\hline \(0.28116 E+05\) & 0.12247E+05 & \(0.10775 E+02\) \\
\hline \(0.14926 E+05\) & 0.15971E+05 & \(0.13186 \mathrm{E}+02\) \\
\hline \(0.50928 E+04\) & 0.19695E+05 & 0.13473E+02 \\
\hline -.12979E+04 & 0.23419E+05 & 0.12007E+02 \\
\hline -. \(46131 E+04\) & 0.24350E+05 & 0.84967E+01 \\
\hline -. \(57473 \mathrm{E}+04\) & 0.2435 OE-05 & \(0.51664 E+01\) \\
\hline -. \(55518 E+04\) & \(0.24350 E+05\) & \(0.26551 E+01\) \\
\hline -. \(.46696 E+04\) & 0.24350E*05 & \(0.93512 E+00\) \\
\hline -. \(35421 E+04\) & 0.24350E+05 & -.11943E+00 \\
\hline -. \(24408 \mathrm{E}+04\) & 0.24350E*05 & -. \(66919 \mathrm{E}+00\) \\
\hline -. 15077E +04 & 0,24350E+05 & -.87110E+00 \\
\hline -. \(79571 \mathrm{E}+03\) & 0.24350E*05 & -. \(85814 \mathrm{E}+00\) \\
\hline -. 30241E+03 & \(0.24350 E+05\) & -. \(73176 \mathrm{E}+00\) \\
\hline \(0.39369 E+01\) & 0,24350E+05 & -. \(56233 \mathrm{E}+00\) \\
\hline 0.16632E+03 & \(0.24350 E+05\) & . \(.39344 E+00\) \\
\hline \(0.22777 E 403\) & 0.24350E+05 & -. \(24825 \mathrm{E}+00\) \\
\hline \(0.2253 \mathrm{gE}+03\) & \(0.24350 E+05\) & -. \(13553 \mathrm{E}+00\) \\
\hline \(0: 18803 E+03\) & 0.24350E+05 & -.54921E-01 \\
\hline \(0.13637 E+03\) & \(0.24350 E+05\) & -.11009E-02 \\
\hline
\end{tabular}
(Continued)
(Sheet 8 of 10 )
\begin{tabular}{llllll}
\(0.48000 E+03\) & \(-.13662 E-05\) & \(0.84251 E+02\) & \(0.24350 E+05\) & \(0.33267 E-01\) \\
\(0.49600 E+03\) & \(-.22849 E-05\) & \(0.40547 E+02\) & \(0.24350 E+05\) & \(0.55637 E-01\) \\
\(0.51200 E+03\) & \(-.29663 E-05\) & \(0.11035 E+02\) & \(0.24350 E+05\) & \(0.72228 E-01\) \\
\(0.52800 E+03\) & \(-.35831 E-05\) & \(0.71760 E+03\) & \(0.24350 E+05\) & \(0.87247 E-01\)
\end{tabular}

IEX 2 HOUSTON SHIP CHANNEL BRIDGE,HARRIS CO. HIGHWAY I-610

\begin{tabular}{cccccc} 
TC TOPDIA.IN & INC, LENGTHIIN NO, OF & INC & KS KA \\
FIX & \(0.1800 E+02\) & \(0.1600 E+02\) & 33 & 1 & 1
\end{tabular}

PILE LENGTH,IN DEPTH TO SOIL ITERATION TOL.BO UNDRY COND. 2
\(0.5280 E+03 \quad 0.0000 E+00 \quad 0.1000 \mathrm{E}-02 \quad 0.0000 \mathrm{E}+0 \mathrm{O}^{2} \quad\)

\section*{OUTPUT INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(x, 1 N\) & Y,IN & MOMENT, IN-LB & ES.LB/ & IN P & LB/IN \\
\hline O.00000E +00 & 0.26722E-01 & \(0.14859 E+06\) & \(0,00000 E+00\) & 0.00000E+00 & \\
\hline 0.16, \({ }^{1} 000 \mathrm{E}+02\) & 0.20462E-01 & \(0.15143 E+06\) & \(0.53333 E+03\) & -. 10912E+02 & \\
\hline 0,32000E +02 & 0.15087E-01 & 0.15127E+06 & \(0.10666 E+04\) & \(-.16093 E+02\) & \\
\hline 0.48 COOE +02 & 0.10598E-01 & \(0.14676 E+06\) & \(0.16000 E+04\) & - \(-16958 \mathrm{E}+02\) & \\
\hline \(0.64000 \mathrm{E}+02\) & 0.69687E-02 & 0.13770E+06 & 0,21333E+04 & -.14867E+02 & \\
\hline 0.60000E+02 & 0.41448E-02 & \(0.12463 E+06\) & 0,26667E+04 & -. \(11052 \mathrm{E}+02\) & \\
\hline \(0.96000 E+02\) & 0.20503E-02 & \(0.10855 E+06\) & \(0.32000 E+04\) & -. \(65609 E+01\) & \\
\hline \(0.11200 \mathrm{E}+03\) & 0.59111E-03 & \(0.90638 E+05\) & 0.37333E+04 & -. \(22068 \mathrm{E}+01\) & \\
\hline \(0.12800 \mathrm{E}+03\) & -.33759E-03 & \(0.72026 E+05\) & \(0.42667 E+04\) & \(0.14404 \mathrm{E}+01\) & \\
\hline \(0.14400 \mathrm{E}+03\) & -.84474E-03 & \(0.53678 E+05\) & \(0.48000 E+04\) & \(0.40547 \mathrm{E}+01\) & \\
\hline U.16000E+03 & -.10377E-02 & \(0.36291 E+05\) & 0.85237E+04 & \(0.88452 \mathrm{E}+01\) & \\
\hline \(0.17600 E+03\) & -.10183E-02 & \(0.21115 E+05\) & \(0.12247 E+05\) & \(0.12471 E+02\) & \\
\hline U.19200E+03 & -. \(87530 \mathrm{E}-03\) & \(0.91007 E+04\) & 0.15971E+05 & 0.13980E+02 & \\
\hline \(0.20800 E+03\) & -. \(67904 \mathrm{E}-03\) & \(0.65234 E+03\) & \(0.19695 E+05\) & \(0.13374 E+02\) & \\
\hline \(0.22400 \mathrm{E}+03\) & -.47895E-03 & -. \(43734 E+04\) & \(0.23419 E+05\) & \(0.11216 \mathrm{E}+02\) & \\
\hline \(0.24000 E+03\) & -. \(30447 \mathrm{E}-03\) & -. \(65214 E+04\) & \(0.24350 \mathrm{E}+05\) & \(0.74137 \mathrm{E}+01\) & \\
\hline \(0.25600 E+03\) & -.16815E-03 & -. \(67620 E+04\) & 0,24350E+05 & \(0.40944 E+01\) & \\
\hline U.27200E+03 & -.71410E-04 & -. \(59446 E+04\) & \(0,24350 E+05\) & 0.17388E+01 & \\
\hline U,28800E+03 & -.94612E-05 & \(-.46734 E+04\) & \(0.24350 E+05\) & \(0.23038 \mathrm{E}+00\) & \\
\hline \(0.30400 E+03\) & 0.25135E-04 & \(-.33365 E+04\) & 0,24350E+05 & -. \(61203 E+00\) & \\
\hline U.32000E+03 & 0.40204E-04 & -. \(21514 E+04\) & 0.24350E+05 & -. \(-97895 \mathrm{E}+00\) & \\
\hline \(0.33600 E+03\) & 0.42682E-04 & -. 12137E+04 & \(0.24350 E+05\) & -.10392E+01 & \\
\hline \(0.35200 E+03\) & 0.38055E-04 & -. \(54043 E+03\) & 0.24350E+05 & -. \(92663 \mathrm{E}+00\) & \\
\hline \(0.36800 \mathrm{E}+03\) & 0,30266E-04 & \(-.10353 E+03\) & 0.24350E+05 & -. \(73696 \mathrm{E}+00\) & \\
\hline \(0,38400 \mathrm{E}+03\) & 0.21870E-04 & \(0.14485 E+03\) & 0,24350E+05 & \(-.53253 E+00\) & \\
\hline \(0.40000 E+03\) & \(0.14323 E-04\) & \(0.25669 \mathrm{E}+03\) & \(0.24350 E+05\) & -. \(34875 \mathrm{E}+00\) & \\
\hline \(0.41600 \mathrm{E}+03\) & 0.82775E-05 & \(0.27888 E+03\) & \(0.24350 \mathrm{E}+05\) & -. \(20155 \mathrm{E}+00\) & \\
\hline \(0,43200 \mathrm{E}+03\) & 0,38645E-05 & \(0.24907 E+03\) & 0.24350E* 05 & -.94098E-01 & \\
\hline \(0.44800 E+03\) & 0.90918E-06 & 0.19481E+03 & \(0.24350 E+05\) & -. 22138E-01 & \\
\hline \(0.46400 E+03\) & -.90596E-06 & \(0.13459 \mathrm{E}+03\) & 0.24350E+05 & 0.22060E-01 & \\
\hline \(0.48000 E+03\) & \(\sim .19334 E-05\) & \(0.79830 \mathrm{E}+02\) & \(0.24350 E+05\) & 0.47076E-01 & \\
\hline 0,49600E+03 & -. 24935E-05 & \(0.37003 E+02\) & \(0.24350 E+05\) & 0.60716E-01 & \\
\hline & & (Continued) & & & \\
\hline
\end{tabular}
(Sheet 9 of 10 )

