

DYNAMIC BEHAVIOR OF PILING

A Dissertation

Ву

Lee Leon Lowery, Jr.

Submitted to the Graduate College of the Texas A&M Chiversity in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1967

Major Subject: Civil Engineering

DYNAMIC BEHAVIOR OF PILING

A Dissertation

By

LEE LEON LOWERY, JR.

Approved as to style and co	ntent by:	
Chairman of Committee	(Member)	
Head of Department	(Member)	
(Member)	•	·
(Member)		

ACKNOWLEDGMENTS

The writer wishes to express sincere thanks to the many individuals who assisted in this research; to Dr. Charles H. Samson, Jr., and Dr. Robert M. Holcomb for arranging the financial support which made my graduate studies possible, to Dr. Samson and Dr. Teddy J. Hirsch for their encouragement and help throughout the research program, and to the other members of my Committee, Dr. Howard L. Furr, Dr. J. George H. Thompson, and Dr. Edmond C. Klipple.

Special thanks go to my wife, Evelyn, for helping throughout my graduate program.

TABLE OF CONTENTS

Chapter		Page
I	INTRODUCTION	7
	General Background	
ΙΙ	A NUMERICAL METHOD OF ANALYSIS	16
	The Basic Solution	10
	Solution	14
III	PILE DRIVING HAMMERS	17
•	Ram Idealization Energy Output of Hammer	17 24
	Driving Hammers	25 27
	Conclusions	34
	Efficiency	3 5 4 5
	Results of Michigan Parameter Study	50
. 4	Measuring Devices Effects of Explosive Pressure. Effects of Cushion Properties	50 61
	on Driving	65
	Driving the Same Pile	67
ΙV	CHARACTERISTIC CUSHION PROPERTIES	75
	Introduction	75 75 84
	Idealized Dynamic Stress-Strain Curves	89

Chapter	· · · · · · · · · · · · · · · · · · ·	Pagu
٧	STRESS WAVES IN PILING	96
	Comparison of Actual and Experimental Stress Waves Internal Damping in Piling	
VI	SOIL PROPERTIES	127
	Idealized Soil Resistance Curves Significance of the Soil Quake	127
	"Q"	133
	Constant	
VII	CONCLUSIONS	143
VIII	RECOMMENDATIONS FOR FURTHER RESEARCH	145
REFERENCE	ES	147
APPENDIX	A Program Input Data	153
APPENDIX	B Example Problem	175
Λορενιστν	C Program Licting	107

LISTOFFIGURES

Figure		Page
2.1	Idealization of a Pile for Purpose of Analysis	. 1,1
3.1	Idealization for a Long Ram Striking Directly on a Cushion Block	. 18
3.2	Idealization for a Long Ram Striking Directly on a Steel Anvil	. 19
3.3	Typical Pile Driving Assembly (After Reference 44)	. 28
3.4	Idealization of a Vulcan Hammer	. 32
3.5	Idealization of a Diesel Hammer	. 33
3.6	EINPUT vs ENTHRU	. 42
3.7	Ram Velocity vs LIMSET	. 44
3.8	Comparison of Theoretical and Experimental Load Cell Forces	. 46
3.9	Comparison of Theoretical and Experimental Load Cell Accelerations	. 47
3.10	Comparison of Theoretical and Experimental Load Cell Displacements	. 48
3.11	Comparison of Theoretical and Experimental Values of ENTHRU	. 49
3.12	Idealization of a Vulcan Hammer Without Measuring Devices	. 56
3.13	Idealization of a Diesel Hammer Without Measuring Devices	. 57
3.14	Typical Force vs Time Curve When Diesel Explosive Pressure is Included	. 63
3.15	ENTHRU1 and ENTHRU vs Ram Velocity Including Explosive Pressure	. 66

Figure		₽age
3.16	LIMSET vs Ram Velocity Including Explosive Pressure	. 67
4.7	Stress-Strain Curve for a Cushion Block (After Reference 51)	. 77
4.2	Test Pile Showing Placement of Strain Gages	. 7৪
4.3	Cushion Test Stand	. ୧೧
4.4	Dynamic and Static Stress-Strain Curves for a Fir Cushion (After Reference 54)	. 8 2
4.5	Idealized Test Pile with Known Forces Applied at Head of the Pile	. 83
4.6	Dynamic Stress-Strain Curve for Fir Cushion (Case LT-48)	. 85
4.7	Dynamic Stress-Strain Curve for a Micarta Cushion (Case LT-41)	. 83
4.8	Dynamic Stress-Strain Curve for an Oak Cushion (Case LT-39)	. 87
4,9	İdealized Dynamic Stress-Strain Curve for Cushion (Parabolic)	. 90
4.10	Dynamic Force vs Compression Curves for a Fir Cushion (Case LT-48)	. 93
4.11	Dynamic Force vs Compression Curve for a Micarta Cushion (Case LT-41)	. 94
4.12	Dynamic Force vs Compression Curve for an Oak Cushion (Case LT-39)	. 95
5.1	Theoretical vs Experimental Solution for Case LT-48, Gage #3	. 97
5.2	Theoretical vs Experimental Solution for Case LT-48, Gage #5	. 98
5.3	Theoretical vs Experimental Solution for Case IT-41. Gage #3	9.0

Figure			P a ge
5.4	Theoretical vs Experimental Solution for Case LT-41, Gate #5		. 100
5.5	Theoretical vs Experimental Solution for Case LT-39, Gage #3	•	. 101
5.6	Theoretical vs Experimental Solution for Case LT-39, Gage #5	•	. 102
5.7	Theoretical vs Experimental Solution for Case LT-48, Gage #3	•	. 10 <i>u</i>
5.8	Theoretical vs Experimental Solution for Case LT-48, Gage #5	•	. 105
5.9	Theoretical vs Experimental Solution for Case LT-41, Gage #3		. 106
5.10	Theoretical vs Experimental Solution for Case LT-41, Gate #5	3 .	. 107
5.17	Theoretical vs Experimental Solution for Case LT-39, Gage #3		108
5.12	Theoretical vs Experimental Solution for Case LT-39, Gage #5	و. ت	169
5.13	Various Idealizations for the Spring Segment of a Pile		114
5.14	Idealized Pile Segment with Standard Linear Solid Damping		115
5.15	Comparison of Experimental and Theoretical Solutions for Stresses at Gaye #3 with Damping Omitted		7 4.5
5.16	Comparison of Experimental and	• •	121
	Theoretical Solutions for Stresses at Gage #3 for Different Damping Models (Case LT-15)		122
5.17	Comparison of Experimental and Theoretical Solutions for Stresses at Gage #5 with Damping Omitted		
	(Caco IT 15)		705

Figure		Page
5.18	Comparison of Experimental and Theoretical Solutions for Stresses at Gage #5 for Different Damping Models (Case LT-15)	. 124
6.1	Load-Deformation Characteristics Assumed for the Soil	. 128
6.2	Soil Resistance vs Deformation Curves	. 131
6.3	Maximum Point Displacement vs Quake (Case BLTP-6; 57.9)	137
6.4	Maximum Point Displacement vs Soil Damping Constant (Case BLTP-6; 57.9)	142

LISTOFTABLES

Table		Page
3.1	Effect of Breaking the Ram Into Segments When Ram Strikes a Cushion	21
3.2	Effect of Breaking Ram Into Segments When Ram Strikes a Steel Anvil	23
3.3	Summary of Belleville Cases Solved by Wave Equation	29
3.4	Summary of Detroit Cases Solved by Wave Equation	30
3.5	Summary of Muskegon Cases Solved by Wave Equation	31
3.6	Effect of Cushion Stiffness on ENTHRU for BLTP-6; 10.0	36
3.7	Effect of Cushion Stiffness on FMAX for BLTP-6; 10.0	37
3.8	Effect of Cushion Stiffness on LIMSET for BLTP-6; 10.0	38
3.9	Data Reported in the Michigan Study 44	40
3.10	Wave Equation Results for Michigan Pile Study Cases	51
3.11	Hammer and Cushion Assembly Efficiencies .	54
3.12	Effect of Removing Load Cell on ENTHRU, LIMSET, and Permanent Set of Pile	59
3.13	Effect on ENTHRU Resulting from Removing the Load Cell Assembly	60
3.14	Results Including Diesel Hammer Explosive Pressure in the Wave Equation Analysis	64
3.15	Effect of Cushion Stiffness on Maximum Point Displacement for Cases BLTP-6; 10.0 and 57.9	69

Table		Page
3.16	Effect of Coefficient of Restitution on ENTHRU for Case BLTP-6; 10.0 and 57.9	70
3.17	Effect of Coefficient of Restitution on Maximum Point Displacement for Case BLTP-6; 10.0 and 57.9	. 71
3.18	Study of Various Hammers Driving the Same Pile	74
4.1	Suspended Pile Data	79
4.2	Dynamic Cushion Properties	88
5.1	Dynamic Properties of New Cushion Blocks of Various Materials	111
6.1	Comparison of Results Found by Using Elastic-Plastic vs Non-Linear Soil Resistance Curves	132
6.2	Influence of Soil Quake at Different Soil Resistances for Case BLTP-6; 57.9 With no Soil Damping	135
6.3	Influence of Soil Damping on Different Soil Resistances for Case BLTP-6; 57.9 (0 = 0.1 for all Cases)	139

C H A P T E R I INTRODUCTION

General Background

The problem of pile-driving analysis has been of great interest to engineers for many years. Ever since the first engineer proposed a method for predicting the load carrying capacity of a pile, the whole subject of pile driving has become a much debated field in engineering. In other areas new methods of analysis for structural elements and systems are constantly being proposed with little or no resulting discussion. However, the proposal of a new piling analysis is sure to stir much interest and often some rather heated discussions.

Since over four-hundred pile-driving formulas have been proposed, not including the countless formula modifications which are used², many engineers resort to the use of only one or two formulas regardless of the driving conditions encountered³. Although many of the erroneous assumptions made in these formulas have been widely discussed^{4,5}, the fact that they omit many significant parameters which affect the problem seems to have received less attention. However, when the driving formulas omit parameters which change

from case to case, the engineer has no means of determining how significant the parameter may be, nor can he tell in which direction or to what extent the change will vary the results. Thus, to obtain an accurate solution obviously requires that fewer erroneous assumptions be made regarding the dynamic behavior of the materials and equipment used in pile driving, and that all significant parameters are included in the analysis.

The first of these problems was solved when it was noted that pile driving is actually a case of longitudinal impact, governed by the wave equation rather than by statics or rigid-body dynamics 6,7 . However, since the exact simulation and solution of the wave equation applied to piling are extremely complex for all but the simplest problems, many significant parameters still had to be neglected.

The second problem was later solved by Smith⁸, who proposed a numerical solution to the wave equation, capable of including any of the known parameters involved in pile-driving analysis. This method of analysis was applicable to tapered, stepped, and composite piles, to non-linear soil resistance and soil damping, to piles having several cushions, followers, helmets, etc. In other words, it was a completely

general method for simulation and analysis of the complex problem of pile driving.

It should be noted that much of the experimental work used in this report was reported by other investigators. These cases are referenced, and the problem number or name used herein will be the same as used by the original reporter. This will enable the reader to identify the problem being solved and to determine exactly what information was reported by referring to the original paper.

Objectives

The objectives of this research are:

- 1. To review and summarize Smith's original method of analysis and to derive a more general solution.
- 2. To determine how the numerical solution is affected by the elasticity of the ram.
- 3. To compare results given by the wave equation with those determined by laboratory experiments and field tests.
- 4. To illustrate the significance of the parameters involved, including cushion stiffness and damping, ram velocity, material damping in the pile, soil damping and quake, and to determine the quantitative effect of these parameters where possible.

- 5. To show how the wave equation can be used to determine the dynamic or impact characteristics of the materials involved.
- 6. To determine the dynamic properties of the cushion subjected to impact loading.
- 7. To study the effect of internal damping in the pile and its significance.

Literature Review

The basic purpose of any pile driving formula is to permit the design of a functional yet economical foundation. According to Chellis⁹, there are four basic types of driving formulas:

- 1. Empirical formulas, which are based on statistical investigations of pile load tests,
- 2. Static formulas, which are based on the side frictional forces and point bearing force on the pile, as determined by soils investigations,
- 3. Dynamic formulas, which assume that the dynamic soil resistance is equal to the static load capacity of the pile, and
- 4. The wave equation, which assumes only those parameters for which the behavior has not yet been determined experimentally. Each of the preceeding formulas has advantages and disadvantages which have

been widely noted 10,11 and need not be restated at this time.

Isaacs is thought to have first noted that the wave equation is applicable to the problem of pile driving 12. However, Fox 13 was probably the first person to propose that an exact solution be used for pile-driving analysis. Shortly thereafter, Glanville, Grime, Fox, and Davies 14 published the first correlations between experimental studies and results determined by the exact solution to the wave equation developed by Fox. Since this exact solution was extremely complex, they were forced to use simplified boundary conditions including zero side frictional resistance, a perfectly elastic cushion block, and an elastic soil spring acting only at the tip of the pile. However, even using these simplified boundary conditions, they obtained reasonably accurate results.

In 1940 Cummings 15 discussed several errors inherent in dynamic pile-driving formulas and reviewed
the previous work done using the wave equation. However, he also noted that even for the simplest problems,
"the complete solution includes long and complicated
mathematical expressions so that its use for a practical
problem would involve laborious numerical calculations."

A practical pile-driving problem usually involves side frictional soil resistance, soil damping constants, nonlinear cushion and capblock springs, and other factors which prevent a direct solution of the resulting differential equation. However, in 1950 Smith proposed a mathematical model and a corresponding numerical method of analysis which enabled him to account for the effects of any parameters which might influence the problem. He has since continued to update his method and has published various other works 17,18,19,20,21.

Smith's method of solution did not really become popular until 1960 when he published a summary of his numerical method applied to pile-driving analysis ²². In this paper he recommended a number of material constants and several material behavior curves to account for the dynamic action of the soil, cushions, and pile material.

Smith's method of analysis received considerable interest 23 , and two applications of the wave equation were suggested:

- 1. The immediate application of the wave equation, using the most probable material properties to predict ultimate driving resistance and driving stresses.
- 2. To perform extensive parameter studies in order to determine trends and to gain more insight into

the behavior of pile driving, and also to determine the relative significance of these parameters.

Immediately after the appearance of Smith's paper in 1960, the Bridge Division of the Texas Highway Department initiated a research project with the Texas Transportation Institute to perform exhaustive studies of the behavior of piling by the wave equation. Their first report dealt with a computer program based on Smith's numerical solution 24. This program was immediately used to study the magnitude of stress in prestressed concrete piling which failed during driving 25, and later to check conditions at other sites which might cause pile breakage due to excessive driving stresses 26.

In September, $1962 \; \text{Hirsch}^{27}$ published a major work designed to correlate field data, including driving stresses and pile displacements, with the theoretical computer solution.

Forehand and Reese²⁸ investigated the possibility of predicting the ultimate bearing capacity of piling using the wave equation, but since complete data was available for relatively few problems, they were unable to draw many firm conclusions. They also studied the dynamic action of the soil during driving and recommended some values for the soil parameters used in the wave equation.

In August, 1963 several extensions of Smith's method were presented by Samson, Hirsch, and Lowery 29. Two simple cases for which the "exact" solution was known were compared with Smith's numerical solution to indicate the method's accuracy. A third section of the paper presented the results of a short parameter study indicating how certain trends in pile driving might be determined and how to study the significance of various parameters. The results for several theoretical and field test problems were also compared.

In 1963 Hirsch, Samson, and Lowery³⁰ published a study on the methods employed in measuring dynamic stresses and displacements of piling during driving, and presented further experimental and theoretical comparisons "to demonstrate that the computer solution of the wave equation offers a rational approach to the problems associated with the structural behavior of piling during driving." This report was based on an extensive study by Hirsch³¹.

Another major investigation by Hirsch³² involved a study of the variables which affected the behavior of concrete piles during driving. Over 2100 separate problems were solved and the results were presented in the form of graphs for use by design engineers. The author drew many valuable conclusions from this study,

some of which were already known from years of experience, while others were original and had not previously been recognized.

In another paper dealing with stress wave theory, Samson, Bundy, and Hirsch 33 discussed various practical applications of the wave equation related to the design of long prestressed concrete piles driven at several Texas Gulf Coast sites.

In several instances, Hirsch and Samson combined practical pile-driving experience with the use of the wave equation to determine correct driving practices and to design prestressed concrete piles 34,35.

Hirsch's 36 latest publication deals with the dynamic load-deformation properties of various pile cushion materials and other dynamic properties of materials required to simulate as closely as possible the actual behavior of a pile during driving.

C H A P T E R I I A NUMERICAL METHOD OF ANALYSIS

The Basic Solution

Since 1931 it has been realized that pile driving involved theories of longitudinal impact rather than statics and that the behavior of piling during driving was actually governed by the wave equation. However, the application of the wave equation to pile driving was restricted to very simple problems because the exact solution was complex, involved much labor, and for most practical cases, required many simplifying assumptions.

However, in 1950 Smith 37 proposed an approximate solution based on concentrating the distributed mass of the pile (shown in Figure 2.1a) into a series of small weights, W(1) thru W(MP), connected by weightless springs K(1) thru K(MP-1), with the addition of soil resistance acting on the masses, as illustrated in Figure 2.1b. Time also was divided into small increments. This numerical solution to the wave equation is then applied by the repeated use of the following equations, developed by Smith 38 :

$$D(m,t) = D(m,t-1) + 12\Delta tV(m,t-1)$$
 Eq. 2.1

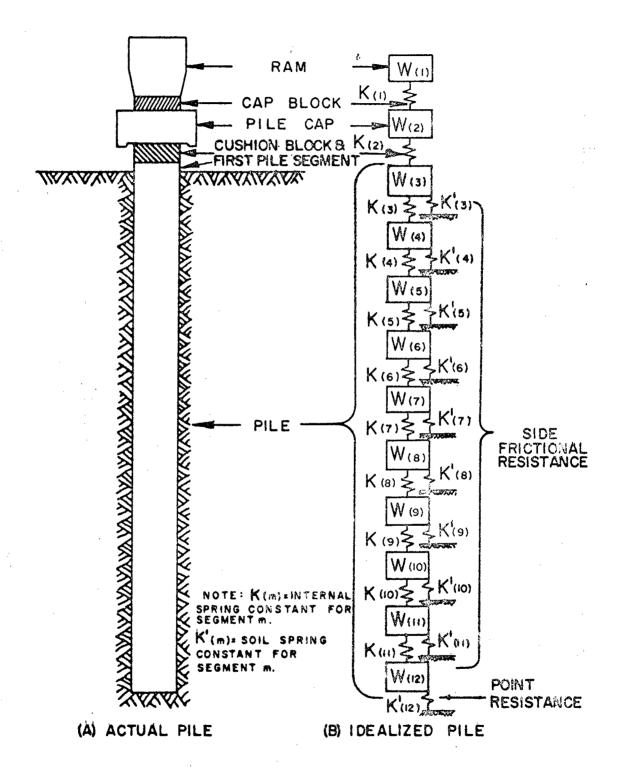


FIGURE 2.1 - IDEALIZATION OF A PILE FOR PURPOSE OF ANALYSIS

$$C(m,t) = D(m,t) - D(m+1,t)$$
 Eq. 2.2

$$F(m,t) = C(m,t)K(m)$$
 Eq. 2.3

$$R(m,t) = [D(m,t)-D'(m,t)]$$
 Eq. 2.4

$$V'(m)[1+J(m)V(m,t-1)]$$
 Eq. 2.4

$$V(m,t) = V(m,t-1)+[F(m,t)-R(m,t)]$$
 Eq. 2.5

where \underline{m} is the mass number; \underline{t} denotes the time interval number; $\underline{\Delta t}$ is the size of the time interval (sec); D(m,t) is the total displacement of mass number \underline{m} during time interval number $\underline{t}(\text{in.})$; V(m,t) is the velocity of mass \underline{m} during time interval $\underline{t}(\text{ft/sec})$; C(m,t) is the compression of spring \underline{m} during time interval $\underline{t}(\text{in.})$; F(m,t) is the force exerted by spring number \underline{m} between segment numbers (m) and (m+t) during time interval $\underline{t}(\text{lb})$; and K(m) is the spring rate of mass \underline{m} (lb/in.). Note that since certain parameters do not change with time, they are assigned a single subscript.

The quantity R(m,t) is the total soil resistance acting on segment $\underline{m}(lb/in.)$; K'(m) is the spring rate of the soil spring causing the external soil resistance force on mass $\underline{m}(lb/in.)$; D(m,t) is the total inelastic soil displacement or yielding during the \underline{t} at segment $\underline{m}(in.)$; J(m) is a damping constant for the soil acting on segment number (m)(sec/ft); g is the gravitational

acceleration (ft/sec²); and W(m) is the weight of segment number \underline{m} (lb).

The solution is begun by initializing the time-dependent parameters to zero and by giving the ram an initial velocity. Then an incremental amount of time Δt elapses during which the ram moves down an amount given by Equation 2.1. The displacements D(m,I) of the other masses are computed in the same manner.

Equation 2.2 is then used to determine the compressions C(m,I), after which the internal spring forces acting between the masses are found from Equation 2.3 and the external soil forces R(m,I) are computed from Equation 2.4.

Finally, a new velocity V(m,I) is determined for each mass using Equation 2.5, after which another time interval elapses. New displacements, compressions, forces, and velocities are again computed using the same equations and the cycle is repeated until the solution is obtained. Smith 39 and others 40,41, give a detailed explanation of this method of solution and the computer programming required. The dynamic behavior of various parameters will be discussed later.

Smith would have probably caused little interest had he simply given a numerical solution for the wave equation. Instead he presented a simple, physical

model, easily visualized, using parameters which are readily understood. This and the simplicity of the equations required for a solution doubtlessly account for much of the wave equation's increasing popularity as a means of studying the behavior of piling.

Modifications of the Original Solution

Although the original method of analysis proposed by Smith can be used to solve many of the problems given in this report, it has been greatly extended to include other idealizations. The major additions and changes are summarized here for reference only, and are fully discussed in later chapters.

- l. The relationship between soil resistance to penetration of the pile was originally limited to a series of straight lines. The revised program allows the use of any shape for this curve, as noted in Chapter VI.
- 2. The elastic soil deformation "Q" and the soil damping constant "J" were each limited to one value at the point of the pile and a second value for side resistance. These parameters have been generalized to include different values at each pile segment.
- 3. A new method by which internal damping in the pile can be accounted for is now included. This method is explained in Chapter V.

- 4. A second method is included to account for the coefficient of restitution of the capblock or cushion-block.
- 5. For correlation with experimental data, it is now possible to place forces directly on the head of the pile rather than having to calculate them from the hammer-cushion-anvil properties. This method was used extensively where the force vs time curve at the head of the pile was known; since then the hammer, cushion, and anvil properties did not influence the solution.
- 6. The linear force vs compression curve for various cushion materials used previously has been generalized as noted in Chapter IV.
- 7. The effect of gravity on the solution can now be accounted for.
- 8. A special "parameter study" sub-program was written which was included in the general program.

 This feature was used to vary specific parameters or groups of parameters between specified limits in order to study their influence on the solution, and to see if trends could be found.
- 9. For possible later use, several pile-driving formulas were included in the computer program.
- 10. The soil resistance on the point segment now uses two springs, one for the side friction acting on

the side of the pile and a second spring for point bearing.

C H A P T E R I I I PILE DRIVING HAMMERS

Ram Idealization

 $Smith^{42}$ suggests that since the ram is usually short in length, in many cases it can accurately be represented by a single weight having infinite stiffness. The example illustrated in Figure 2.1 makes this assumption since K(1) represents the spring constant of only the cap block, the elasticity of the ram having been neglected. He also notes that where greater accuracy is desired, or when the ram is long and slender, it can also be divided into a series of weights and springs. However, no work has been done to determine how long the ram can be before its elasticity affects the accuracy of the solution, and therefore should also be divided into several segments. The most common hammers in the above class include drop, air, and steam hammers. Figures 3.1 and 3.2 show how the ram may be idealized.

In order to determine how great is the influence of dividing the ram into a number of segments, several ram lengths ranging from 2 to 10 feet were assumed, driving a 100 ft pile with point resistance only. For this parameter study the total weight of the pile varied

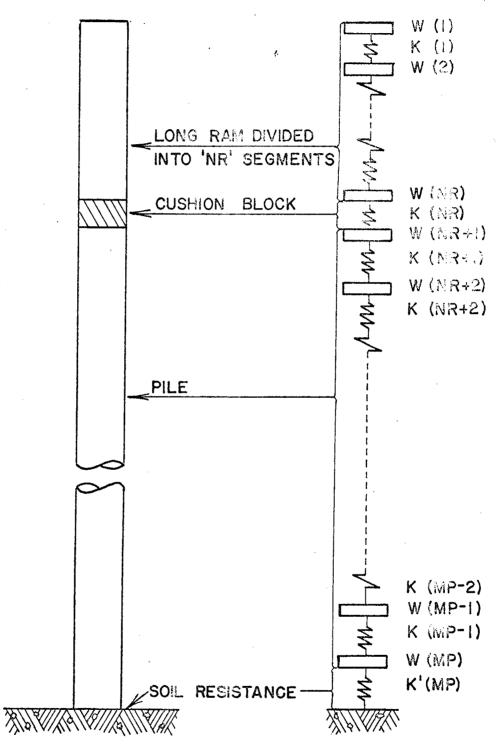


FIGURE 3.1-IDEALIZATION FOR A LONG RAM
STRIKING DIRECTLY ON A
CUSHION BLOCK

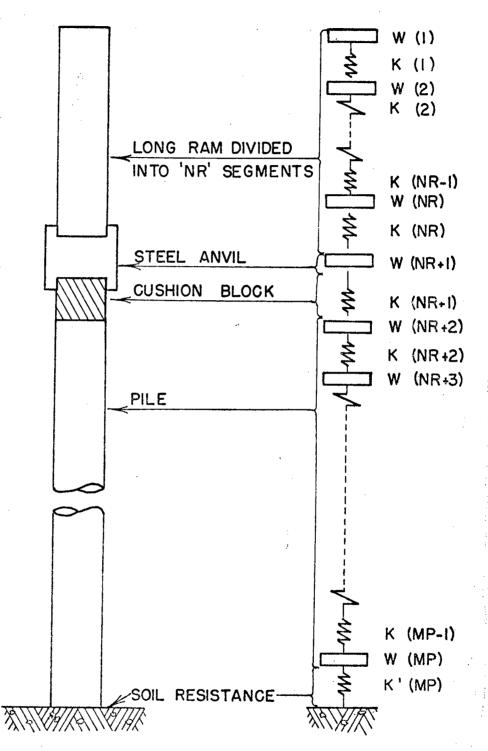


FIGURE 3.2-IDEALIZATION FOR A LONG RAM STRIKING DIRECTLY ON A STEEL ANVIL

from 1,500 lb to 10,000 lb, while the ultimate soil resistance ranged from zero to 10,000 lb. The cushion was assumed to have a stiffness of 2,000 kip/in.

problem solved in this series, the problem consisting of a 10 ft ram traveling at 20 ft/sec, striking a cushion having a stiffness of 2,000 kip/in. The pile used was a 100 ft 12H53 steel pile, driven by a 5,000 lb ram with an initial velocity of 12.4 ft/sec. No pile cap was included in the solution, the cushion being placed directly between the hammer and the head of the pile. Since the ram was divided into very short lengths, the pile was also divided into short segments.

As shown in Table 3.1, the solution is not changed to any extent, regardless of whether the ram is divided into 1, 2, or 10 segments. The time interval Δt was held constant in each case.

This is further evidenced by noting Table 3.1, which gives the effects of dividing the pile into segments shorter than the normal ten ft lengths. When the pile segment length changes from 10 ft to 1.25 ft the tensile stress changes almost 25 percent whereas changing the number of ram segments affects the solution less than one percent. However, the use of a driving cap is common practice and its addition into the system usually

EFFECT OF BREAKING THE RAM INTO SEGMENTS WHEN RAM STRIKES A CUSHION TABLE 3.1

num n t ement (ເ	61	12		57	,¢ 82	59? it will m	no soil
Maximum Point Displacement (in)	3.019	3.042	3.053	3.057	3.058	3.0593	
Maximum Tensile Force in Pile (kip)	273.9	245.9	224.8	219.0	218.8	218.5	2017.9 0
Maximum Compressive Force in Pile (kip)	305.4	273.8	265.6	263.1	262.6	262.9 262.9	6.296
Length of Pile Segments (ft)	10.0	5.0	2.5	1.25	1.25	1,25	
Number of Ram Divisions	-	·			2	/10	\$ 40

reduces these percentages. It has previously been shown that the lengths of the pile segments normally have little effect on the solution⁴¹.

In certain hammers such as a diesel hammer, the ram strikes directly on a steel anvil rather than on a cushion. This makes the choice of a spring rate between the ram and anvil difficult because the impact occurs between two steel elements. One possible solution is to place the spring constant of the entire ram between the weights representing the ram and anvil. Also, the ram can be broken into a series of weights and springs as is the pile.

To determine when the ram in this case should be divided, a parameter study was run in which the ram length varied between 6 and 10 ft and the anvil weight from 1,000 to 2,000 lb. In each case the ram diameter was held constant and the ram was divided equally into segment lengths as noted in Table 3.2. These variables were picked because of their possible influence on the solution.

The pile used was again a 12H53 point bearing pile with a cushion of 2,000 kip/in. spring constant placed between the anvil and head of the pile. The soil parameters used were $RU_{total} = 500$ kip, Q = 0.1 in.,

TABLE 3.2 EFFECT OF BREAKING RAM INTO SEGMENTS WHEN RAM STRIKES A STEEL ANVIL

A	D	Number of	Length of Each	Maximum Compressive Force on Pile			Maximum Point
Anvil	Ram	Ram	Ram	At	At	Αt	Displace-
Weight	<u>Length</u>	Divisions	Segment	Head	Center	Tip	ment
<u>lb</u>	ft		ft	kip	kip	kip	in.
2000	10	1	10	513	513	884	0.207
		<u>2</u> 5	5	437	438	774	0.159
		5	2	373	373	674	0.124
		10	1	375	375	678	0.125
	8	1	8	478	478	833	0.183
		4	2	359	359	648	0.117
· · · · · · · · · · · · · · · · · ·		8	1.	360	360	651	0.118
	6	· • • •	6	430	430	763	0.155
		3	2	344	344	621	0.110
		6	1	342	342	616	0.109
1000	10	1	10	508	509	878	0.160
		2	5	451	451	789	0.159
		5	2	381	382	691	0.151
		10	1	371	372	681	0.153
	8	1 .	8	487	488	846	0.151
		4	2	443	444	785	0.144
		8	1	369	370	675	0.134
		10	0.8	337	338	665	0.133
	6	1	6	457	457	798	0.137
		3	2	361	362	666	0.128
		6	1	316	316	562	0.109
	ration of the second se		0.6	320	320	611	0.113

hol ram to

V

and J = 0.15 sec/ft. These factors were held constant for all problems listed in Table 3.2.

The most obvious result shown by Table 3.2 is that when the steel ram impacts directly on a steel anvil dividing the ram into segments has a marked effect on the solution.

For what conditions?

An unexpected result of this study is that even a short ram should be broken into segments. As seen in Table 3.2, regardless of the total ram length, the solutions for forces and displacements continued to change until a ram segment length of 2 ft for the 2,000 lb anvil, and a segment length of 1 ft for the 1,000 lb anvil was reached.