\author{
Table E4 (Concluded)
}
\[
\begin{array}{llllll}
0.21200 E+03 & -.28371 E-05 & 0.96659 E+01 & 0.24350 E+05 & 0.68083 E-01 \\
0.52800 E+03 & \cdots .32242 E-05 & 0.58283 E+03 & 0.24350 E+05 & 0.76072 E-01
\end{array}
\]

IEX 2 HOUSTON SHIP CHANNEL BRIDGE,HARRIS CO. HIGHWAY I-6IO
\begin{tabular}{|c|c|c|c|}
\hline \[
P \underset{6}{\text { PlLE }} \text { NUM }
\] & \[
\begin{gathered}
\text { DISTA.IN } \\
0.15000 E+03
\end{gathered}
\] & \[
\begin{gathered}
\text { DISTR,IN } \\
0.00000 \mathrm{E} \leftrightarrow 00
\end{gathered}
\] & \[
\begin{gathered}
\text { THE } \\
0.16600 E+00
\end{gathered}
\] \\
\hline PX,LB & XT, IN & PT.LB & M Y,IN-LQ YY,IN \\
\hline 0.28149E+06 & \(0.21653 E+00\) & 0.11586E-01 & \(\bullet .15874 \mathrm{E}\)-05-, 27207E-02 \\
\hline INPUT INFORM & TION & & \\
\hline
\end{tabular}

TC TOP DIA,IN INC. LENGTH,INNO. OF INC, KS KA
\(F i x \quad 0.1800 E+02 \quad 0.1600 E+02 \quad 33 \quad 1\)
PILE LENGTH.IN DEPTH TO SOIL ITERATION TOL. 80 UNDRY COND. 2
\(0.5280 E+03 \quad 0.0000 \mathrm{E}+00 \quad 0.1000 \mathrm{E}-02 \quad 0.000 \mathrm{E} \quad 00^{\circ}\)

OUTPUT INFORMATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(X .1 N\) & \(\boldsymbol{Y}\) I \(1 N\) & MOMENT, IN-L8 & ES.LE/ & 1 N & 6B/IN \\
\hline & & & & & \\
\hline U. \(00000 E+00\) & \(0.26238 \mathrm{E}-01\) & \(0.15307 E+06\) & \(0,18626 E-08\) & -.48872E-10 & \\
\hline \(0.16000 E+02\) & 0.19991E-01 & \(0.15483 E+06\) & \(0.53333 E+03\) & -. 10661E+02 & \\
\hline U.32000E+02 & \(0.14649 \mathrm{E}-01\) & \(0.15361 E+06\) & \(0.10666 E+04\) & - \(15626 E+02\) & \\
\hline U.48000E+02 & 0.10207E-01. & \(0.14813 E+06\) & \(0.16000 E+04\) & -. \(16332 E+02\) & \\
\hline 0.64000E+02 & 0.66322E-02 & \(0.13822 E+06\) & \(0.21333 \mathrm{E}+04\) & \(\cdots .14149 \mathrm{*}+02\) & \\
\hline U. \(80000 \mathrm{E}+02\) & 0.38661E-02 & \(0.12447 \mathrm{E}+06\) & \(0.26667 E+04\) & - \(10309 \mathrm{E}+02\) & \\
\hline \(0.96000 E+02\) & 0.18285E-02 & 0.10787E+06 & 0.32000E+04 & -. 56512E+01 & \\
\hline \(0.11200 \varepsilon+03\) & 0.42222E-03 & \(0.89598 E * 05\) & \(0.37333 E+04\) & \(\cdots .15763 E+01\) & \\
\hline \(0.12800 E+03\) & -.45967E-03 & \(0.70773 E+05\) & \(0.42667 E+04\) & \(0.19613 E+01\) & \\
\hline \(0.244000^{+03}\) & -.92734E-03 & \(0.52333 E+05\) & 0.48000E+04 & \(0.44512 E+01\) & \\
\hline \(0.16000 E+03\) & -.10887E-02 & \(0.34947 E+05\) & \(0.85237 E+04\) & \(0.92799 E+01\) & \\
\hline \(0.17600 E+03\) & -. 10455E-02 & 0.19879E*05 & \(0.12247 E+05\) & \(0.12805 E+02\) & \\
\hline 0.19200E+03 & -. \(88605 E-03\) & \(0.80564 E+04\) & 0,15971E*05 & \(0.14151 E+02\) & \\
\hline U. \(208005+03\) & -.67939E-03 & -.15682E+03 & \(0.19695 E+05\) & \(0.13300 E+02\) & \\
\hline \(0.22400 E+03\) & -. 47365E-03 & m. \(49444 E+04\) & \(0.23419 E+05\) & \(0.11092 \mathrm{E}+02\) & \\
\hline \(0.24600 E+03\) & -. \(29684 E-03\) & -. \(68842 \mathrm{E}+04\) & \(0.24350 E+05\) & \(0.72279 \mathrm{E}+01\) & \\
\hline \(0.25600 E+03\) & -. 16033E-03 & \(-.69623 E+04\) & \(0.24350 E+05\) & \(0.39039 E+01\) & \\
\hline \(0.27200 E+03\) & -. \(64564 \mathrm{E}-04\) & \(-.60296 E+04\) & \(0.24350 \mathrm{E}+05\) & \(0.15721 E+01\) & \\
\hline U.288U0E+03 & -. \(40895 E-05\) & -. \(46844 \mathrm{E}+04\) & 0.24350E*05 & 0.99576E-01 & \\
\hline \(0.30400 E+03\) & 0.28968E-04 & -. \(33061 E+04\) & 0.24350E+05 & -. \(70536 E+00\) & \\
\hline \(0.32000 \mathrm{E}+03\) & 0.42676E-04 & -. \(21028 E+04\) & \(0.24350 E+05\) & - \(10391 E+01\) & \\
\hline \(0.33600 E+03\) & 0.44077E-04 & -. 11621E*04 & 0.24350E+05 & - \(10732 \mathrm{E}+01\) & \\
\hline U.35200E+03 & 0.38676E-04 & - . \(49435 \mathrm{E}+03\) & \(0.24350 E+05\) & -.94174E+00 & \\
\hline \(0.36800 E+03\) & 0.30381E-04 & -. 66799E+02 & \(0.24350 E+05\) & \(-.73977 E+00\) & \\
\hline \(0.38400 E+03\) & 0.21696E-04 & \(0.17148 E+03\) & 0.24350E*05 & \(-.52828 E+00\) & \\
\hline \(0.40000 E+03\) & \(0.14014 \mathrm{E}-04\) & \(0.27424 E+03\) & \(0.24350 E+05\) & -.34123E+00 & \\
\hline \(0.41600 E+03\) & 0,79372E-05 & \(0.28919 E+03\) & \(0.24350 E+05\) & -. 19327E+00 & \\
\hline \(0.43200 E+03\) & 0.35529E-05 & \(0.25419 E+03\) & \(0.24350 E+05\) & -.86512E-01 & \\
\hline \(0.44800 E+03\) & \(0.65643 E-06\) & \(0.19662 E+03\) & 0.24350E+05 & \(\cdots .15984 E-01\) & \\
\hline \(0.46400 E+03\) & - 10892E-05 & \(0.13464 E+03\) & \(0.24350 \mathrm{E}+05\) & 0.26523E-01 & \\
\hline U.48000E+03 & -. 20470E-05 & \(0.79226 E+02\) & \(0.24350 E+05\) & 0.49842E-01 & \\
\hline \(0.49600 E+03\) & -. 25409E-05 & \(0.36441 E+02\) & \(0.24350 E+05\) & \(0.61871 \mathrm{E}-01\) & \\
\hline \(0.51200 E+03\) & -. 28217E-05 & \(0.94337 E+01\) & \(0.24350 \mathrm{E}+05\) & \(0.66706 E-01\) & \\
\hline \(0.52800 E+03\) & \(\cdots .30471 E-05\) & \(0.55916 E+03\) & \(0.24350 E+05\) & 0.74197E-01 & \\
\hline
\end{tabular}

\section*{General Introduction}
1. Documentation for computer program BMCOL51 - to solve a wide variety of beam-column structural problems for moving loads - is presented in this appendix and includes a general introduction, listing of the program, summary flow chart, guide for data input, and input-output for two example problems.
2. BMCOL51 is a finite difference program (developed by Prof. H. Matlock and Dr. T. P. Taylor,* UT at Austin) that can solve a variety of simple and complex beam-column structural problems accounting for movable loads. It is one of the earlier BMCOL programs written under the guidance of Prof. Matlock. Later versions of the BMCOL programs are available and are much more efficient and versatile than BMCOL51. However; BMCOL5l-is. documented herein principally to show. the power and \(\because\). versatility of this family of programs. The documentation is extracted from the report written by Matlock and Taylor.
3. Beam-column equations developed in Part VI are programmed in BMCOL51. Changes in load (including moving loads), flexural stiffness, support conditions, and axial loads can vary in a freely discontinuous manner from joint to joint in the model. The finite difference representation of the fourth order differential equations are consecutively solved starting at one end of the beam in terms of known boundary conditions and adjacent joints. At the other end, the process reverses and the deflections are computed in a back substitution from joint to joint. By numerical differentiation of the deflections, the slope, bending moment, shear, and reaction are determined at each point. Plot routines in the program can be activated to produce plots of deflections, moments, shear, or reactions along the length of the beam-column.
4. BMCOL5l can consider only linear soil supports; however, other