Energy Output of Hammer

One of the most significant parameters involved in pile driving is the velocity of the ram immediately before impact. This velocity is often used to determine the maximum kinetic energy of the hammer and its energy output rating, and must also be known or assumed before the wave equation can be applied.

Although most manufacturers of the pile-driving equipment specify the output energies of their hammers, these are usually downgraded by foundation experts because of the lack of a consistent method of determining

the output and because of the difficulty encountered in verifying the recommended values. A number of possible factors such as poor hammer condition, lack of lubrication, and wear are also known to seriously reduce the energy output of a hammer. However, to determine how much the rated energy of any given hammer should be reduced is not a simple task.

Chellis⁴³ discusses several reasons for this energy reduction and recommends a number of possible efficiency factors for the commonly used hammers, based on his observations and previous experience.

The Michigan Study of Pile Driving Hammers

In 1965 the Michigan State Highway Commission 44 completed an exhaustive research program designed to obtain a better understanding of the complex problem of pile driving, and though a number of specific objectives were given, one objective was of primary importance. As noted by Housel 45, "Hammer energy actually delivered to the pile, as compared with the manufacturer's rated energy, was the focal point of a major portion of this investigation of pile-driving hammers." In other words, they hoped to determine more accurate energy ratings for the hammers tested, and to compare these values with the manufacturer's ratings.

The energy transmitted to the pile was termed "ENTHRU" by the authors and was determined by the summation

$ENTHRU = \Sigma F \Delta S$

where F, the force on the top of the pile, was measured by a specially designed load cell, and ΔS , the resulting movement of the head of the pile, was found using displacement transducers and/or accelerometers.

However, since so many parameters influence the problem, and since these parameters are continually changing during the pile driving operation (e.g. condition of the cushion, length of the pile, soil resistance, etc.), it seems unlikely that a single efficiency factor could be found for any given hammer. More likely a range of efficiencies will result.

As noted in the Michigan report⁴⁶: "Hammer type and the operation; soil conditions; pile type, mass, rigidity, and length; and the type and condition of cap blocks were all factors that affected ENTHRU, but when, how, and how much could not be as certained with any degree of certainty." However, since the wave equation is able to account for these factors, their effects can be determined.

Before analyzing any of the Michigan cases, further explanation of the reported data is required.

As noted in the Michigan report, ENTHRU was not actually a direct measure of the hammer's efficiency or energy output since the forces and displacements were measured below the capblock, as shown in Figure 3.3.

Thus ENTHRU was defined as the amount of work done on the load cell.

The maximum displacement of the head of the pile was also reported and was designated LIMSET. Oscillographic records of force vs time measured in the load cell were also reported. Since force acceleration was measured only at these points, the maximum observed values will be called FMAX and AMAX, respectively.

Problem Information

In selecting which of the Michigan pile problems to solve by the wave equation, it was decided to run at least two problems for each hammer used at each of the three testing sites. As shown in Table 3.3, cases selected from the Belleville site include two pile lengths for each of four different hammers. Similarly, the Detroit and Muskegon site problems are summarized in Tables 3.4 and 3.5. Figures 3.4 and 3.5 illustrate how these problems were idealized for purposes of analysis.

Even though the Michigan study is one of the most

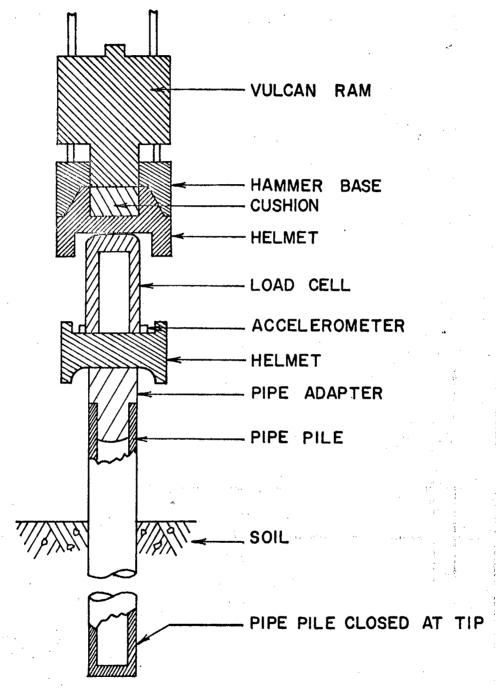


FIGURE 3.3 - TYPICAL PILE DRIVING ASSEMBLY (AFTER REFERENCE 44)

TABLE 3.3 SUMMARY OF BELLEVILLE CASES SOLVED BY WAVE EQUATION

			·	PIL	E INFORM	MATTON
PILE I.D.	CASE	HAMMER*	CUSHION		TOTAL LENGTH (ft)	EMBEDDED LENGTH (ft)
BLTP-6	10.0 57.9	V - 1	Oak	12H53	$\frac{32.5}{72.5}$	10.0 57.9
BLTP-4	25.0 66.4	LB-312	Micarta	12 in. Pipe 0.25 in. wall	<u>40.7</u> 81.3	15.0 56.4
BRP-4	20.0 50.0	M-DE30	0 a k	12H53	40.0 60.0	<u>20.0</u> 50.0
BLTP-5	15.0 60.0	D-D12	German Oak	12 in. Pipe 0.179 in. wall	40.0 80.0	5.0 50.0

* Hammer designations are as follow:

V-1 = Vulcan 1 V-50C = Vulcan 50C V-80C = Vulcan 80C LB-312 = Link Belt 312 LB-520 = Link Belt 520 M-DE30 = McKiernen-Terry DE-30 M-DE40 = McKiernen-Terry DE-40 D-D12 = Delmag D-12 D-D22 = Delmag D=22

TABLE 3.4 SUMMARY OF DETROIT CASES SOLVED BY WAVE EQUATION

				PIL	TOTAL	EMBEDDED
PILE I.D.	CASE	HAMMER	CUSHION	TYPE	LENGTH (ft)	LENGTH <u>(ft)</u>
DLTP-8	41.5 80.2	V - 1	0 a k	12H53	80.1 97.0	<u>41.5</u> 80.2
DTP-5	20.0	V-50C	Micarta	12 in. Pipe 0.179 in. wall	<u>40.0</u> 84.0	<u>20.0</u> 79.0
DRP-3	40.0 60.0	LB-312	Micarta	12H53	80.0	40.0
DTP-13	40.0 80.7	M-DE30	Oak	12 in. Pipe 0.179 in. wall	45.0 90.7	<u>40.0</u> 80.7
DTP-15	20.0 80.5	D-D12	German Oak	12H53	46.1 86.1	20.0 80.5

TABLE 3.5 SUMMARY OF MUSKEGON CASES SOLVED BY WAVE EQUATION

				PIL		
PILE I.D.	CASE	HAMMER	CUSHION	TYPE	TOTAL LENGTH (ft)	EMBEDDED LENGTH (ft)
MLTP-2	20.0 53.0	V-1	Oak	12 in. Pipe 0.250 in. wall	45.0 60.0	20.0 53.0
MLTP-9	72.0 127.0	V-80C	Micarta	12 in. Pipe 0.250 in. wall	80.0	72.0
MTP-12	30.5 70.8	LB-520	Micarta	12 in. Pipe 0.250 in. wall	40.0	30.5 70.8
MTP-11	69.5 150.0	M-DE40	Oak and Plywood	12 in. Pipe 0.250 in. wall	80.0	69.5 150.0
MLTP-8	31.0 178.0	D-D22	German Oak	12 in. Pipe 0.250 in. wall	40.0 185.0	31.0 178.0

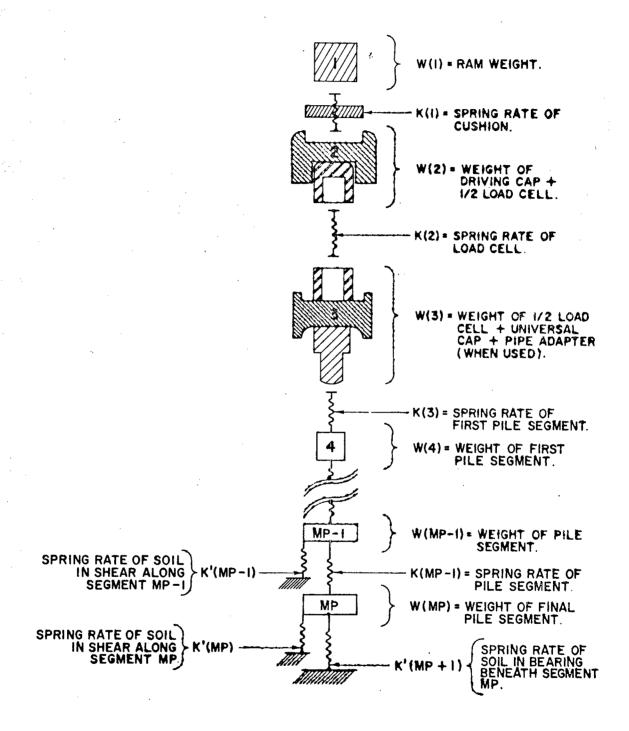


FIGURE 3.4 - IDEALIZATION OF A VULCAN HAMMER

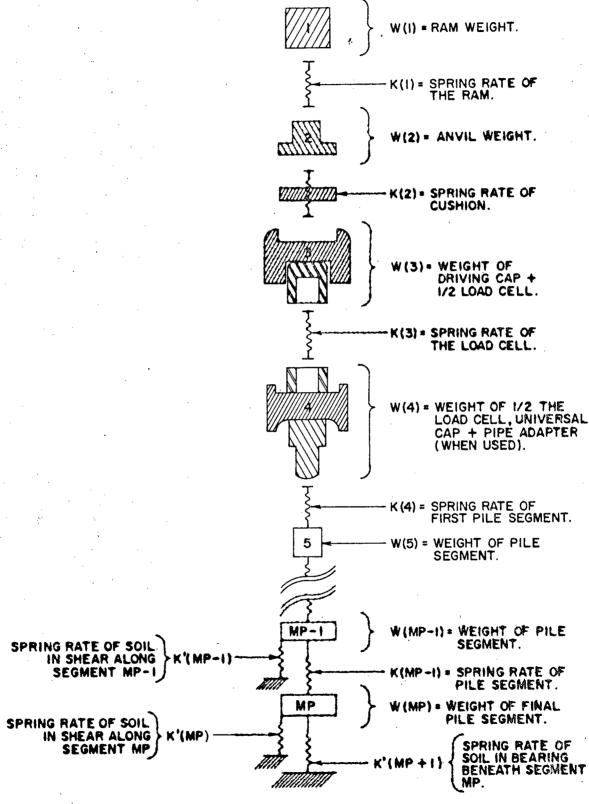


FIGURE 3.5 - IDEALIZATION OF A DIESEL HAMMER

completely documented and fully reported research projects published concerning pile driving, certain information was not reported which must be known in order to apply the wave equation. This omission was not the result of any failure in reporting the data, but rather stems from the fact that the methods of analysis used in the Michigan project could not have utilized the data, and they were therefore not obtained. Probably the best example is the lack of information concerning the stiffness of the cushion and how the stiffness varied during driving. Preferably, the spring rate of the cushion would have been given at each depth of penetration for which other data were reported.

Preliminary Studies and Conclusions

Since cushion-block information was not given, and because the cushion stiffness varies greatly during driving, a broad parameter study was made using the first case mentioned in Table 3.3. In this study the cushion stiffness was varied by a factor of 50, from 540 kip/in up to 27,000 kip/in. Also studies was the effect of varying the total soil resistance, RUT, using resistances of 30, 90, and 150 kip and ram velocities of 8, 12, and 16 ft/sec.

The results of this parameter study indicate what a powerful tool the wave equation is, and how helpful it can be in understanding how the multitude of parameters affect the pile-driving problem. The solutions from ENTHRU, FMAX, and LIMSET resulting from a change in the cushion stiffness, soil resistance, and ram velocities are given in Tables 3.6, 3.7, and 3.8 respectively. Whereas before it could not be determined "when, how, or how much," this study indicates that for this particular problem, 1) ENTHRU is nearly independent of the cushion block used, since the cushion stiffness was increased by a factor of 50 while influencing ENTHRU only slightly, 2) ENTHRU has a slight tendency to increase as the driving resistance increases, 3) FMAX is almost completely independent of the driving resistance,

- 4) FMAX is almost linearly related to the hammer velocity,
- 5) FMAX consist intly increases as the cushion stiffness increases, and 6) LIMSET is only slightly changed regardless of the spring rate of the cushion block.

Thus for the first time, a number of trends may be established for various pile driving situations by using the wave equation.

Determination of Hammer Efficiency

In order to analyze the above problem, certain data

TABLE 3.6 EFFECT OF CUSHION STIFFNESS ON ENTHRU FOR BLTP-6; 10.0

		ENTHRU (k	ip ft)	·····	
Ram Velocity	RUT	Cushi	on Sti	ffness	(kip/in)
(ft/sec)	(kip)	540	1080	2700	27,000
	30	3.0	3.0	3.0	2.9
8	90	3.1	3.2	3.3	2.9
	150	3.0	3.2	3.3	3.0
*	30	6.6	6.4	7.1	6.4
12	90	7.0	7.1	7.2	6.4
	150	6.9	7.2	7.4	6.7
	30	11.8	11.9	12.2	11.3
16	90	12.3	12.6	12.8	11.5
•	150	12.4	12.9	13.2	11.4

TABLE 3.7 EFFECT OF CUSHION STIFFNESS ON FMAX FOR BLTP-6; 10.0

		FMAX	(kip)		
Ram	RUT	Cushi	on Stif	fness ((kip/in)
Velocity (ft/sec)	(kip)	540	1080	2700	27,000
	30	132	185	261	779
8	90	137	185	261	779
	150	143	186	261	779
	30	198	278	391	1,169
12	90	205	278	391	1,169
	150	215	279	391	1,169
	30	264	371	522	1,558
16	90	275	371	. 522	1,558
	150	288	371	522	1,558

TABLE 3.8 EFFECT OF CUSHION STIFFNESS ON LIMSET FOR BLTP-6; 10.0

		LIMSET	(in)		
Ram	RUT	Cushi	on Stif	fness (l	(ip/in)
Velocity (ft/sec)	(kip)	540	1080	2700	27,000
	30	1.09	1.08	1.08	1.13
8	90	0.44	0.44	0.45	0.45
	150	0.32	0.33	0.33	0.33
	30	2.21	2.14	2.19	2.25
12	90	0.80	0.82	0.84	0.84
	150	0.55	0.57	0.58	0.58
	30	3.62	3.59	3.63	3.68
16	90	1.30	1.31	1.32	1.34
	150	0.85	0.87	0.88	0.90

given in the Michigan pile project will be used, for example the experimental values for ENTHRU, FMAX, and LIMSET. The information reported for each problem solved is listed in Table 3.9.

Figure 3.6 shows the relationship between the ram's kinetic energy at the instant of impact, termed EINPUT, and the energy measured at the load cell, ENTHRU, for case BLTP-6; 10.0. The first solution was based on a soil resistance of 30 kip and a cushion stiffness of 1080 kip/in. As shown earlier, ENTHRU is not particularly sensitive to either of these parameters, so the results will probably be sufficiently accurate.

As shown in Table 3.9, the Michigan study found ENTHRU for this case to be 6,380 ft/lb. Therefore, as illustrated in Figure 3.6, this known value of ENTHRU can be used to determine the actual energy output of the hammer. In this case, EINPUT is 11,000 ft lb, indicating that the hammer either lost 4,000 ft lb of its rated 15,000 ft lb because of friction and other causes or the hammer is over-rated. Also, another 4,620 ft lb (11,000 ft lb - 6,380 ft lb) was lost in the cushion and helmet assembly, since only 6,380 ft lb was transmitted through the load cell.