\footnotetext{
* H. Matlock and T. P. Taylor, "A Computer Program to Analyze BeamColumns Under Movable Loads," Research Report 56-4, 1968, Center for Highway Research, University of Texas, Austin, Tex.
}

BMCOL programs are currently available that can account for nonlinear behavior. Programs to perform dynamic analyses are also available. A. list of available reports describig some of the more versatile programs is included in paragraph 7.
5. Some of the uses of BMCOL51 can be in obtaining general solutions for linear beam-columns, moving load problems, beam on elastic foundation problems, variable beam-size problems, and buckling problems.
6. BMCOL51 runs in the WES G-635 computer in batch/remote batch/ Card-In mode. The program is saved in the system (under a user number) as BMCOL.51. To run a batch/remote batch job the user can access the program through proper control cards and read in his data in the form of cards. To run a Card-In job, the user first reads in his data in a file and then runs the program (with the data file created from-a ferminal or from cards). He can direct his output to any printer at the end of the run by giving proper commands.
. . ...7. The beam-columin related reports (as of April 1974) :of the Center for Highway Research, University of Texas at Austin, are as follows: Report No. 56-1, "A Finite-mlement Method of Solution for Linearly Elastic Beam-Columns" by H. Matlock and T. A. Haliburton, presents a solution for beam-columns that is a basic tool in subsequent reports. September 1966.

Report No. 56-2, "A Computer Program to Analyze Bending of Bent Caps" by H. Matlock and W. B. Ingram, describes the application of the beamcolumn solution to the particular problem of bridge bent caps. October 1966.

Report No. 56-3, "A Finite-Element Method of Solution for Structural Frames" by H. Matlock and B. R. Grubbs, describes a solution for frames with no sway. May 1967.

Report No. 56-4, "A Computer Program to Analyze Beam-Columns Under Movable Loads" by H. Matlock and T. P. Taylor, describes the application of the beam-column solution to problems with any configuration of movable nondynamic loads. June 1968.

Report No. 56-52. "A Finite-Element Method for Bending Analysis of Layered Structural Systems" by W. B. Ingram and H. Matlock, describes an alternating-direction iteration method for solving two-dimensional systems of layered grids-over-beams and plates-over-beams. June 1967.

Report No. 56-6, "Discontinuous Orthotrophic Plates and Pavement Slabs"
by W. R. Hudson and Hudson Matlock, describes an alternating-direction iteration method for solving complex two-dimensional plate and slab problems with emphasis on pavement slabs. May 1966.

Report No. 56-7, "A Finite-Element Analysis of Structural Frames" by T. A. Haliburton and H. Matlock, describes a method of analysis for rectangular plane frames with three degrees of freedom at each joint. July 1967.

Report No. 56-8, "A Finite-Element Method for Transverse Vibrations of Beams and Plates" by H. Salani and H. Matlock, describes an implicit procedure for determining the transient and steady-state vibrations of beams and plates, including pavement slabs. June 1968.

Report No. 56-9, "A Direct Computer Solution for Plates and Pavement Slabs: by C. F. Stelzer, Jr., and W. R. Hudson, describes a direct method for solving complex two-dimensional plate and slab problems. October 1967.

Report No. 56-10, "A Finite-Element Method of Analysis" för "Composite Beams" by T. P. Taylor and H. Matlock, describes a method of analysis for composite beams with any degree of horizontal shear interaction. January 1968.

Report No. 56-11, "A Discrete-Element Solution of Plates and Pavement Slabs Using a Variable-Increment-Length Model" by C. M. Pearre III and W. R. Hudson, presents a method for solving freely discontinuous plates and pavement slabs subjected to a variety of loads. April 1969.

Report No. 56-12, "A Discrete-Element Method of Analysis for Combined Bending and Shear Deformations of a Beam" by D. F. Tankersley and W. P. Dawkins, presents a method of analysis for the combined effects of bending and shear deformations. December 1969.

Report No. 56-1.3, "A Discrete-Element Method of Multiple-Loading Analysis for Two-Way Bridge Floor Slabs" by J. J. Panak and H. Matlock, includes a procedure for analysis of two-way bridge floor slabs continuous over many supports. January 1970.

Report No. 56-14, "A Direct Computer Solution for Plane Frames" by W. P. Dawkins and J. R. Ruser, Jr., presents a direct method of solution for the computer analysis of plane frame structures. May 1969.

Report No. 56-15, "Experimental Verification of Discrete-Element Solutions for Plates and Slabs" by S. L. Agarwal and W. R. Hudson, presents a comparison of discrete-element solutions with small-dimension test results for plates and slabs, including some cyclic data. April 1970.

Report No. 56-16, "Experimental Evaluation of Subgrade ModuIus and Its Application in Model Slab Studies" by Q. S. Siddiqi and W. R. Hudson,
describes a series of experiments to evaluate layered foundation coefficients of subgrade reaction for use in the discretemelement method. January 1970.

Report No. 56-17, "Dynamic Analysis of Discrete-Element Plates on Nonlinear Foundations" by A. E. Kelly and H. Matlock, presents a numerical method for the dynamic analysis of plates on nonlinear foundations. July 1970.

Report No. 56-18, "A Discrete-Element Analysis for Anisotropic Skew Plates and Grids" by M. R. Vora and H. Matlock, describes a tridirectional model and a computer program for the analysis of anisotropic skew plates or slabs with grid-beams. August 1970.

Report No. 56-192 "An Algebraic Equation Solution Process Formulated in Anticipation of Banded Iinear Equations" by F. L. Endres and H. Matlock, describes a system of equation-solving routines that may be applied to a wide variety of problems by using them within appropriate programs. January 1971.

Report No. 56-20, "Finite-Element Method of Analysis for Plane Curved Girders" by W. P. Dawkins, presents a method of analysis that may be applied to plane curved highway bridge girders andother structural. members composed of straight and curved sections. June 1971.

Report No. 56-21, "Linearly Elastic Analysis of Plane Frames Subjected to Complex Loading Conditions" by C. O. Hays and H. Matlock, presents a design-oriented computer solution for plane frames structures and trusses that can analyze with a large number of loading conditions. June 1971.

Report No. 56-22, "Analysis of Bending Stiffness Variation at Cracks in Continuous Pavements" by A. Abou-Ayyash and W. R. Hudson, describes an evaluation of the effect of transverse cracks on the longitudinal bending rigidity of continuously reinforced concrete pavements. April 1972.

Report No. 56-23, "A Nonlinear Analysis of Statically Loaded Plane Frames Using a Discrete Element Model" by C. O. Hays and H. Matlock, describes a method of analysis which considers support, material, and geometric nonlinearities for plane frames subjected to complex loads and restraints. May 1972.

Report No. 56-24, "A Discrete-Element Method for Transverse Vibrations of Beam-Columns Resting on Linearly Elastic or Inelastic Supports" by J. Hsiao-Chieh Chan and H. Matlock, presents a new approach to predict the hysteretic behavior of inelastic supports in dynamic problems. June 1972.

Report No. 56-25, "A Discrete-Element Method of Analysis for Orthogonal Slab and Grid Bridge Floor Systems" by J. J. Panak and H. Matlock,
presents a computer program particularly suited to highway bridge structures composed of slabs with supporting beam-diaphragm systems. May 1972.

Report No. 56-26, "Application of Slab Analysis Methods to Rigid Pavement Problems" by H. J. Treybig, W. R. Hudson, and A. Abou-Ayyash, illum strates how the program of Report No. 56-25 can be specifically applied to a typical continuously reinforced pavement with shoulders. May 1972.

Report No. -56-27, "Final Summary of Discrete-Element Methods of Analysis for Pavement Slabs" by W. Ronald Hudson, H. J. Treybig, and A. AbouAyyash, presents a summary of the project developments which can be used for pavement slabs. August 1972.

Report No. 56-28, "Finite-Element Analysis of Bridge Decks" by M. R. Abdelraouf and H. Matlock, presents a finite-element analysis which is compared with a discretemelement analysis of a typical bridge superstructure. August 1972.

Report No. 56-29F, "Final Project Report" by J. J. Panak; sûmmarizes the project history and describes the major developments and findings in concise form. August 1972.

\section*{Flow Chart}
8. A summary flow chart for this program is shown in Figure Fl.


Figure Fl: Summary flow diagram for BMCOL. 51
Guide for Data Input
10. The data is input to the code in the card forms presented in this guide (extracted from
a report by H. Matlock and T. P. Taylor*).