Thus, based on a rated energy output of 15,000 ft lb, the overall efficiency of the hammer during

TABLE 3.9 DATA REPORTED IN THE MICHIGAN STUDY 44

	· · · · · · · · · · · · · · · · · · ·						Estimated
Driving Location	Pile I.D.	Case	Rated Energy (ft 1b)	ENTHRU (ft lb)	LIMSET (in)	Permanent Set (in)	Static Soil Resistance (kip)
Belleville	BLTP-6	10.0 57.9	15,000 15,000	6,380 4,440	0.76 0.42	0.48	48
· · · · · · · · · · · · · · · · · · ·	BLTP-4	25.0 66.4	18,000 18,000	8,010 11,200	0.94	0.36 0.02	140 690
•	BRP-4	20.0	22,400	4,980 4,470	0.57	0.37	100 320
	BLTP-5	15.0 /60.0	22,500 22,500	9,040	1.86	1.43 0.11	80 340
Detroit	DLTP-8	41.5	15,000 15,000	5,760 4,540	1.22 0.54	1.00	60 360 s
	DTP-5	20.0 79.0	15,100 15,100	8,290 11,420	2.55 0.82	2.00	22
	DRP-3	40.0	18,000 18,000	7,060	1.36	1.25	60 76
	DTP-13	40.0	22,400 22,400	9,100 9,480	2.21	2.00	30
	DTP-15	20.0	22,500 22,500	10,100 5,480	2.07	2.00	265 40 120

TABLE 3.9 (Continued)

Driving Location	Pile I.D.	Case	Rated Energy (ft lb)	ENTHRU (ft 1b)	LIMSET (in)	Permanent Set (in)	Estimated Static Soil Resistance (kip)
Muskegon	MLTP-2	20.0 53.0	15,000 15,000	7,210 4,870	1.42 0.57	1.00	80 200
	MLTP-9	72.0 127.0	24,450 24,450	14,660 13,110	1.06	0.56 0.23	160
	MTP-12	30.5 70.8	30,000	14,860 13,140	1.48	1.00	470 40
	MTP-11	69.5 150.0	32,000 32,000	16,760 17,900	1.16	0.67	156 160
	MLTP-8	31.0 178.0	39,700 39,700	25,500 22,050	2.35	1.25	500 40 988

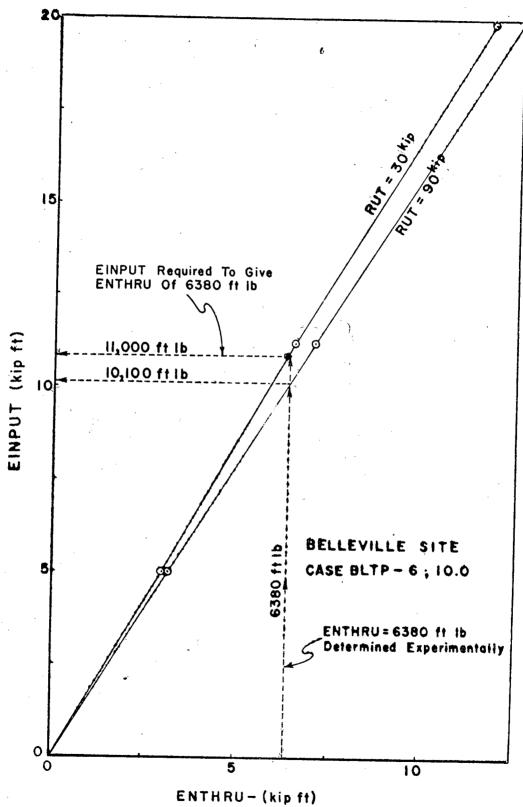


FIGURE 3.6 - EINPUT vs ENTHRU

this blow was $\frac{11,000 \times 100}{15,000}$ or about 73 percent while the efficiency of the cushion-helmet-load cell assembly, based on its ability to transmit the 11,000 ft 1b delivered to it, was $\frac{6,380 \times 100}{11,000}$ or about 58 percent.

The ability to determine these efficiencies separately is important since it will indicate whether the pile driver or the cushion-helmet assembly should be improved to reduce energy losses during the pile-driving operation.

It is now a simple matter to determine the ram's velocity at impact by

$$V = \sqrt{\frac{(EINPUT)(64.4)}{Ram Weight}} = \frac{(11,000)(64.4)}{5,000} = 11.9 \text{ ft/sec}$$

Since Smith's numerical method gives the displacement curve for each segment, the maximum displacement of the bottom of the load cell (LIMSET) is known. Figure 3.7 shows how LIMSET is related to the ram velocity for various soil resistances. Table 3.9 gives an experimental value of LIMSET equal to 0.75 in. As shown in Figure 3.7, lines projecting from LIMSET = 0.75 in. and V = '11.9 ft/sec intersect at a point which indicates a driving resistance of about 90 kip. Since this is considerably greater than RUT = 30 kip, the problem was solved again using RUT = 90 kip. This re-

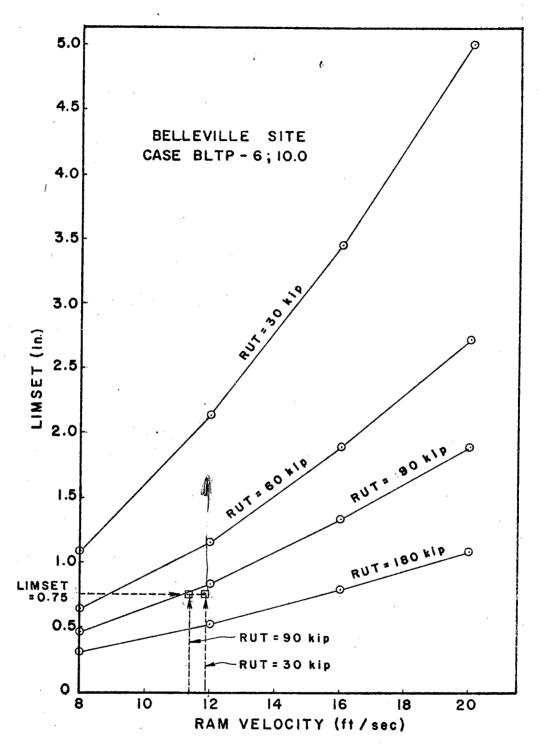


FIGURE 3.7 - RAM VELOCITY VS LIMSET

LIMSET

sults in the lower curve of Figure 3.6, and the new value of EINPUT is found to be 10,100 lt lb, which corresponds to an initial velocity of 11.4 ft/sec. When this velocity is substituted into Figure 3.7, the resulting value of RUT agrees closely with the assumed value of 90 kip. Thus, since the hammer output is 4,900 ft lb less than its rated 15,000 ft lb, and the cushion-helmet assembly lost another 3,720 ft lb, the hammer would be $\frac{10,100 \times 100}{15,000} = 67$ percent efficient, while the cushion efficiency is $\frac{6,380 \times 100}{10,100} = 63$ percent. It should be noted that even though RUT was off by a factor of 3, it made little difference in these efficiencies.

Correlation of Experimental and Theoretical Results

Comparisons between the experimental results and those by the wave equation for this case are shown in Figures 3.8 thru 3.11. These figures show the experimental and theoretical solutions for forces, accelerations, displacements, and work vs time, measured at the load cell. The correlations are reasonably accurate, expecially during the first 0.01 sec. Although the reflected compressive wave seems to be overestimated, as shown in Figure 3.8 at 0.014 sec. this did not greatly affect either the ENTHRU or displacement curves, although it may have caused the rather

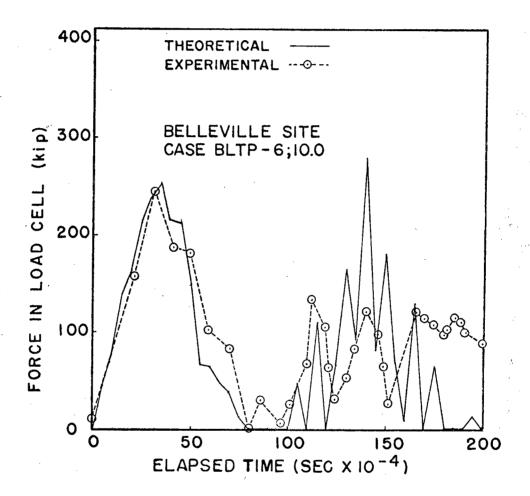


FIGURE 3.8 - COMPARISON OF THEORETICAL AND EXPERIMENTAL LOAD CELL FORCES

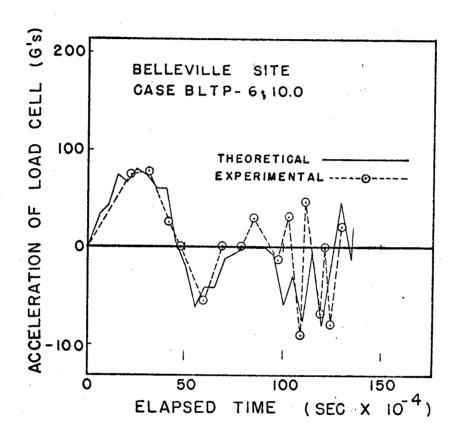


FIGURE 3.9 — COMPARISON OF THEORETICAL AND EXPERIMENTAL LOAD CELL ACCELERATIONS

TABLE 3.13 EFFECT ON ENTHRU RESULTING FROM REMOVING THE LOAD CELL ASSEMBLY

				ENTHRU (ft 1b	
Driving Location	Pile I.D.	Case	With Load Cell	Without Load Cell	Increase in ENTHRU %
Belleville	BLTP-6	10.0	6380 4440	7500 5300	<u>18</u> 19
	BLTP-4	25.0 66.4	8010 11200	8800 12000	10 8
	BRP-4	20.0 50.0	4980 4470	5750 6450	15 44
	BLTP-5	15.0	9040 9930	10750 12300	19 24
Detroit	DLTP-8	41.5	5760 4540	6900 5400	21 19
	DTP-5	20.0 79.0	8290 11420	10000 12700	23 12
	DRP-3	40.0	7060 6620	7600 7200	13
	DTP-13	40.0 80.7	9100 9480	10850 11400	13 20
· · · · · · · · · · · · · · · · · · ·	DTP-15	20.0 80.5	10100 5480	11500 6600	14 20
Muskegon	MLTP-2	20.0	7210 4870	8800 5700	23 17
	MLTP-9	72.0 127.0	14660 13110	17000 16000	16 22
	MTP-12	30.5 70.8	14860 13140	17000 15000	14
•	MTP-11	69.5 150.0	16760 17900	22000 25300	31 41
	MLTP-8	31.0 178.0	25500 22050	31000 26600	22 21

when the load cell assembly is removed for each of the problems solved.

As mentioned earlier, a complete parameter study would be greatly beneficial to the engineer, but only if the correct behavior of the numerous parameters were known. More accurate information concerning wave propagation must therefore be determined while looking for new tests and methods to determine the behavior of the many parameters which influence the problem.

Effects of Explosive Pressure

As noted earlier, the diesel explosive pressure was neglected in the previous solutions, since the explosive force is usually much smaller than the impact forces and have little effect on the driving stresses 41. However, the ram velocity required to predict ENTHRU is often higher than that calculated from the free fall of the ram, even assuming 100 percent efficiency. As noted in Table 3.10, several ram velocities exceed 20 ft/sec. Also, the diesel hammer efficiencies found are higher than indicated by practical experience. Therefore, the diesel hammer cases were re-run to account for the explosive pressure in the hammer.

As recommended by Smith²³, the force on the anvil

is assumed to reach some maximum due to the ram's impact, and then decrease. The diesel explosive pressure then maintains a given minimum force between the ram and anvil for 0.01 seconds, after which the force tapers to zero at 0.0125 seconds as shown in Figure 3.14. The explosive forces assumed to be acting within the diesel hammers are listed in Table 3.14.

In previous solutions, it was an easy matter to solve for the total energy of the ram at impact since only its kinetic energy (EINPUT) was involved. Since explosive pressure is included, the total energy output is changed.

This total energy output, ENTOTL, is used in two ways: to transmit energy to the anvil and pile, and to raise the ram for the next blow. The energy transmitted to the anvil (ENTHRU I) is calculated by the same method as was used for ENTHRU at the load cell, and the kinetic energy of the ram after impact is equal to $WV^2/64.4$, where W is the weight of the ram and V is the rebound velocity of the ram after impact.

A number of runs were first made to bracket the results given in the Michigan report, and also to determine the influence of certain variables such as ram velocity and ultimate soil resistance. The ef-

FIGURE 3.14-TYPICAL FORCE VS TIME CURVE WHEN DIESEL EXPLOSIVE PRESSURE IS INCLUDED

TABLE 3.14 RESULTS INCLUDING DIESEL HAMMER EXPLOSIVE PRESSURE IN THE WAVE EQUATION ANALYSIS

Driv- ing Lo- cation Belle- Ville	DITD 1	$\frac{20.0}{50.0}$	LB-312 M-DE30	Minimum Explosive Force on Anvil (kip) 98.0 98.0	Total Energy Output of Hammer (ft 1b) 10,630 16,030 9,450 9,100 13,000 14,730	Hammer Ef- ficiency % 59 89 42 41 58 66	Cushion Assembly Ef- ficiency % 75 70 53 49 69	Ram Velocity at Impact (ft/sec) 8.2 6.4 9.8 10.6 12.8 15.0	RUT (kip) 70 250 100 200 40 400	Ratio of Reported RUT to Theo-retical RUT % 50 36 100 63 50 118
De- troit	DRP-3	40.0 60.0	LB-312	98.0	9,270 13,900	52 77	7 6 4 8	9.8 5.2	45 60	75 ~79
	DTP-13			98.0	14,390 15,280	64 68	63 62	13.7 15.1	35 120	117
	DTP-15	$\frac{20.0}{80.5}$	D-D12	93.7	15,270 9,430	68 42	66 58	15.2 11.6	45 110	112
Muske- gon	MTP-12	70.8	LB-520	98.0	22,140 21,260	7.4 7.1	67 62	16.4 14.4	75 70	187 45
ŭ	MTP-11-	69.5	M-DE40	138.0	32,800 36,850	102 115	50 49	20.6 21.5	150 250	94
	MLP-8	31.0 178.0	D-D22	158.7	31,600 27,300	80 69	81 81	17.8	70 300	175 30

ficiencies and ram velocities noted in Table 3.14 were found by plotting ENTHRU and ENTOTL vs the initial ram velocity as shown in Figure 3.15. By plotting the values of LIMSET for varying soil resistance vs ram velocity as in Figure 3.16, the total soil resistance predicted by the wave equation was then determined. This revised procedure was followed on all the diesel hammer cases, and the results are summarized in Table 3.14.

Effects of Cushion Properties on Driving

The general effects of cushioning materials on pile driving is discussed in Chapter IV. The following discussion is given since it deals with the Michigan pile study.

As previously noted, the Michigan report states that the cushion properties influence the values of ENTHRU significantly, although "how, when, or how much" ENTHRU was affected could not be determined. It was thought that ENTHRU could be increased by using a more resistant cushion block, in the case of the Vulcan 1 and McKiernan-Terry DE-30 hammers. Although this conclusion seems reasonable, results given by the wave equation did not seem to agree. For example, as seen in Table 3.6, ENTHRU does not always increase with increasing cushion stiffness, and furthermore, the maximum increase in

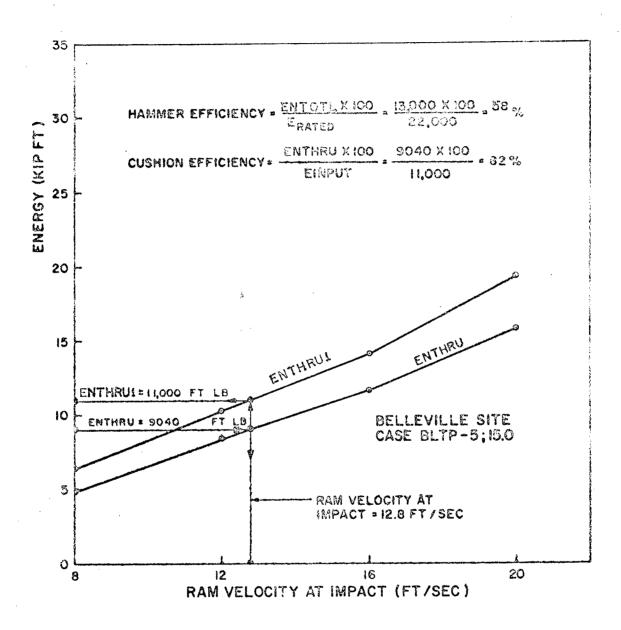


FIGURE 3.15 - ENTHRU1 & ENTHRU VS RAM VELOCITY INCLUDING EXPLOSIVE PRESSURE

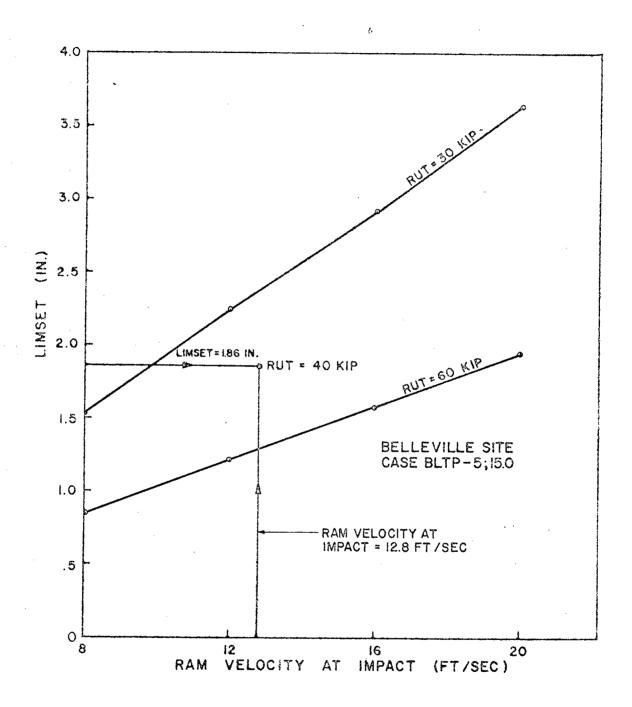


FIGURE 3.16 - LIMSET VS RAM VELOCITY INCLUDING EXPLOSIVE PRESSURE

ENTHRU noted here is relatively small - only about 10 percent. This effect can also be seen in Table 3.15, in which the cushion stiffness varies greatly, while the displacement of the pile point changes less than 10 percent.

However, if a different cushion is used, the coefficient of restitution will probably change too. Since the coefficient of restitution of the cushion may affect ENTHRU, a number of cases were solved with "e" ranging from 0.2 to 0.6. As shown in Tables 3.16 and 3.17, an increase in "e" from 0.2 to 0.6 normally increases ENTHRU from 18 to 20 percent, while increasing the permanent set from 6 to 11 percent. Thus, for the case shown, the coefficient of restitution of the cushion has a greater influence on rate of penetration and ENTHRU than does its stiffness. This same effect was noted in the other solutions, and the cases shown in Tables 3.16 and 3.17 are typical of the results found in other cases.

As was noted in Table 3.7, any increase in cushion stiffness also increases the driving stresses. Thus, according to the wave equation, increasing the cushion stiffness to increase the rate of penetration (for example by not replacing the cushion until it has been beaten to a fraction of its original height or by

TABLE 3.15	EFFECT 0	OF CUSHION	STIFFNES CASES BL	SS ON MAX TP-6; 10	IMUM POIL	STIFFNESS ON MAXIMUM POINT DISPLACEMENT CASES BLTP-6; 10.0 and 57.9	EMENT FOR
Pile I.D.	RUT	Ram Velocity	Maximum 540	Point 1080	Displacement (2700 27,	ent (in) 27,000	Maximum Change
	(kip)	(ft/sec)	Cush	Cushion Stif	Stiffness (kip/in)	ip/in)	%
BLTP-6; 10.0	30	12	2.20	2.14	2.22	2.26	5
		16	3.54	3.47	3.52	3.70	9
		20	4.66	4.93	5.00	5.01	7
BLTP-6; 57.9	150	12	0.45	0.48	0.38	0.48	. 9
		16	0.72	0.76	0.76	0.79	თ
		20	1.06	1.10	1.11	1.15	∞

TABLE 3.16 EFFECT OF COEFFICIENT OF RESTITUTION ON ENTHRU FOR CASE BLTP-6; 10.0 and 57.9

Pile I.D.	RUT (kip)	Ram Velocity (ft/sec)	EN e = 0.2	THRU (kip f e = 0.4	e = 0.6	Maximum Change (%)
BLTP-6; 10.0	30	. 12	6.0	6.5	7.3	18
		16	10.5	11.8	12.8	18
		20	16.5	17.4	20.0	17
BLTP-6; 57.9	150	12	6.7	7.2	8.2	18
		16	11.6	12.7	14.5	20 ~
		20	18.2	19.7	22.4	19

TABLE 3.17 EFFECT OF COEFFICIENT OF RESTITUTION ON MAXIMUM POINT DISPLACEMENT FOR CASE BLTP-6; 10.0 and 57.9

Pile I.D.	RUT (kip)	Ram Velocity (ft/sec)	Maximum Po e = 0.2	oint Displace e = 0.4	ement (in) e = 0.6	Maximum Change (%)
BLTP-6; 10.0	30	12	2.13	2.14	2.36	10
		16	3.38	3.47	3.58	6
		20	4.73	4.93	5.17	8
BLTP-6; 57.9	150	12	0.46	0.48	0.50	8
		16	0.73	0.76	0.81	10
		. 20	1.05	1.10	1.18	11

omitting the cushion entirely) is both poor practice because of the high stresses induced in the pile, and inefficient. It would be better to use a cushion having a high coefficient of restitution and a low cushion stiffness in order to increase ENTHRU and to limit the driving stresses.

This suggests that a long micarta cushion having a relatively low spring rate, and a high coefficient of restitution may be very effective.

Comparison of Various Hammers Driving the Same Pile

One of the objectives of the Michigan pile study was to determine just how effective the various hammers actually were during driving. Therefore, every attempt was made to equalize any variables which would affect the results, such as choosing the driving location to give comparable driving conditions. However, it would be impossible to test several hammers without having some variations occur, perhaps in the soil resistance or hammer condition. Since the wave equation does not have this limitation, it could be used to advantage here.

As a basis for this comparison, Case BLTP-6; 57.9 was used, with the load cell and extra helmet omitted, and with a soil resistance of 300 kips. This pile was

then studied to determine its penetration per blow when driven by each of the hammers listed in Table 3.10. In each case, the soil and pile parameters were held constant. Thus, for example, even though the values of the soil damping constant or quake may not be exact, they remain constant for each problem, while the experimental results will vary unless Q and J are constant at each new driving location.

Certain quantities must be known for each hammer before the wave equation can be applied. For example, the ram velocity at impact must be known, as well as the dynamic behavior of the cushion, the diesel explosive pressure in the hammer, and the length of time it exerts a force on the pile. Unfortunately, the above data were not directly measured for the Michigan research program, which means that they must be calculated from other data reported.

The ram velocities at impact and explosive forces on the pile for the diesel hammers were based on the results given in Table 3.14, assuming the explosive force to be acting as shown in Figure 3.12. The Vulcan hammer properties were based on Table 3.10. The results of driving this pile with the eight different hammers are listed in Table 3.18 in the form of permanent set of the pile per blow and blows per inch.

STUDY OF VARIOUS HAMMERS DRIVING THE SAME PILE TABLE 3.18

Hammer	Ram Velocity (ft/sec)	Explosive Force (kip)	Maximum Point Displacement (in)	Permanent Set of Pile Per Blow (in)	Blows Per Inch
Vulcan-1	10.0	0	0.125	0.025	8
Vulcan-50C	14.5	0	0.284	0.184	ന
Vulcan-80C	12.5	0	0.360	0.260	2
Link Belt 312	7.0	98.0	0.119	0.019	∞
Link Belt 520	16.0	98.0	0.357	0.257	r m
McKiernen-Terry DE-30	13.0	98.0	0.139	0.039	7
McKiernen-Terry DE-40	21.0	138.0	0.592	0.492	_
Delmag D-12	15.0	93.7	0.173	0,073	വ
Delmag D-22	17.5	158.7	0.473	0.373	~
and the second continuous section of the second section is a section of the second section of the second section of the second section section section sections are sections as the second section sec			the second way and the second		

C H A P T E R I V CHARACTERISTIC CUSHION PROPERTIES

Introduction

Although a pile cushion serves several purposes, its primary function is to limit impact stresses in both the pile and hammer 50. In general, it has been found that a wood or rope cushion is more effective in reducing the driving stresses than one of a relatively stiff material such as Micarta. However, a stiffer cushion is usually more durable and transmits a greater percentage of the hammer's energy to the pile.

For example, the results given in Table 3.11 show an overall average efficiency of 52 percent for cushion assemblies using wood, while the Micarta assemblies have an average efficiency of 66 percent. As shown in Table 3.7, an increase in cushion stiffness will also cause an increase in impact stresses which might damage the pile or hammer during driving. This increase in stress is particularly important when driving concrete or prestressed concrete piles.

Dynamic Stress-Strain Curves

In order to apply the wave equation to pile driving,

Smith⁵¹ assumes that the cushion's stress-strain curve is a series of straight lines as shown in Figure 4.1. Even though this curve might be sufficiently accurate to predict maximum compressive stresses in the pile, the shape of the stress wave often disagrees with that of the actual stress wave⁵². This discrepancy was at first though to be the result of inaccurate soil data, since very little was known concerning the soil behavior during driving. It was therefore decided to suspend several test piles horizontally above the ground⁵³ as shown in Figure 4.2 to eliminate the effects of soil resistance.

Table 4.1 lists the pertinent information concerning these piles. The cushion was then hit by the ram and the resulting strains were measured at six points along the pile. Displacements and accelerations of both the ram and the head of the pile were also measured. However, even though the soil resistance had now been excluded, the shape of the stress wave still did not agree with the theoretical shape, and so the device illustrated in Figure 4.3 was used to see if the cushion's stress-strain diagram was actually a straight line.

Using this method, the dynamic stresses and strains were measured for several cushion materials. It was later discovered that for a given material, the dynamic

FIGURE 4.1 - STRESS-STRAIN CURVE FOR A CUSHION BLOCK. (AFTER REFERENCE 51)

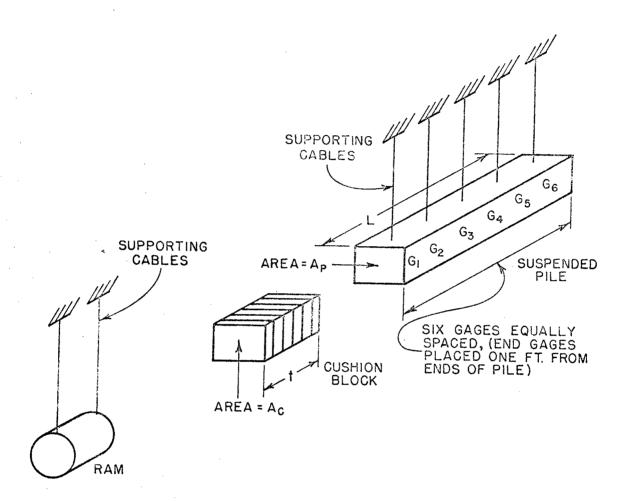
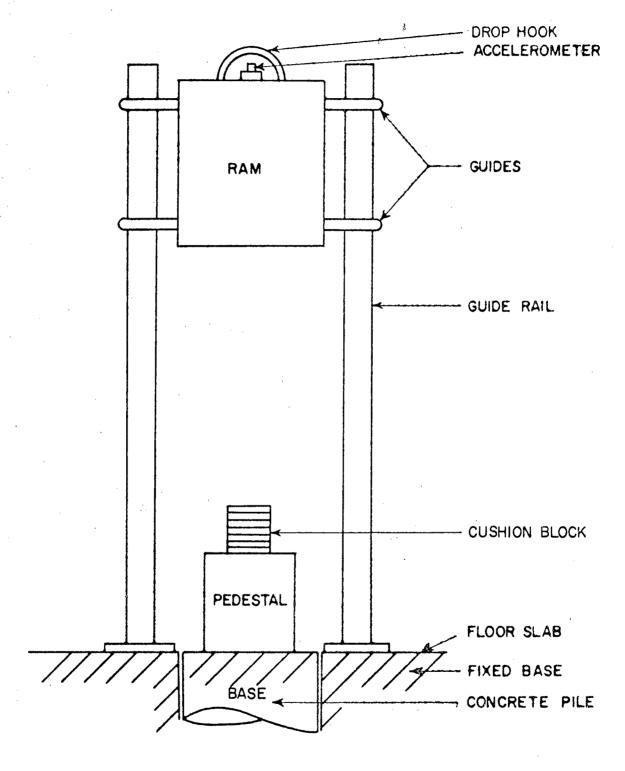


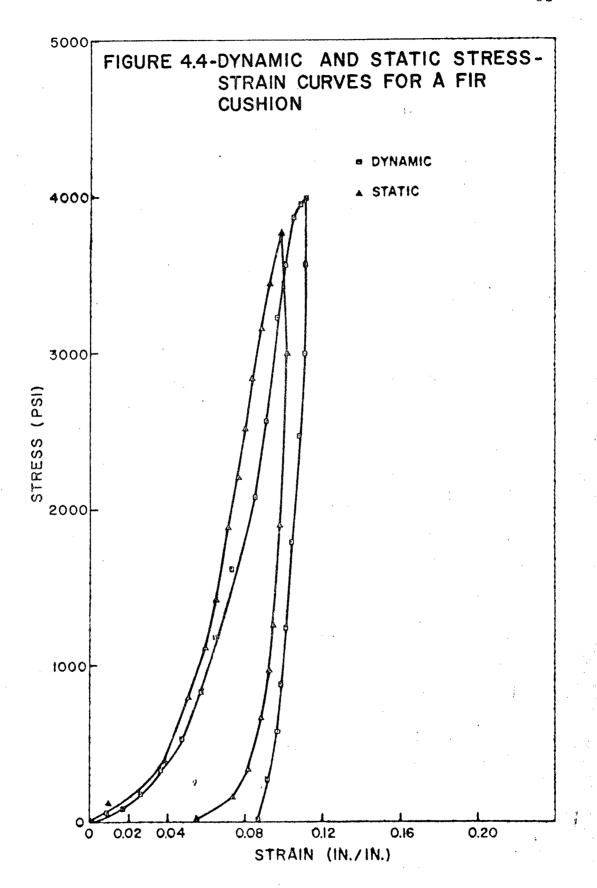
FIGURE 4.2 - TEST PILE SHOWING PLACEMENT OF STRAIN GAGES

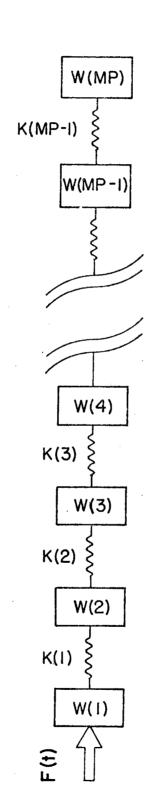
TABLE 4.1 SUSPENDED PILE DATA

		Pile	a d			Cus	Cushion		Ram	Œ
Case	Material	E (psi)	Ap. (in2)	L (ft)	D (ft)	Material	Ac (in2)	t (in)	Weight (1b)	Velocity (ft/sec)
LT-48	Class A Concrete	6.12×10 ⁶	254	65	12.6	F.	62.8	0.6	4160	13.91
LT-41	Class A Concrete	6.12×10 ⁶	254	65	12.6	12.6 Micarta	89.1	0.6	4160	8,03
LT-39	Steel	30×10 ⁶	21.46	85	16.6	0 ۸	225.0	7.5	2128	11.42
LT-15	Class Y Concrete	*3.96×10 ⁶	225	65	12.6	0 a k	225.0	9.5	2128	13,98

* $E_{sonic} = 4.64 \times 10^6 \text{ psi}$




FIGURE 4.3 - CUSHION TEST STAND


stress-strain curves were almost identical to the corresponding static curves. This is demonstrated in Figure 4.4 in which the dynamic and static curves for a fir cushion are compared.