IDENTIFICATION OF PROBLEM (one card each problem; program stops if PROB NUM \(=0\) )


TABLE 2. CONSTANTS AND MOVABLE-LOAD DATA (one card, or none if Table 2 of preceding problem is held
MOVABLE - LOAD - DATA
\(\begin{array}{cccc}\text { NOM INCR } & \begin{array}{c}\text { START } \\ \text { STOP }\end{array} & \text { STEP } \\ \text { STA } & \text { STA } & \text { SIZE }\end{array}\)

(Continued)
* Ibid p. F1.


TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES (number of cards according to Table 1 ; none if preceding Table 3 is held)

\(\ldots \int_{10}\)

(1),


TABLE 4. FIXED LOADS AND RESTRAINTS, (number of cards according to Table 1). Data added to storage as'lumped quantities per increment length, linearly intexpolated between values input at indicated end stations, with \(1 / 2\)-values at each end station. Concentrated effects are established as full values at afngle stations by setting final station * inftial station.


TABLE 5. MOVABLE LOADS (Number of cards according to Table 1). Data added to storage fust as in Table 4 .


TABLE 6. SPECIEIED STATIONS FOR INFLUENCE DIAGRAMS (4 cards or nOnè).
NUR OF TYYPE OF
IAGRAMS OUTPUT* SPECIFIED SLATIONS (max \(=5\) per variable) FOR:
*1 = Plotted Output 2 = Tabulated Cutpu

 \(\qquad\)

STOP CARD (one blank card at end of run)
(Continuea)

general program notes

The data cards must be stacked in proper order for the program to run.
A consistent syster of units must be used for all input data, for example: kips and inches.
All 5-space or less words are understood to be right justified integers or whole decimal numbers -43
All 10-space words are right justified floating-point decimal numbers


\section*{TABLE 1. PROGRAM-CONTROL DATA}

For each of Tables 2, 3, and 6, a choice must be made between holding all of the data from the preceding problem or entering entirely new data. If the hold option for any of these tables is set equal to 1 , the number of cards input for that table must be:zero.

For Tables 4 and 5, the data is accumulated in storage by adding to previously stored data. The number of cards input is independent of the hold option, except that the cumulative total of cards can not exceed card

Card counts in Table 1 should be rechecked carefully after the coding of each problem is completed.
The plot option for each of the envelopes of maximums is independent of the others. No plots are drawn for those options that are blank or zero. For each plot option that is set equal to 1 , a plot is drawn on \(4 \times 10 \mathrm{in}\). axes.

TABLE 2. CONSTANTS AND MOVABLE-LOAD DATA
The maximum number of increments into which the beam-column may be divided is 200 . Typical units for the value of increment length are inches.
"4
The number of increments in the movable-load pattern may not exceed the number of increments in the beamnumber of increments in the movable -load pattern may not exceed the number of increments in the
column. The start station is the first position at wich the zero station of the movable-load column. The start

TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES \(\vdots\)
 , and 1 for step size. No Table 5 nec̣ssary.

\section*{Data Input Guide (Continued)}

\section*{\(\because\)}
Tha maximum number of stationg st ut

The maximum number of stations at which deflections and slopes may be specified is 20.
A slope may not be specified closer than 3 increments from \(\dot{\text { another specified slope. }}\)
A deflection may not be specified cioser then 2 increments from a apecified siope,
A deflection may not be specified cioser than 2 increments from a apecified siope, except that both a
deflection and a slope may be specified at the same station.唯

TABLE 4. STIFFNESS AND FIXED-LOAD DATA
Typical units,

\(\stackrel{P}{\mathbf{l}} \mathrm{~b}\)
Axial tension or compression values \(P\) must be stated at each atation in the same manner as any other
distributed data; there is no mechanism in the programato automaticalily distribute the internal effects
of an externally applied axial force. of an externally applied axial force.

at fictitious stations beyond the ends of the real beamecolumn. pioblem) which would express-effects




\section*{Example Problems}

\section*{Example Problem 1}
9. The first example problem demonstrating the use of program BMCOL51 shows a simply supported beam with the variable cross section loaded (Figure F2). The input and output data for this example are presented in Tables F1 and F2. The results of the variation of deflection and moment along the beam are plotted in Figures F3 and F4.


INCREMENT LENGTH \(=12 \mathrm{IN}\).
NO. OF INCREMENTS \(=80\)
Figure F2. Physical problem for Example Problem 1 (steel bent cap, simply supported, and fixed loads)

\section*{Table Fl}
Input Data for Example Problem 1

```

PRUGHAM BMCOL SI - MASTEK - MATLOCK-TAYLOK - REVISION UAIE E OB MAK OB
CES94.2 HUMEHURK PROBLEM OU1. JAIA CUDED FUR EXAMPLE PKOBLEM GIVEN IN
KEPOKT 50-1 (S) FUR CENIEK FOR HIGHNAY KESEARCH. COUED GY F,PARKEK
PRUB
4%1 STEEL GENT CAP, SIMPLY SUPHORTLO,FIXED LUAUS, NO ENVELOPES OK

```
IAGLE 1 - PRUGRAM-CONTKOL DATA


IABLE 2 - CONSIANTS
NUM INCREMENTS 80
INCREMENT LENOTH 0.120t 02
NUMGER OF INCREMENTS FOR MOVABLE LOAD
INIIIAL PUSITION OF MOVABLE LOAD STA ZERO
FINAL POSITION OF MUVABLE LUAJ STA LERO
NUABER OF INCREMENTS BETHEEN EACH PUSITION OF MUVABLE LUAU

TAGLE 3 - SPECIFIED UEFLECTIUNS ANO SLOPES
\begin{tabular}{cccc} 
SIA & CASE & DEFLECTION & SLOPE \\
10 & 1 & 0. & NONE \\
40 & 1 & 0. & NONE \\
70 & 1 & 0. & NONE
\end{tabular}
(Continued)

\section*{Table F2 (Continued)}

\section*{lathe 4 - STIFFNESS ANU FIXEU-LOAD DATA}


\title{
TAGLE - SPECIFIEU STATIONS FUR INFLUENLE DIAGRAMS ( SHEAK IS CUMPUIEU UNE HALF INCHEMENT TO THE LEFT OF THE UESIGNATED STATIUN, \\ NUNE
}

PRUGKAM GHCOL DI - MASIEK - MATLOCK-IAYLOH - REVISION DATE = OB MAK OB CES94.2 HGMEHORK PROBLEM OUI, JATA CODED FUR EXAMPLE PKOHLEH GIVEN IM REHOKI 56-1 (S) FUR CENIEK FOK HIGHWAY RESEARCH COUED GY F.PARKEK

PRUB (CONTU)
U01 STEEL UENT GAP, SIMPLY SUPPORTED,FIXED LOAUS, NO ENVELUPES OK

JABLE 7 - FIXEG-LOAD RESULIS


(Continued)