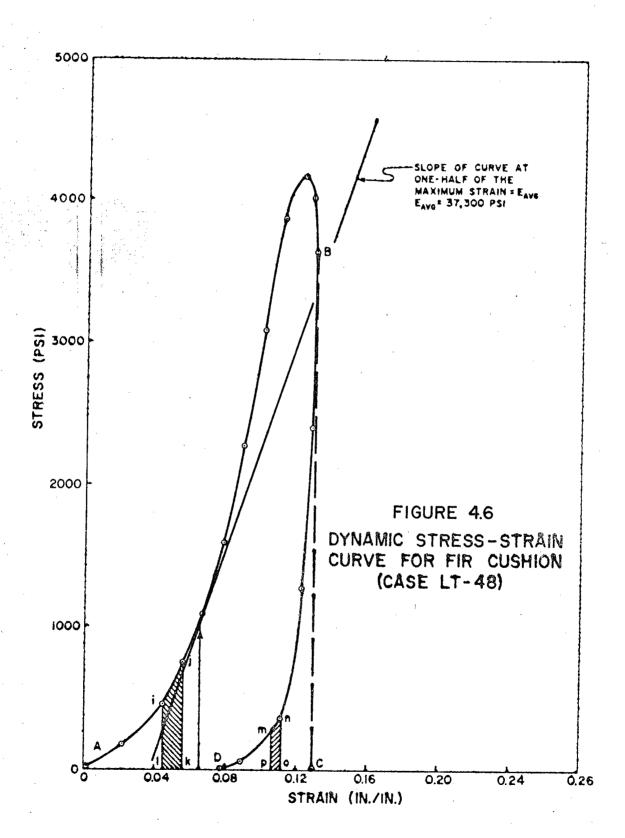
Since the stress-strain curves are not linear as assumed, the shape of the theoretical stress wave in the pile is not likely to agree with the experimental shape and so the "dynamic" curves were used.

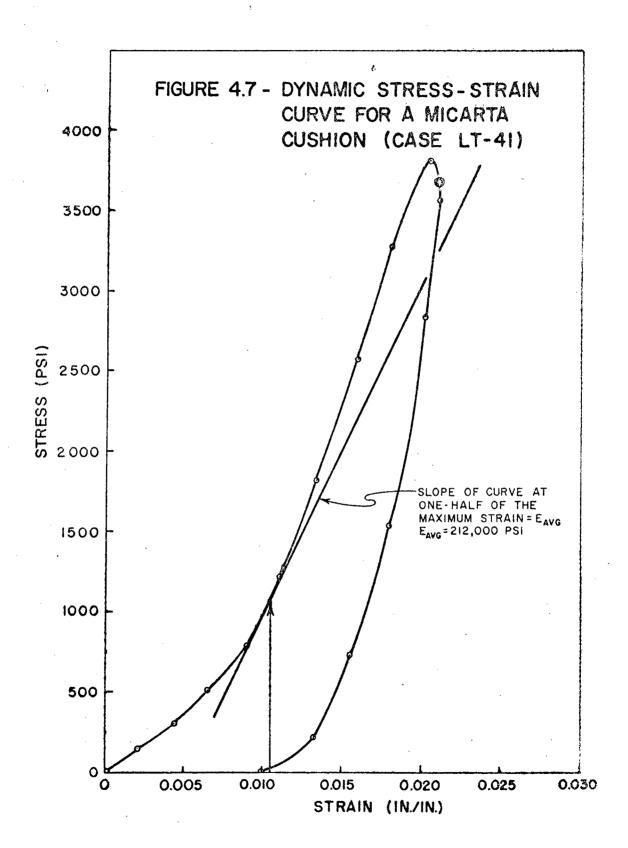
Furthermore, it is not known how much the rigidity of the pedestal shown in Figure 4.3 affects the cushion's behavior. Therefore, the wave equation was used to check the results. The second method required the following information: 1) the stresses determined experimentally at the head of the pile vs time, 2) the velocity of the ram at impact, and 3) the physical properties of the pile system required for solution by the wave equation.

As shown in Figure 4.5, both the cushion and ram are omitted and the previously determined stresses measured experimentally at gage 1 (see Figure 4.2) are placed on the head of the pile. The wave equation is then used to determine the motion of the ram and the pile, from which the compression of the cushion at any instant of time is known. By plotting the measured cushion forces against the corresponding compressions of the cushion, the dynamic stress-strain curve may be

FEST PILE WITH KNOWN FORCES HEAD OF PILE

determined. The curves obtained by this method are illustrated in Figures 4.6, 4.7, and 4.8. Comparing these with Figure 4.4, it is noted that the curves are generally similar in shape.


Dynamic Coefficient of Restitution


Although the cushion is needed to limit the driving stresses in both hammer and pile, it reduces the available hammer energy because of internal damping. The load diagram shown in Figure 4.1 illustrates this energy loss since the energy input is given by the area ABC while the energy output is given by area BCD. Usually this energy loss is accounted for by a coefficient of restitution of the cushion "e", in which

$$e = \sqrt{\frac{Area under BCD}{Area under ABD}}$$

When the dynamic stress-strain curve for the cushion is known, such as for the previous problem, the coefficient of restitution can be computed. As shown in Figure 4.6, the area under the dynamic curve ABC is computed by summing elemental areas ijkl until point B is reached (i.e., until the strain reaches a maximum), then the area under BCD is determined by summing elemental areas mnop until point D is reached.

Table 4.2 summarizes the results found for the

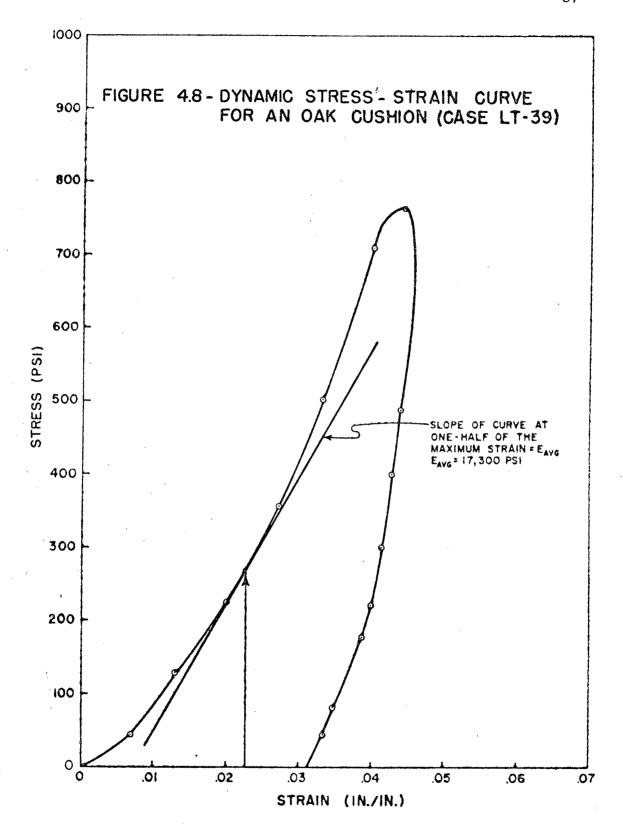


TABLE 4.2 DYNAMIC CUSHION PROPERTIES

Case	Cushion Material		Commonly Recommended e
LT-48	Fir	0.35	0.40 ⁵⁵
LT-41	Micarta	0.60	0.80
LT-39	O a k	0.47	0.48 ⁵⁵

curves of Figures 4.6, 4.7, and 4.8. It may be noted that the coefficients of restitution agree closely with those recommended by $\operatorname{Hirsch}^{55}$. It is interesting that although e = 0.8 is commonly recommended for a micarta capblock, these experiments indicate that e = 0.8 is actually much lower, probably around 0.6.

Idealized Dynamic Stress-Strain Curves

The major difficulty in using the dynamic curves derived in the previous section is that numerous points on the curve must be specified in the input data, unless the curve can be input in equation form. Although the increasing load curve for each of the curves is nearly parabolic, the unloading segment is rather complex. Therefore, for convenience, the unloading segment will be approximated by a straight line having a slope such that the areas under the two curves result in the use of the correct coefficient of restitution for the cushion material being used.

Thus, the curve shown in Figure 4.9 can be defined by two different points on the loading curve (other than 0.0) and "e" of the material. The points on the curve are used to define the equation of the loading curve, and as long as the cushion strain increases, the increased input energy is computed as described earlier.

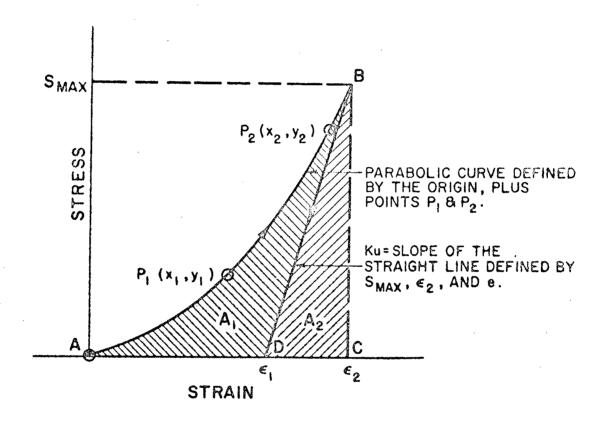


FIGURE 4.9 - IDEALIZED DYNAMIC STRESS - STRAIN CURVE FOR CUSHION (PARABOLIC)

When the strain in the cushion begins to decrease, the total input energy and the coefficient of restitution are used to determine the slope of the unloading curve in order to give the correct value of "e".

As shown in Figure 4.9, the total input energy is given by the area under the parabolic curve, $A_1 + A_2$, while the output energy is given by the area under the unloading curve, A_2 . Since e is defined by

$$e^2 = A_2/(A_1+A_2)$$
,

then

$$A_2 = e^2(A_1 + A_2)$$
.

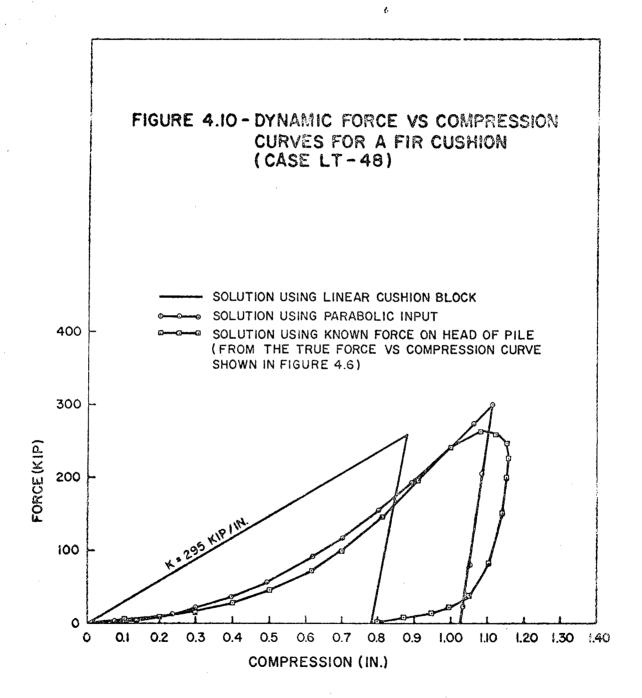
But A₂ is also given by

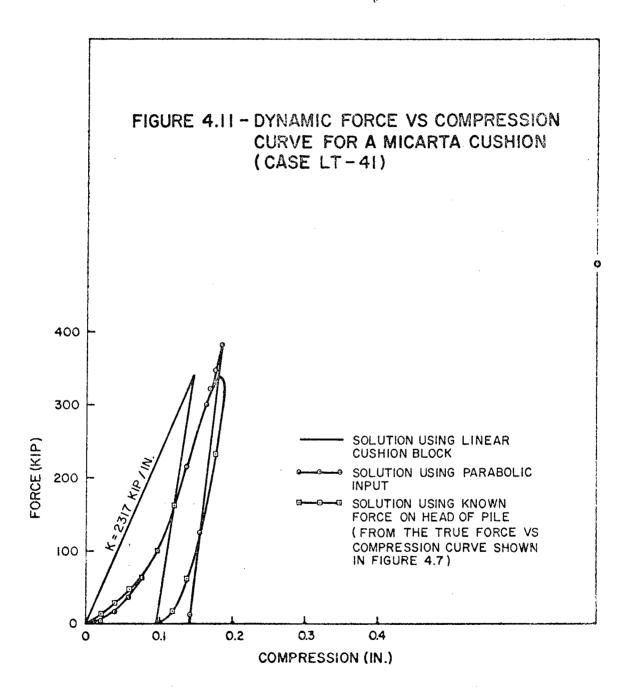
$$A_{2} = \left(\frac{\text{Smax}-0}{2}\right) \left(\varepsilon_{2}-\varepsilon_{1}\right)$$

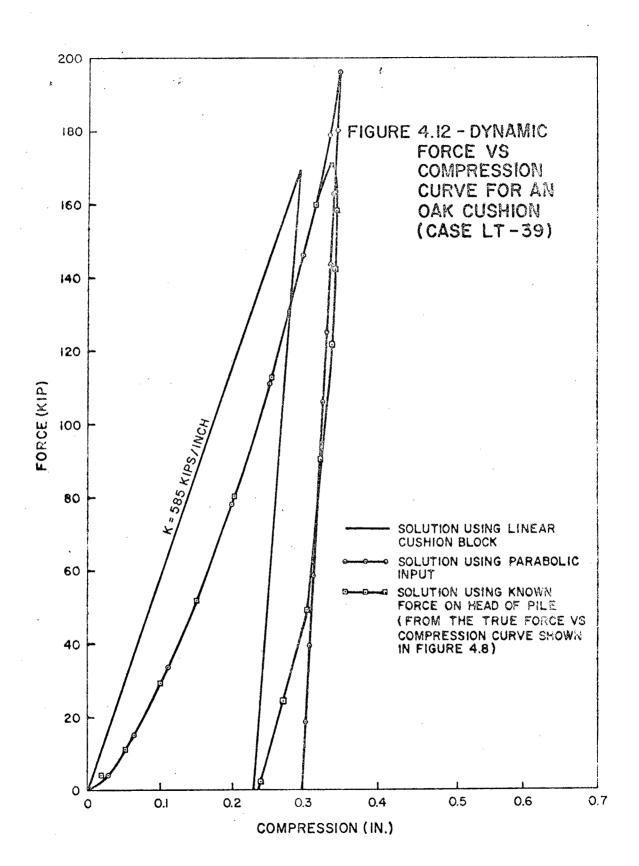
$$e^{2}(A_{1}+A_{2}) = \left(\frac{\text{Smax}}{2}\right) \left(\varepsilon_{2}-\varepsilon_{1}\right)$$

$$\left(\varepsilon_{2}-\varepsilon_{1}\right) = \frac{2e^{2}(A_{1}+A_{2})}{\text{Smax}}$$

Since the slope of the straight line BD is given by:

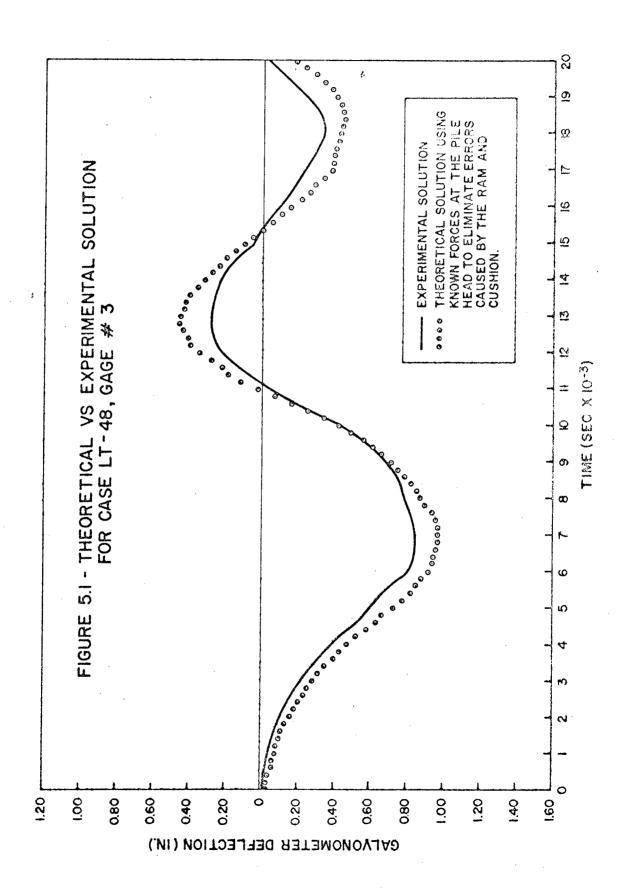

$$Ku = \frac{Smax}{(\epsilon_2 - \epsilon_1)}$$

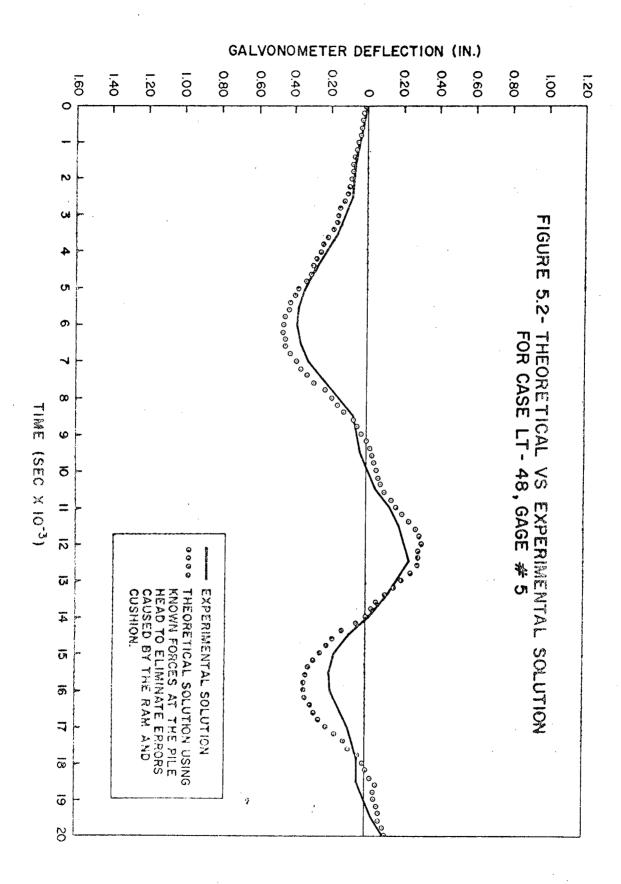

then

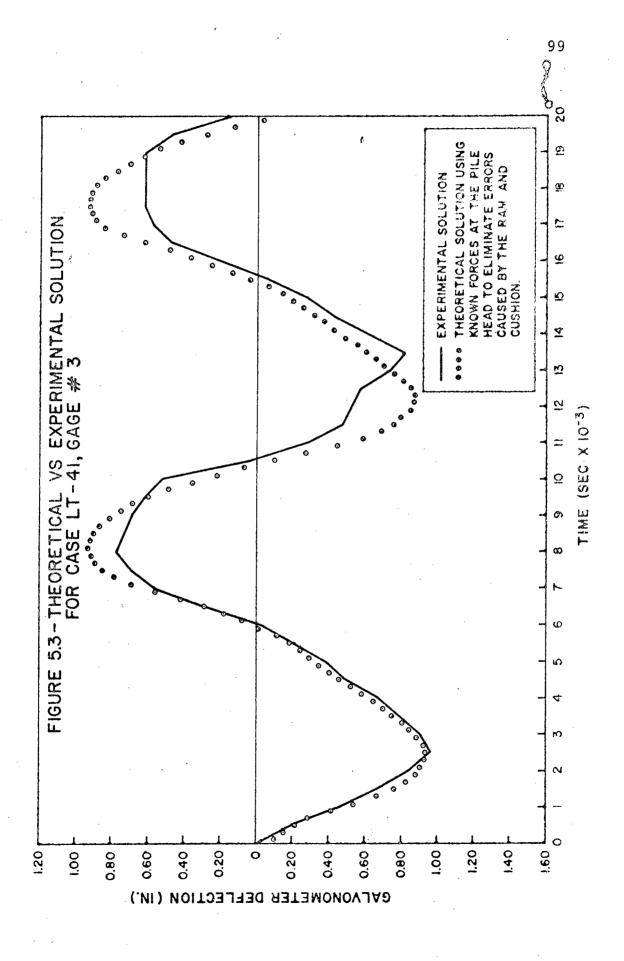

$$Ku = \frac{Smax^2}{2e^2(A_1 + A_2)}$$

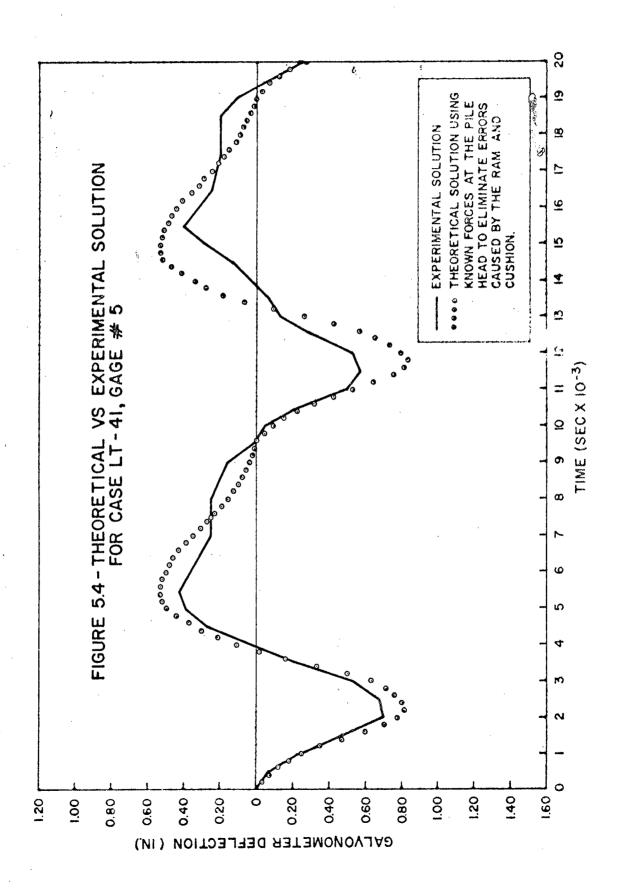
where Ku defines the slope of the unloading curve, e is the coefficient of restitution of the material, (A_1+A_2) is the total area under the curve ABD (calculated by the computer), and Smax is the maximum stress in the cushion determined by the wave equation.

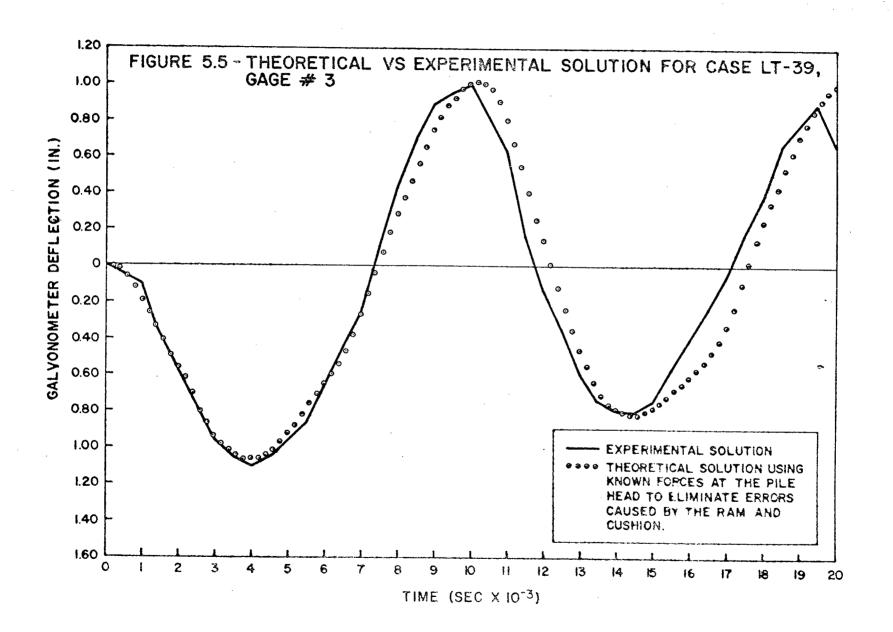
Figures 4.10, 4.11, and 4.12 compare experimental force vs compression curves obtained for the first three cases listed in Table 4.1, with those resulting from the parabolic idealization of Figure 4.9, and the straight line shown in Figure 4.1. Note that the parabolic curves closely represent the actual forcedisplacement curves while the linear curves are not nearly so close. In each case the parabolic curves tend to "over-shoot" the true maximum force, while the linear curve does not. The effect this has on the stress wave in the pile will be discussed in Chapter V.

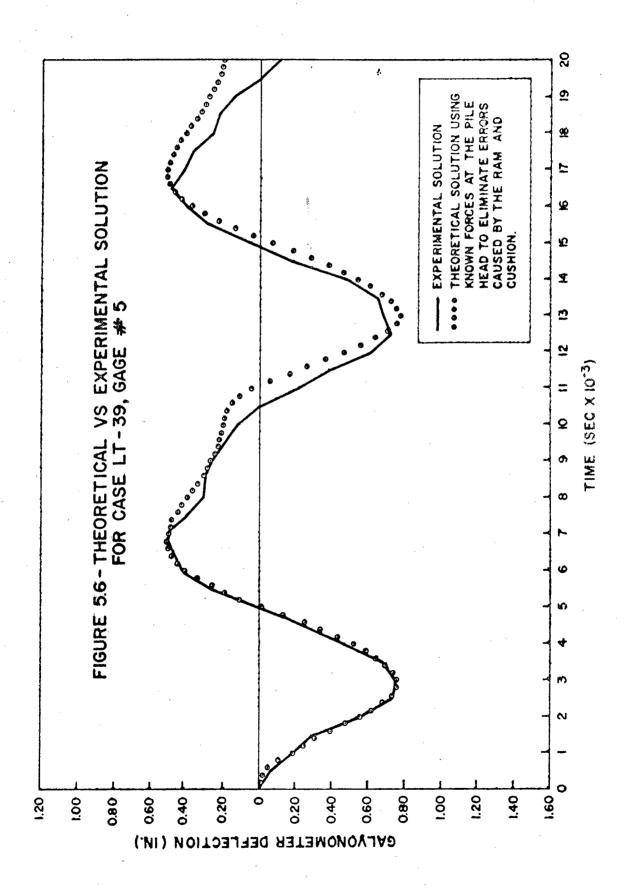

C H A P T E R V STRESS WAVES IN PILING

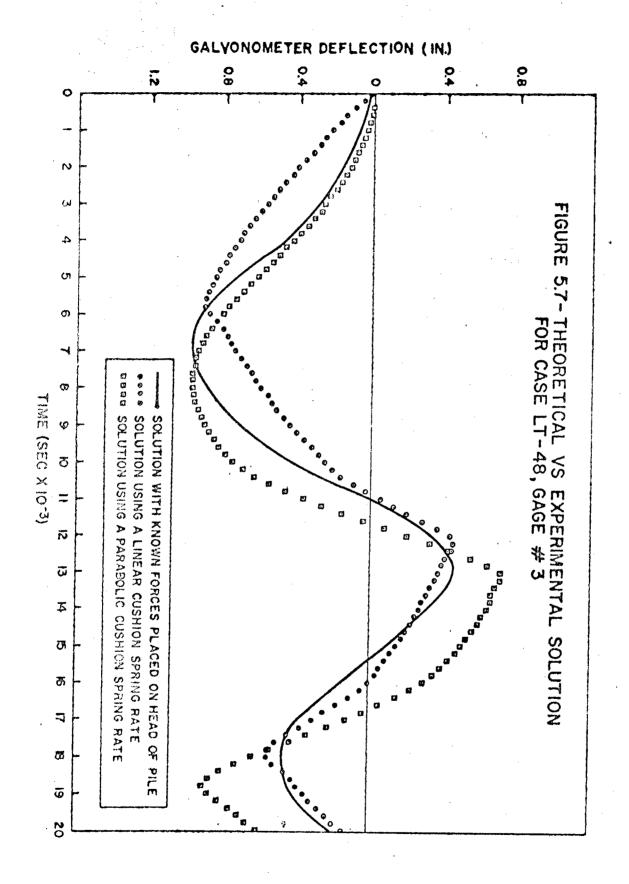

Comparison of Actual and Experimental Stress Waves

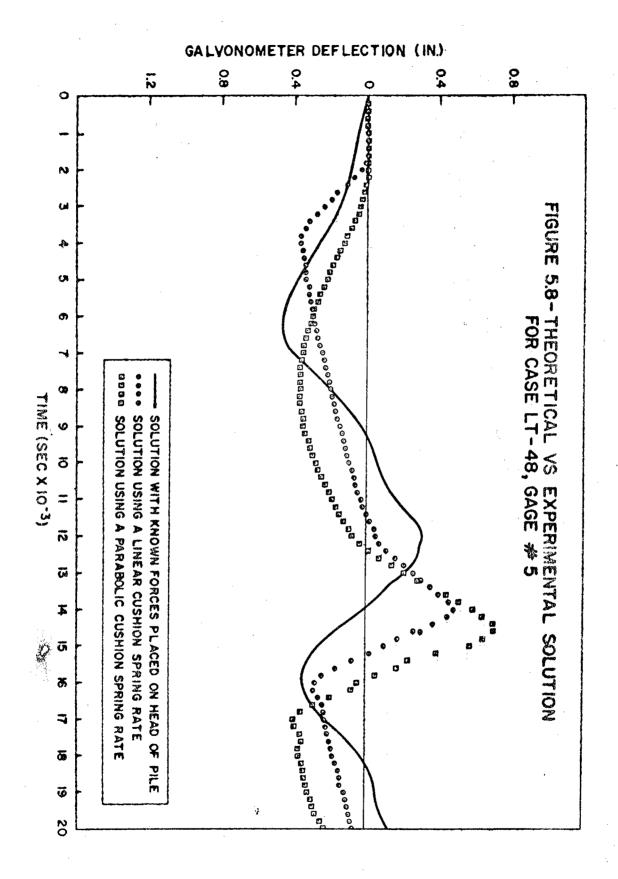

As noted in Chapter IV, the shape and magnitude of the stress wave in a pile is greatly dependent upon the properties of the cushion used. This will become apparent by comparing the actual stress wave determined experimentally with results found by using the idealized cushion properties mentioned earlier.