Table F2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 21 & \(0.252 t 03\) & -0.299t 00 & & \(0.170 t 48\) & & & 0. \\
\hline & & & -6.720E-0s & & \(4.542 E\) & 04 & \\
\hline 22 & 0.264t U3 & -0.3u7t 00 & & 0.170 O & & & 0. \\
\hline & & & -U.384E-0S & & U.512E & 04 & \\
\hline 23 & \(0.276 \mathrm{E}^{03}\) & -0.312t 00 & & 0.171t 08 & & & 0. \\
\hline & - & & -0.47UE-04 & & \(0.483 E\) & 04 & \\
\hline -24" & \(0.288 E\) U3 & -0.313E U0 & & 0.172t 08 & & & 0. \\
\hline & & & 0.291E-03 & & U.453E & 04 & . \\
\hline 25 & 0.300603 & -0.309E 00 & & \(0.172 t 08\) & & & 0. \\
\hline & & & U.630E-03 & & -3.106E & 06 & \\
\hline 26 & \(0.312 t 03\) & -0.302t U0 & & 0.159408 & & & 0. \\
\hline & & & 0.945E-03 & & -0.106E & 06 & \\
\hline 27 & 0.324 t 3 & -0.290t 00 & & 0.147t 48 & & & 0. \\
\hline & & & 0.123E-82 & & -U.106E & 06 & \\
\hline 28 & \(0.336 E\) U3 & -0.2/5E 00 & & \(0.134 t\) U8 & & & 0. \\
\hline & & & 0.154E-02 & & -U.107E & 06 & \\
\hline 29 & 0.348 EJ & -0.257t 00 & & 0.121208 & & & 0. \\
\hline & & & 0.174E-02 & & -U. 207 E & 06 & \\
\hline 50 & \(0.360 E 03\) & -0.237E 10 & & \(0.108 t 08\) & & & 10. \\
\hline & & & 0.191E-02 & & -4.207E & 06 & \\
\hline \$1 & 0.372 EJ & -0.214t 00 & & 0.834507 & & & 0. \\
\hline & & & 0.201E-02 & & -4.208E & 06 & \\
\hline \$2 & \(0.384 t\) U3 & -0.190E 00 & & 0.545 E 07 & & & 0. \\
\hline & & & 0.209E-02 & & -0.204E & 06 & \\
\hline 43: & \(\because 0.396 E \cdot 43\) & -0010.5E :0.0. & . & 0.335107. & & . & \(0 \cdot . . . \quad \because\) \\
\hline & - & - & 0.213E-02 & & - 0.208 E & 06 & \\
\hline 34 & \(0.408 E 03\) & -0.139E.00 & & 0.848 t 06 & & & 0. \\
\hline & & & 0.214E-02 & & -U.209E & 00 & \\
\hline 35 & \(0.420 t 03\) & -0.113t 00 & & -0.166E 07 & & & 0. \\
\hline & & & 0.212E-02 & & -0.309E & 06 & \\
\hline 56 & \(0.432 \mathrm{E} \mathrm{U3}\) & -0.877t-01 & & -0.537t 07 & & & 0. \\
\hline & & & 0.20 EEO2 & & -0.310E & 06 & \\
\hline \(s 7\) & 0.444 E & -0.631E-01 & & -0.909t 07 & & & 0. \\
\hline & & & U.19SE-02 & & -U.310E & 06 & \\
\hline 58 & 0.456203 & -0.349E-U1 & & -0.128E 86 & & & 0. \\
\hline & & & 0.177E-02 & & -0.311E & 06 & \\
\hline 39 & 0.408603 & -0.187t-u1 & & -0.165t 08 & & & 0. \\
\hline & & & 0.150E-02 & & -0.311E & 06 & \\
\hline 40 & \(0.480 t .03\) & 0. & & -0.2U3t 68 & & & \(0.520 t 06\) \\
\hline & & & U.12YE-02 & & 0.258 E & 06 & \\
\hline 41 & 0.492 E & 0.155E-01 & & -0.184t 06 & & & 0. \\
\hline & & & 0.100E-02 & & 0.1586 & 06 & \\
\hline 42 & \(0.504 t 03\) & \(0.2826-01\) & & -0.165t 08 & & & 0. \\
\hline & & & 0.844E-03 & & U. 158 E & 06 & \\
\hline 43 & \(0.516 t 03\) & 0.383E-01 & & -0.146t 08 & & & 0. \\
\hline & & & 0.656E-03 & & \(4.157 E\) & 06 & \\
\hline 44 & 0.528 EJ & \(0.402 t=01\) & & -0.127E 08 & & & 0. \\
\hline & & & 0.492E-03 & & U.157E & 06 & \\
\hline 45 & 0.5406 .03 & 0.521t-42 & & -0.106E U8 & & & 0. \\
\hline & & & 0.352E-03 & & \(0.106 E\) & 06 & \\
\hline 46 & \(0.552 \mathrm{ta3}\) & \(0.563 t-01\) & & -0.9331 U7 & & & 0. \\
\hline & & & U.229E-0S & & V. 106 E & 06 & \\
\hline 47 & \(0.564 \pm 33\) & 0.591E-01 & & -0.826t 47 & & & 0. \\
\hline & & & 0.122E-0S & & \(0.106 E\) & 06 & \\
\hline 48 & \(0.576 t 03\) & \(0.605 E-01\) & & -0.699E 07 & & & 0. \\
\hline & & & 0.321E=04 & & U.105E & 06 & \\
\hline 49 & 0.588t 43 & 0.6U9E-41 & & -0.573t 07 & & & 0. \\
\hline & & & -0.41YE-04 & & 0.10bE & 06 & \\
\hline 0 & 0.600103 & 0.604E-01 & & -0.447t 07. & & & 0. \\
\hline & & & (Continue & d) & & & \\
\hline
\end{tabular}
(Sheet 4 of 11)

Table F2 (Continued)


PRUB（CUNTD）
U01 STEEL GENT CAP，SIMPLY SUPPORTED，FIXED LUABS，NO ENVELUPES OK

TABLE \(G A-E N V E L O P E S\) UF HAXIMUMS \(\quad\) a HELD FKOM PRIOR PROBLEA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & STA & MAX + DEFL & LOC & Max－DEFL & L．06 & MAX 4 HOH & LOC & MAX HOM & 10c \\
\hline & －1 & \(0.362 E 00\) & －4 & 0. & 999 & 0. & 999 & 0 ． & 499 \\
\hline & 0 & \(0.329 E 00\) & －4 & \(U\) ． & 999 & 0 ． & 999 & 0. & 499 \\
\hline & 1 & 0.296 E O & －4 & 0. & 999 & 0. & 999 & －0．184E 04 & －4 \\
\hline & 2 & U．264E 00 & －4 & \(\forall\) ． & 994 & U． & 499 & －0．734E 04 & －4 \\
\hline & 3 & 0.231500 & －4 & U． & 999 & 0. & \(y 99\) & －V．165E OS & －4 \\
\hline & 4 & 0.19 VE OU & －4 & 0. & 994 & U． & 499 & －4．29くE OS & －4 \\
\hline & 5 & 0.166 E 00 & －4 & 0. & \(V 99\) & 0. & 494 & － 4.450 O 03 & － 4 \\
\hline & 6 & \(0.135 E 00\) & －4 & 0. & 999 & 4. & 999 & －0．660E 00 & －4 \\
\hline & 7 & 0.101500 & －4 & U． & 999 & 4. & 999 & － 0.12 YE 07 & 4 \\
\hline & 8 & U． \(676 \mathrm{E}-01\) & －4 & 1. & 994 & 0. & 999 & －0．192E 01 & －4 \\
\hline & 9 & 0．J41E－01 & －4 & 0. & 999 & 0. & 999 & ．． & －4 \\
\hline ． & 10 & 0. & 499 & \(U\). & 999 & 0 － & 999 & －0．316E 07 & －4 \\
\hline & 11 & 0. & 999 & － 0 －349E－01 & －4 & 0. & 999 & －0．557E 00 & －4 \\
\hline & 12 & 0. & 999 & －U．099E－01 & －4 & 0.200607 & －4 & 0. & 499 \\
\hline & 13 & 0. & 999 & －0．104E 00 & －4 & \(0.468 E 07\) & －4 & 0. & y99 \\
\hline i． & 14. & 4． & 99.9 & －0．138E． 0.0 & －4． & 0．7．29E 07． & －4 &  & ． 9.94 \\
\hline \(\cdots\) ．\({ }^{\text {．}}\) & 13． & ．6is．\({ }^{\text {a }}\) & 999． & － \(4.164 E .00^{\circ}\) & －4． & \(0.990 \mathrm{E}^{07}\) & －4 & － 0 。 \({ }^{\circ}\) & \(y 99\) \\
\hline & 10 & U． & 999 & － 0.199 E 0 & －4 & U．113E 08 & －4 & 0. & 499 \\
\hline & 17 & 0. & 999 & －b．220E 30 & －4 & \(0.127 E 80\) & －4 & 0. & y99 \\
\hline & 18 & 0. & 999 & － 0.249 E B & －4 & 0.141 E 08 & －4 & 0. & 499 \\
\hline ； & 1.4 & 0. & 999 & －U．269E 00 & －4 & 0．155E O8 & －4 & 0. & 499 \\
\hline ， & 24 & 0. & 499 & － 0.280 EO & －4 & \(0.169 E 08\) & －4 & 0. & 499 \\
\hline & 21 & 0. & 999 & －U．299E OU & －4 & 0.17 UE O8 & －4 & 0. & y99 \\
\hline ＋ & 22 & 0. & 999 & － \(0.307 E 00\) & －4 & 0.17 UE O8 & －4 & 0. & y99 \\
\hline & 23 & 0. & 499 & －0．312E 0U & －4 & \(0.171 E 08\) & －4 & 1. & 494 \\
\hline  & 24 & 0. & 999 & －U．313E 30 & －4 & 0.172 O & －4 & 0. & \(v 9 y\) \\
\hline  & 23 & 0. & 999 & － 0.309 E 00 & －4 & 0.172 E 0 & －4 & 0. & y9y \\
\hline & 20 & 0. & 999 & －U．302E 00 & －4 & \(0.159 E 08\) & －4 & 0. & 499 \\
\hline & 27 & 0. & 999 & －0．290E 00 & －1 & \(0.147 E\) OH & －4 & 0 ． & y9y \\
\hline & 28 & 0 ． & 999 & － 0.275 E 04 & －4 & U．134E 06 & \(\cdots\) & 0. & y9y \\
\hline & 29 & 0. & 949 & －0．257E 00 & －4 & \(0.121 E 06\) & －4 & 0. & \％99 \\
\hline & 30 & 0. & 499 & － \(0.237 E 00\) & －4 & U．108E 08 & －4 & 0. & \％99 \\
\hline & 31 & 0. & 999 & －0．214E 00 & －4 & 0．834E 0\％ & －4 & 0. & Y99 \\
\hline & 32 & 0. & 999 & －U．19UE OU & －4 & U．38らE 07 & －4 & \(00^{\circ}\) & 499 \\
\hline & 33 & 0. & 999 & －0．165E 0J & －4 & 0．J3らE 07 & －4 & 0. & \(y 99\) \\
\hline ； & 34 & 0. & 999 & －0．139E 00 & －4 & U．846E 06 & －4 & 0. & y9y \\
\hline \(\vdots\) & 35 & 0 ． & 999 & －U．113E 00 & －4 & 0. & 999 & －0．160E 07 & －4 \\
\hline & 30 & 0. & 999 & － \(0.877 \mathrm{E}-01\) & －4 & 0. & 999 & －0．537E 07 & －4 \\
\hline & 37 & 0 。 & 994 & －U．631E－01 & －4 & 0. & 999 & － 6.909 E 07 & －4 \\
\hline & 38 & 0. & 999 & －0．599E－01 & －4 & 0 。 & 999 & －0．126E 08 & －4 \\
\hline & 39 & 0. & 999 & － \(0.187 \mathrm{E}-01\) & －4 & 0. & 999 & －0．16？E O\％ & －4 \\
\hline & 40 & 0. & 999 & \(v\). & 998 & 0 － & 999 & －0．20SE Oo & －4 \\
\hline & 41 & 0.15 ¢E－01 & －4 & 0. & 999 & 0. & 999 & －0．184E 08 & －4 \\
\hline & 42 & 0．282E－01 & －4 & 6. & 994 & 0. & 494 & －0．16ヶE Ob & －4 \\
\hline & 43 & U．J8SE－01 & －4 & 1. & 999 & 0 － & 499 & －0．1AOE OO & －4 \\
\hline & 44 & 0．462E－01 & －4 & 0. & 999 & 0. & 999 & －0．127E 00 & －4 \\
\hline
\end{tabular}
（Continued）


Table F2 (Continued)

(Continued)

\section*{Table F2（Continued）}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 29 & & & & & \(u\) 。 & 490 & 0. & 499 \\
\hline & 0 ． & 999 & －0．107E 06 & － 4 & & & & \\
\hline 30 & & & & & 0. & 999 & 1. & 499 \\
\hline & 0. & 999 & －u．207E 00 & －4 & & & & \\
\hline 31 & & & & & 0. & 999 & 0. & 499 \\
\hline & 0 ． & 999 & －0．208E 00 & －4 & & & & \\
\hline 32 & & & & & 0. & 999 & 0. & 499 \\
\hline & 0. & 999 & －0．208E 00 & －4 & & & & \\
\hline 33 & － & & & & 0. & 999 & 0 ． & 494 \\
\hline & 0. & 999 & －0．208E 06 & －4 & & & & \\
\hline 34 & & & & & \(0 \cdot\) & 499 & 0. & 499 \\
\hline 5 & 0 ． & 999 & －0．209E 00 & －4 & & & & \\
\hline 35 & & & & & 0. & 999 & 0. & 499 \\
\hline & 0. & 999 & －0．309E 00 & －4 & & & & \\
\hline 36 & & & & & 0. & 999 & 0. & 499 \\
\hline 37 & 0 ． & 999 & －0．310E 06 & －4 & 0. & 999 & 0. & 494 \\
\hline & 0. & 999 & －0．STUE 00 & －4 & & & 0. & 99 \\
\hline 38 & & & & & 0. & 999 & 0 ． & 499 \\
\hline & 1. & 999 & －0．311E 06 & －4 & & & & \\
\hline 39 & & & & & 0. & 999 & \({ }^{0}\) ． & 999 \\
\hline 40 & 0 ． & 999 & －0．311E 06 & －4 & & & 2 & \\
\hline & \(0.158 E 06\) & －4 & 0. & 999 & \(0.520 E\) & －4 & － & 999 \\
\hline 41 & & & & & 0 。 & \(y 99\) & 0 ． & \(\pm 99\) \\
\hline & 0.158 E 00 & －4 & 0. & 999 & & & & \\
\hline 42 & O & & & & ．\({ }^{\circ}\) & 999 & 0 。 & 499 \\
\hline 43 & 0.158 E 00 & －1 & －0． & & 1. & 499 & 0. & 499 \\
\hline & 0．157E 06 & －4 & 0. & 999 & & & & \\
\hline 44 & & & & & \(\theta\) • & 999 & 0. & y99 \\
\hline & 0．157E 06 & －4 & 0 ． & 999 & & & & \\
\hline 45 & & & & & \(0 \cdot\) & 999 & 0. & \(y 99\) \\
\hline & 0．106E 06 & －4 & 0 － & 999 & & & & \\
\hline 46 & 0．106E 06 & －4 & 0 。 & 999 & 0. & 999 & 0. & 999 \\
\hline 47 & & & & & 0. & 999 & 0 ． & 999 \\
\hline & 0.106 E 06 & 4 & 0. & 999 & & & & \\
\hline 48 & 0.105 Cb & －4 & 0. & 999 & 0. & 499 & 0. & 499 \\
\hline 49 & & & & & \(u\). & 999 & \(0 \cdot\) & 999 \\
\hline & 0．105E 06 & －4 & 1. & 999 & & & & \\
\hline 50 & & & & & 0. & 999 & 0. & 499 \\
\hline 51 & \(0.645 E 05\) & －4 & 0 ． & 999 & 0. & 999 & 0. & 499 \\
\hline & 0.042 ES & －4 & 1. & 999 & & & & \\
\hline 52 & & & & & 0 ． & 999 & 0 。 & 999 \\
\hline 53 & 0.639 ES & －4 & 0. & 994 & & & & \\
\hline & 0.636 E 05 & －4 & 0. & 999 & 0. & 999 & 0. & 999 \\
\hline 54 & & & & & 0 ． & 999 & \(\mathfrak{O}\) & 489 \\
\hline 55 & 0.633 ES & －4 & 0. & 999 & 0. & 999 & & \\
\hline & 0．280E Ob & －4 & \(0 \cdot\) & 999 & 0. & 999 & 0 & 999 \\
\hline 50 & & & & & 0. & 999 & 0. & 999 \\
\hline 57 & 0．277E 05 & －4 & 0. & 999 & 0. & 999 & 0. & 499 \\
\hline & 0.274 ES & －4 & 0. & 999 & & & & \\
\hline 58 & & & & & 0 ． & 999 & \(u\) ． & 499 \\
\hline 54 & 0.2712 & & & & 0. & 999 & 0. & 499 \\
\hline & 0．268E 05 & －4 & 0. & 999 & & & & \\
\hline 60 & & & & & 0. & 999 & 0 ． & 999 \\
\hline
\end{tabular}

Table F2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 61 & & & & & & & 0. & & v9\% & \(U\). & 999 \\
\hline & & 0. & & 999 & -u.J83E & 04 & -4 & & & & & \\
\hline & 62 & & & & & & & 0. & & 999 & 0. & y9y \\
\hline & 63 & 0. & & 999 & -0.415E & 04 & -4 & 0. & & 499 & 0. & \\
\hline & & 1. & & 999 & -0.443E & B4 & -4 & & & & 0. & \%9 \\
\hline & 64 & & & & & & & 0. & & 999 & 0. & 999 \\
\hline & 65 & 0.0 & & 999 & -0.47SE & 04 & -4 & 0. & & 099 & 0. & 499 \\
\hline & & 0. & & 999 & -0.300E & 05 & -1 & & & & & \\
\hline & 66 & & & & & & & 0. & & 999 & 0. & 999 \\
\hline & 67 & 0. & & 999 & -U.303E & 03 & -4 & 0. & & 990 & 0. & 994 \\
\hline & & 0. & & 999 & -0.300E & 05 & -4 & & & & & \\
\hline & 68 & & & & & & & 0. & & 999 & 0. & 999 \\
\hline & & 0 。 & & 999 & -0.309E & 05 & -4 & & & & & \\
\hline & 69 & & & & & & & 0. & & 999 & 0. & 999 \\
\hline & 70 & 0. & & 999 & -0.312E & 05 & -4 & 0.694E & & & & \\
\hline & & 0.178 E & 05 & -4 & 0. & & 999 & 0.6942 & 03 & -4 & 0. & 999 \\
\hline & 71 & & & & & & & 0. & & 999 & \(\cdots\) & 999 \\
\hline & 72 & 0.175 E & 05 & -4 & 0. & & 999 & 0. & & 999 & 0. & \(y 99\) \\
\hline & & 0.172 E & 05 & -4 & 0 . & & 999 & & & & 0. & 499 \\
\hline & 73 & & & & & & & 0. & & 999 & 0. & 499 \\
\hline & 74. & 0.169 E & 05 & -4 & 0. & & 999 & 0. & & 999 & 0. & 499 \\
\hline & & U.166E & 05 & -4 & 0 . & & 999 & & & & & \\
\hline & 75 & & & & & & & 0. & & 999 & 0. & 499 \\
\hline & 76 & 0.135 E & 04 & -4 & 0. & & 999 & & & & & \\
\hline : & & 0.10SE & 04 & -4 & 0. & & 999 & 0. & & 999 & 0. & 999 \\
\hline & 77 & & & & & & & 0. & & 999 & \(U\). & 499 \\
\hline & 78 & 0.749 E & 03 & -4 & 0 . & & 999 & 0 & & 999 & 0 & \\
\hline \multirow[t]{5}{*}{4n\%ownem} & & 0.450 E & 03 & - 4 & 0 , & & 999 & & & & & \\
\hline & 79 & & & & & & & 0. & & 999 & 0. & 499 \\
\hline & 80 & 0.15UE & 03 & -4 & 0. & & 999 & 0. & & 999 & 0. & 499 \\
\hline & & 0. & & 999 & 0. & & 999 & & & & & \\
\hline & 81 & & & & & & & 0. & & 999 & 0. & 499 \\
\hline
\end{tabular}
(Continued)
(Sheet 10 of 11)
```

TAGLE y ma SCALES fON PLUTS OF THE ENVELUPES OF mAXIMUMS
HURIZUNTAL SCALE
10 INCHES =1U0. STATIONS
VERTICAL SCALES
LENGIH MAXIMUM
VARIABLE OF AXIS VALUE
UEFLECI 2 INCHES = 0.400E U0
MOMENT 2 INCHES = O.4UOE 08
PROB (CONTO)
UO1 STEEL UENT CAP, SIMPLY SUPPOKTEO,FIXED LOAUS, NO ENVELOPES OK
TAULE 10A =* INFLULNCE DIAGRAMS FOR UEFLECTION .: : : = %

| LOCAIION | | designated | STATIONS FUR | INFLUENCE | DIAGRAMS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Of LIOAD | S IA | S1A | STA | STA | |

TABLE $10 B=$ INFLUENCE DIAGRAMS FOK MOMENT

```


```

TAGLE $10 D=$ INFLUENCE DIAGRAMS FOR SUPPURI REACIIUN

| LOCATJON | | DESIGNATED | STATIONS FOR | INFLUENCE | diagrams |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OF LOAD | STA | STA | STA | SIA | |

NONE

```


Figure F3. Variation of deflection along beam



Figure F4. Variation of moment along beam

\section*{Example Problem 2}

10 To illustrate further the use of program BMCOL51, a second example - a braced trench problem - is given. Figure F5 shows the physical problem for this example. The input and output data are presented in Tables F3 and F4. The results of the variation of deflection and moment along the trench support are plotted in Figures F6 and F7.

REPRESENTATION OF BRACED TRENCH WHERE BRACES ARE REPRRESENTED EY CONCENTRATED SPRINGS AND ACTIVE EARTH PRESSURES ARE REPRESENTED gy A DISTRIBUTED LOAD.

PASSIVE EARTH PRESSURES ARE REPRESENTED GY DISTRIBUTED SPRINGS.
\[
F=5.00 \times 10^{9} \mathrm{LE}-\mathrm{N}
\]

INCREMENT LENGTH \(=12 \mathrm{IN}\).
NO. OF INCREMENTS \(=40\)


Figure F5. Physical problem for Example Problem 2 (braced trench problem)



IABLE - STIFFNESS AND FIXEDMLOAD OATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline frum & Tu & CONTU & \(F\) & UF & S & & & 1 & & K & \\
\hline 0 & 40 & 0 & 0.500E 10 & 0. & 0. & & 0. & & 0. & & 0. \\
\hline 10 & 10 & 0 & 0 . & 0. & 0.267E & 06 & 0. & & 1. & & 0. \\
\hline 20 & 20 & 0 & 0 。 & 0. & 0.267 E & 06 & 0. & & 0. & & 0. \\
\hline 0 & & 1 & 0. & 0. & 6. & & 0. & & 0. & & 0. \\
\hline & 50 & 1 & 0. & -0.495E 04 & 0. & & 0. & & 0. & & 0. \\
\hline & 40 & 0 & 0. & -0.495t U4 & 0.12bE & 05 & 0. & & 0. & & 0 . \\
\hline
\end{tabular}

FABLE \(b\) - MOYABLEMGAJ BATA
f run tu conty om
NUNE
TAGLE 0 - SPECIFIEG STATIONS FUR influtnce diagrams ( SHEAK IS CUMPUIEU UNL HALF INCHEMENT TU THE LEFT OF IHE UESIGNATED STAIIUN) NUNt:
(Continued)

\section*{Table F4 (Continued)}

PRUGRAM GHCOL 5I - MASIEN - MATLOCK-JAYLOR - REVISION UAIE \(=0\) MAK O CEJ94.2 HUMENORK PKO甘LEM OUL. GATA CODED FUR EXAMPLE PKO甘LEN GIVEN IN REPORT 56-1 (S) FOR CENIER FOR HIOHWAY KESEARCH. COUEV GY FOPARKER

PRUB (CONTO)
002 SHEEF PILE MIIH AT REST PRESSURE,FIXED LOAOS, NO ENVELUPES OK

FABLE 7 - FIXEO-iOAO RESULTS

(Continued)
(Sheet 2 of 7)

Table F4（Continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 21 & \(0.252 t\) & 03 & －0．335t & 00 & & －0．702t & & & & 0. \\
\hline & & & & & －0．117E－01 & & & \(0.316 E\) & 03 & \\
\hline 22 & 0．264t & 03 & －0．4／6t & 00 & & －0．323t & 06 & & & 0 。 \\
\hline & & & & & －0．12ちE－01 & & & U．280E & 03 & \\
\hline 43 & \(0.276 t\) & 03 & －0．626t & 00 & & \(0.131 E\) & 05 & & & 0. \\
\hline & & & & & －0．125E－01 & & & \(0.242 E\) & 05 & \\
\hline 24 & 0.2886 & 03 & －0．776E & 00 & & \(0.304 t\) & 06 & & & 0 。 \\
\hline & & & & & － 0.118 E－01 & & & \(0.202 E\) & 05 & \\
\hline 25 & 0.3005 & 43 & －0．917E & 00 & & 0.547 t & 06 & & & 0. \\
\hline & & & & & －ل1．10つE－01 & & & 0．162E & 03 & \\
\hline 26 & 0.312 t & 03 & －0．104t & 01 & & 0.740 L & 06 & & & 0. \\
\hline & & & & & －0．868E－02 & & & 0．118E & 05 & \\
\hline 27 & \(0.324 E\) & 03 & －0．215t & 01 & & 0.882 E & 06 & & & 0. \\
\hline & & & & & －0．656E－02 & & & 0．737E & 04 & \\
\hline 28 & \(0.336 E\) & 03 & －0．123t & 01 & & \(0.970 E\) & 06 & & － & 0. \\
\hline & & & & & － \(0.423 E-02\) & & & U．27ちE & 04 & \\
\hline 29 & 0.348 t & 03 & －0．128t & 41 & & 0.100 E & 07 & & & 0. \\
\hline & & & & & －0．182E－02 & & & －0．203E & 04 & \\
\hline 30 & 0.360 E & 43 & －0．130E & 01 & & 0.979 E & 06 & & & 0. \\
\hline & & & & & 0．527E－03 & & & －0．698E & 04 & \\
\hline 31 & 0.372 E & 03 & －0．129E & 01 & & \(0.895 E\) & 06 & & \(\pm\) & 0．161上 44 \\
\hline & & & & & U．268E－02 & & & －0．103E & 03 & \\
\hline 32 & \(0.384 E\) & 03 & －0．126E & 01 & & 0.7712 & 06 & & & \(0.315 \mathrm{ta4}\) \\
\hline & & & & & 0．453E－02 & & & －0．121E & 05 & \\
\hline 33 & 0.396 E & 03 & －0．121E & 01 & & 0.626 E & 06 & & & 0．4b2t U4 \\
\hline & －\({ }^{\text {c }}\) & & ．． & & \(0.603 E=02\) & & & －0．125E & 05 & \\
\hline 34 & \(0.408 E\) & 03 & \(0.0 .113 t\) & 01 & & C0．475E & 06 & & & \(0.506 t \mathrm{t}\) \\
\hline & & & & & 0．71／E－02 & & & －0．118E & 02 & \\
\hline 35 & 0.420 E & 03 & －0．145E & 01 & & 0．333t & 06 & & & 0．634t U4 \\
\hline & & & & & 0．797E－02 & & & －0．102E & 03 & \\
\hline 36 & 0.432 t u & 03 & －0．951E & 00 & & 0.2114 & 06 & & & \(0.713 t 04\) \\
\hline & & & & & J． \(846 E=02\) & & & －0．606E & 04 & \\
\hline 57 & \(0.444 t\) & 43 & －0．830t & 00 & & 0.1141 & 06 & & & 0.743 tat \\
\hline & & & & & \(0.875 \mathrm{E}-02\) & & & －0．357E & 04 & \\
\hline 58 & 0.456 t & 03 & －0．745E & 00 & & 0.4714 & 65 & & & 0．745t U4 \\
\hline & & & & & 0．886E－02 & & & －0．308E & 04 & \\
\hline 59 & \(0.468 t\) & 03 & －0．638t & 00 & & D．132E & 05 & & & \(0.718 \mathrm{ta4}\) \\
\hline & & & & & U．889E－02 & & & －0．647E & 05 & \\
\hline 40 & \(0.480 E\) & 03 & －0．532t & 00 & & －0．647t－ & 01 & & & 0.352 U \\
\hline & & & & & 0．889E－02 & & & 0.539 E & & \\
\hline 41 & \(0.492 t\) & 03 & －0．425t & 00 & & 0. & & & & 0. \\
\hline
\end{tabular}
```

HRUB (CONIU)
U02 SHEEI PILE HITH AI RESI PRESSUKE,FIXED LUAUS, NO ENVELOPES Om

```
IAGLE GA- ENVELOPES UF MAXIMUAS - HELD FKOM PRIOK PRUBLEM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SIA & MAX－DEFL & LOC & MAX－ULFL & LOC & MAX & MOM & L0C & MAX MOM & L06 \\
\hline \(-1\) & 0. & 994 & ＊U．O31E 00 & 0 & U． & & 999 & 0. & 499 \\
\hline 0 & 0. & 999 & \％0．574E 00 & 0 & 0.129 E & OU & 0 & 0 ． & 499 \\
\hline 1 & 0. & 999 & －0．317E 0U & \(v\) & \(0.129 E\) & OU & 0 & 0. & y9y \\
\hline 2 & 0. & 994 & －0．460E OU & 0 & 0. & & 999 & －U．198E 04 & 0 \\
\hline J & U． & 994 & － 4.402 EV 0 & 0 & 0. & & 499 & －0．792E 04 & 0 \\
\hline 4 & 0. & 999 & －0．346E 00 & 0 & 0 & & 99\％ & －0．198E OS & 0 \\
\hline \(b\) & 0 。 & 999 & －0．289E OU & 0 & 0. & & y9y & －0．390E 03 & 4 \\
\hline 0 & U． & 999 & －U．234E OU & 0 & 0 。 & & 999 & －0．095E 0S & 0 \\
\hline 7 & 0. & 999 & －U．181E OU & 0 & 0. & & 999 & －0．111E 00 & 0 \\
\hline 8 & 0. & 999 & －0．131E 0U & 4 & 0 。 & & 999 & －0．160E 00 & 4 \\
\hline \(y\) & 0. & 999 & －U．855E－0i & 0 & 0. & & 999 & －0．23女E 00 & \(\checkmark\) \\
\hline 10 & 0. & 999 & －U．471E－01 & 0 & U． & & 994 & － \(0.527 E 00\) & 0 \\
\hline 11 & 0. & 999 & －0．181E－01 & 0 & U． & & 999 & －0．285E 00 & 1 \\
\hline 12 & U．263E－02 & \(v\) & \(v\). & 999 & 0. & & 999 & ．\(=0.264 E 00\) & 4 \\
\hline 13 & 0．15日E－01 & 4 & 0 － & 999 & 0 O & & 999 & －0．268E 06 & 0 \\
\hline 14 & U． 213 E － 1 & 0 & U． & 999 & 0. & & 999 & －4．297E 00 & 0 \\
\hline 13 & 0．182E－01 & 0 & 0. & 499 & 0. & & 999 & －0．354E 00 & 0 \\
\hline 16 & 1．488E－02 & 0 & 0 ． & 999 & 0. & & 999 & －0．44UE 00 & 4 \\
\hline 17 & 0. & 999 & － 0 －211E－01 & \(\cdot 6\) & 0. & & 999. & － 0.55 YE 00 & 0 \\
\hline 18 & 0. & 999 & － \(0.032 \mathrm{E}-01\) & 4 & 0. & & 499 & －U．711E 00 & U \\
\hline 19 & 0. & 999 & －U．126E OU & \(\downarrow\) & 0. & & 999 & －U． 698 E 0 & （ \\
\hline 20 & \(U\) ． & 999 & － 0.214 E 0 & 0 & 0. & & 999 & －0．112E 07 & 0 \\
\hline 21 & 0. & 999 & －U．335E OU & 0 & 0. & & 999 & － 4.702 E 0 & 0 \\
\hline 22 & 0. & 999 & －U．470E 0U & 0 & 0. & & 499 & －U．323E 00 & 0 \\
\hline 23 & 0. & 999 & －0．626E OU & U & U．131E & 05 & 1 & 0 ． & y99 \\
\hline 24 & 0. & 999 & －0．776E 04 & U & \(0.304 E\) & 00 & 0 & \(U\). & \％94 \\
\hline 25 & 0. & 999 & －U．917E 00 & 0 & 0.547 E & 06 & 0 & 0. & 499 \\
\hline 26 & 0. & 099 & －U．104E O1 & 0 & 0.740 E & 06 & 0 & 0 。 & 499 \\
\hline 27 & 0. & 999 & －0．215E 01 & 0 & 0.882 E & 16 & 3 & 0 ． & 499 \\
\hline 28 & 0. & 999 & －0．123E 01 & 0 & 0.970 E & 06 & 0 & 0. & 999 \\
\hline 29 & 0. & 994 & －0．128E 01 & U & 0.10 E & 07 & 0 & 0 － & 499 \\
\hline 30 & 0. & 994 & －U．13UE 01 & \(u\) & \(0.979 E\) & 06 & 0 & 0. & 499 \\
\hline 31 & 0. & 999 & － 0.129 El & 0 & 0.89 － & 06 & 4 & \(U\) ． & 499 \\
\hline 32 & 4. & 994 & － \(0.126 E 01\) & 0 & \(0.771 E\) & 06 & 4 & 1 ． & 494 \\
\hline 33 & 0. & 494 & －0．121E 01 & 0 & 0.020 E & 00 & 0 & 0. & 499 \\
\hline 34 & \(U\)－ & 994 & －0．11JE 02 & 0 & 0.475 E & 06 & 0 & 0. & y99 \\
\hline 35 & 0. & 999 & －U．20SE 01 & 0 & \(0 \cdot 335 E\) & 06 & 0 & 0 － & y9y \\
\hline 36 & 0. & 999 & － 0.951 EO & 0 & \(0.211 E\) & 06 & 0 & 0. & 499 \\
\hline 37 & 0. & 999 & － 0.850 UE OU & 0 & \(0.114 E\) & 06 & 0 & \(U\) U & 499 \\
\hline 36 & 0 ． & 499 & － 0.745 E 0 O & 0 & \(0.471 E\) & 05 & 0 & 0. & 499 \\
\hline 39 & 0. & 499 & －U．036E OU & 0 & 0.202 E & 05 & 0 & \(U\). & 999 \\
\hline 44 & 0. & 499 & －u．032E OU & 0 & 0. & & 499 & \(\sim 0.64 / E-01\) & 0 \\
\hline 41 & 0. & 499 & －U．425E OU & 4． & U． & & 499 & U． & 999 \\
\hline
\end{tabular}
```

Table F4 (Continued)

```

(Continued)

\section*{Table F4 (Continued)}

(Continued)

\section*{Table F4 (Concluded)}
```

IAGLE y -- SCALES POK PLOTS UF THE ENVELOPES OF MAXIMUMS
HUR:ZUNTAL SCALE
10 JNCHES = bO. STATIONS
VERIICAL SCALES
LENGIH MAXIMUM
VANIABLE OF AXIS VALUE
- UEFLECI 2 INCHES = 0.200k U1
MOMENT 2 INLHES = 0.200E U7
PRUB (CONTD)
002 SHEET PILE HITH AT REST PRESSUKE,FIXED LOADS, NO ENVELUPES Ok
IAHLE 10A =- INFLULNLE DIAGRAMS FOR UEFLECIION

| LOCATIUN | | | |
| ---: | ---: | ---: | :--- |
| OF LOAD | DESIGNATEU STATIONS FUR INFLUENCE DIAGRAMS | | |
| | SIA SIA | SIA | SIA |

 NUNL:
 IAGLE 10G =- INFLUENCE DIAGRAMS FOR MOMENT

| LOCATION | | DESIGNAIED STATIONS FUR INFLUENCE DIAGRAMS | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| OF LOAD | SIA | SIA | SIA | SIA | NUNE

IAGLE 10C =- INFLUENCE DIAGRAMS FOR SHEAR (SHEAR IS COMPUTED ONE HALF INCREMENT IU THE LEFT OF THE BESIGNATED SIAIION)

| LOCAIIUN | DESIGNATED STATIONS FUR INFLUENCE OIAGRAMS | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| OF LOAD | SIA | SIA | SIA | SIA | NUNE

TABLE $10 \mathrm{E}-\mathrm{INFLUENCE}$ DIAGRAMS FOR SUPPURT KEACIIUN

| LOCATIUN | | DESIGNATEU | STATJONS FUR | INFLUENCE | DIAGRAMS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Or LUAD | STA | STA | SIA | S 1 A | |

NUNE
PRUGKAM GMCOL 51-MASIEK - HATLOCK-TAYLOK - REVISION JAIE = OB MAK OB CES94.2 HUMEHURK PKOBLEM 0U1. JATA CUDED FUR EXAMPLE PROULEM GIVEN IN KEPOKY 56-1 (S) FUR CENIEK IOK HIGHWAY KESEARCH. COUED GY F.PARKER
KEIUKN THIS PAGE TU IIME RECURD FILE -- HM

```


Figure F6. Variation of deflection along trench support


Figure F7. Variation of moment along trench support```


[^0]:    * For convenience, symbols and unusual abbreviations are listed and defined in the Notation (Appendix A).

[^1]:    * A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 4.

[^2]:    * H. M. Coyle and L. C. Reese, "Load Transfer for Axially Loaded Piles in Clay," Journal, Soil Mechanics and Foundation Division, American Society of Civil. Engineers, Mar 1966.

[^3]:    * F. Parker, Jr., and W. R. Cox, "A Method for Analysis of Pile Supported Foundations Considering Nonlinear Soil Behavior," Research Report 2171, 2969, Center for Highway Research, University of Texas, Austin, Tex.

[^4]:    * K. Awoshika and L. C. Reese, "Analysis of Foundation with Widely Spaced Batter Piles," Research Report l17-3F, 1971, Center for Highway Research, University of Texas, Austin, Tex.