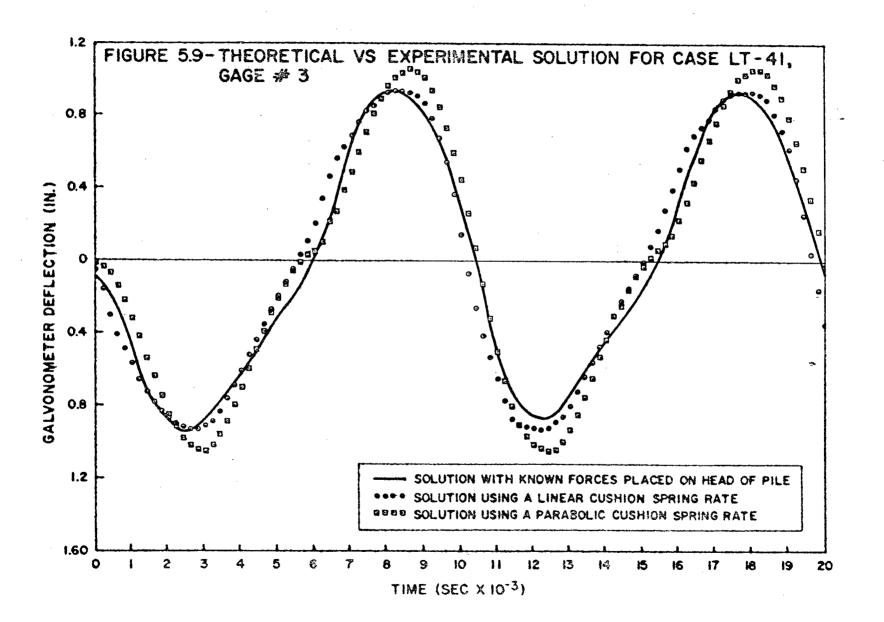

The solution for stresses in the pile should be more accurate if the effects of the cushion and ram can be omitted. To accomplish this, the force measured at the head of the pile and the stresses at other gage points then determined by using the wave equation. The cases solved by this method are listed in Table 4.1. Comparisons between the experimental results and wave equation solutions at two points on the pile are shown in Figures 5.1 through 5.6.

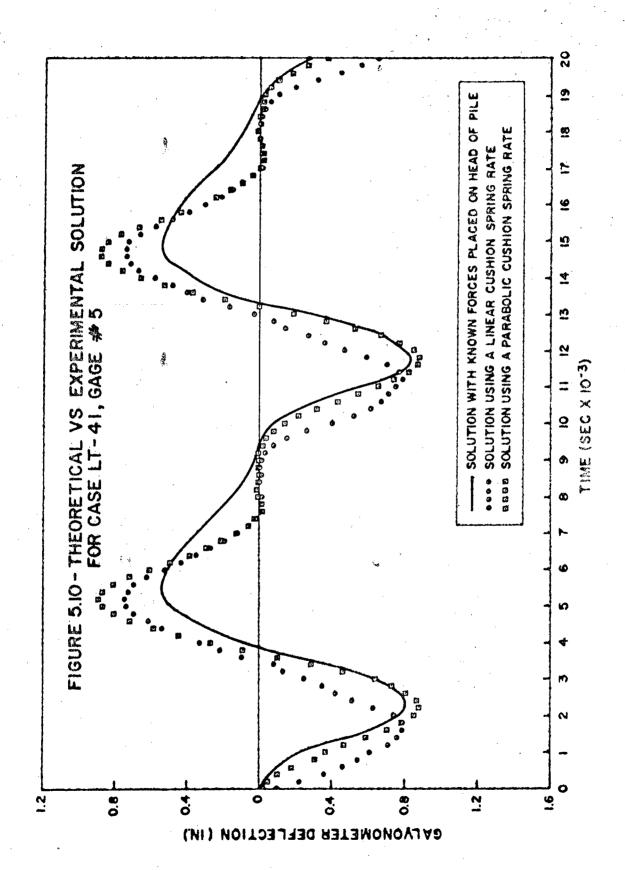

One of the major factors which influenced these comparisons was the fact that the prestressed concrete test piles cracked while setting up the experiment. Therefore, any reflected tensile forces greater than the prestressing force opened a small gap at the crack such that the prestressing strands alone could transmit

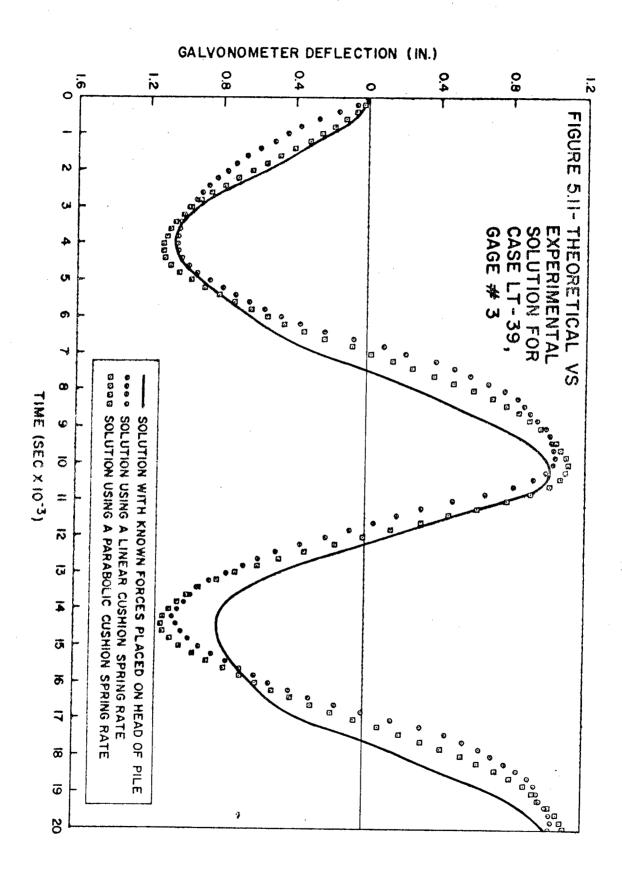


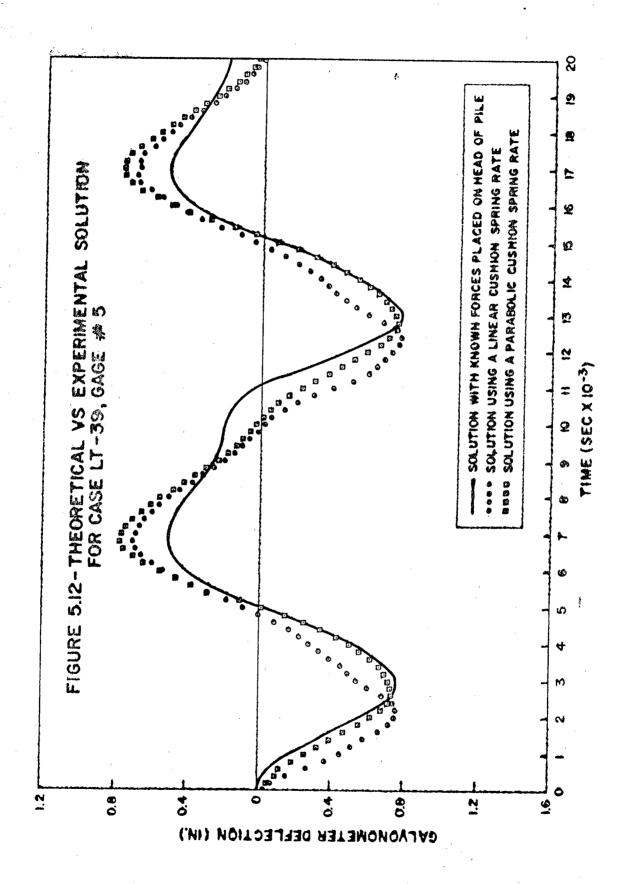



the tensile stress down the pile. This is seen by the relative agreement shown in Figures 5.1 through 5.6. Note that the stress-waves shown for the concrete piles (Figures 5.1 through 5.4) do not agree nearly so well as those for the steel pile (Figures 5.5 and 5.6).


Still, the results agree closely in each case, not only in magnitude, but also in the overall shape of the wave, thus indicating that the numerical solution to the wave equation is quite accurate. Further, any inaccuracies are likely due to faulty assumptions concerning the dynamic behavior of other variables such as the cushion, soil, etc.


As mentioned earlier, the stress-strain curve for the cushion is normally assumed to be linear as in Figure 4.1. The true stress-strain curves shown in Figures 4.6 through 4.8 indicate that the curves are not actually linear and this assumption might therefore cause inaccuracies.


To determine how the shape of the curve affects the solution, the previous three problems were run using the cushion stress-strain curves shown in Figures 4.1 (straight line), 4.6 through 4.8 (true stress-strain curves), and 4.9 (parabolic curve). These solutions are compared in Figures 5.7 through 5.12. In each case, it is noted that the straight line solution



is more accurate than the solution using the parabolic curve. This is because a single parabolic curve was used which, even though it agrees with the actual stress-strain curve most of the time, it cannot follow the reversed curvature at the peak of the actual curve and thus "over-shoots" the true peak force. Figures 4.10 through 4.12 show how closely the parabolic curves follow the true cushion forces, and also how far off the straight line assumption is. The parabolic curve always peaks above the true force vs compression curve, while the spring rate of the straight line can be raised or lowered so that the true maximum cushion force is not exceeded.

Thus the use of the straight-line assumption seems reasonable since it gives fairly accurate results. The linear spring constants used for the curves shown in Figures 5.7 through 5.12 were first varied between wide limits to obtain the most accurate maximum stresses. These spring rates were then used to determine what dynamic modulus of elasticity was required to give the desired spring rate, using the equation: Edynamic = (K cushion)(Length)/(Area of cushion). As shown in Table 5.1, these results give a lower value of E for oak than for fir, which in this case is correct since the fir capblock was highly stressed (4,170 psi) while

TABLE 5.1 DYNAMIC PROPERTIES OF NEW CUSHION BLOCKS OF VARIOUS MATERIALS

Case	Cushion Material	Linear Spring Rate - K (1b/in)	Depth of Cushion (in)	Area of Cushion (in ²)	E _{dynamic} (psi)	Slope at Midpoint of Curve (psi)	SMAX in Cushion (psi)
LT-48	Fir	295,000	9.0	62.8	42,200	37,300	4170
LT-41	Micarta	2,320,000	9.0	89.1	234,000	212,000	3850
LT-39	0 a k	585,000	7.5	225.0	19,500	17,300	765

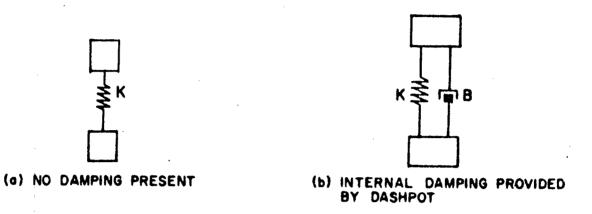
the oak capblock was stressed only slightly (765 psi).

Further consideration of the dynamic stress-strain curves revealed that the dynamic modulus of elasticity of the capblock is almost exactly 10 percent greater than that given by the slope of the stress-strain curve (Figures 4.6 through 4.8) taken at a point halfway between zero and the maximum strain. As noted by Hirsch 62 , the static and dynamic stress-strain curves are quite similar, so that curves like those shown in Figures 4.6 through 4.8 are easily determined for any other cushion material. It was also recommended that the dynamic modulus be increased as the cushion consolidated 63 .

Internal Damping in Piling

As noted earlier, differences between experimental and theoretical results were assumed to be the result of inaccurate soil information. Other parameters were also varied in an attempt to obtain more accurate results 56 , one of which was the material damping or internal damping capacity of the pile material.

Smith⁵⁷ first suggested that the internal damping in the pile might prove significant, and proposed the following equation by which hysterisis in the pile could be accounted for:


 $F(m,t) = C(m,t)K(m) + \frac{BK(m)}{12\Delta t}[C(m,t)-C(m,t-1)]$

in which B is the internal damping constant. He also recommended that B be given a value of about 0.002 in order to produce a narrow hysteresis loop. This equation was derived from the model shown in Figure 5.13 (b) and if B is set equal to zero, no damping is present, as seen in Figure 5.13 (a).

The model shown in Figure 5.13 (c) has one major advantage over the previous model in that it is able to account for damping by considering the difference between the material's static modulus of elasticity E, and its sonic modulus of elasticity E_s . This is because a slowly applied load gives the dashpot time to relax without causing the spring K_s to exert a force, thereby resulting in a spring rate equal to K_o . However, when the loads are applied rapidly the dashpot has no chance to deform, resulting in a spring rate of $K_o \times s$. Thus for the model of Figure 5.13 (c), K_o is determined from the static modulus of elasticity E, while $K_o + K_s$ would use the sonic value E_s .

It is interesting to note that when K_s is infinitely large, model (c) becomes equivalent to model (b), and $K_s = 0$, model (c) becomes equivalent to model (a).

In order to derive the equation, Figure 5.14 to provided. Figure 5.14 (a) illustrates the damping model

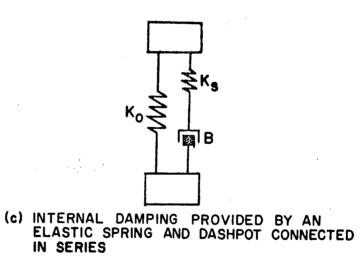


FIGURE 5.13 - VARIOUS IDEALIZATIONS FOR THE SPRING SEGMENT OF A PILE

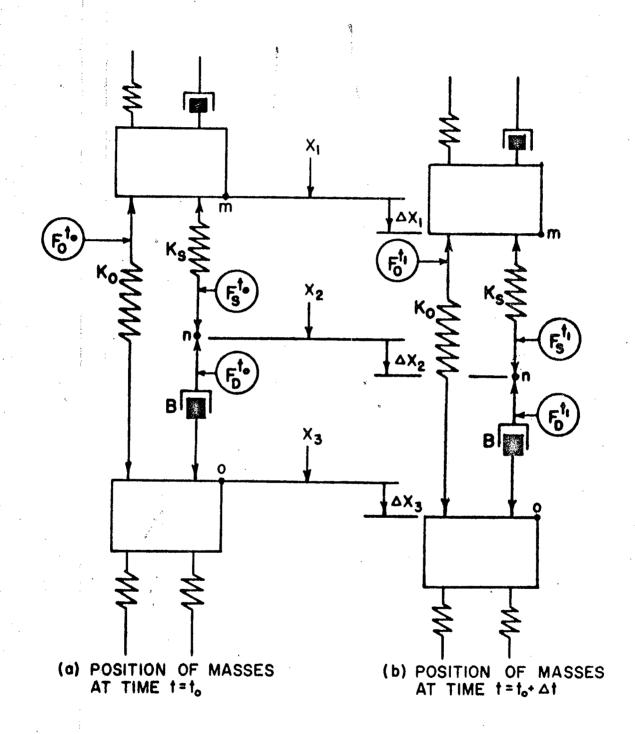


FIGURE 5.14. - IDEALIZED PILE SEGMENT WITH STANDARD LINEAR SOLID DAMPING

wherein point"m" (on the upper mass) has moved a distance x_1 , point "n" (between the dashpot and spring) has moved a distance x_2 , and point "o" (on the lower mass) has moved a distance of x_3 . Assume that at time $t=t_0$ there exists a force $F_0^{\ t}$ 0 in the spring K_0 . There is also a force in the spring K_S given by $F_S^{\ t}$ 0, and a force in the dashpot equal to $F_D^{\ t}$ 0.

As shown in Figure 5.14 (b), after a single time interval passes, point m moves an additional distance Δx_1 , point na moves Δx_2 , and point o moves Δx_3 . At this time, $t = t_1 = t_0 + \Delta t$, and the forces in K_0 , K_s , and B are designated F_0 ^t1, F_s ^t1, and F_D ^t1 respectively. At time t_0 :

$$F_s^{t_0} = K_s(x_1 - x_2).$$
 Eq. 5.1

At time $t_1 = t_0 + \Delta t_1$:

$$F_s^{t_1} = K_s[(x_1 + \Delta x_1) - (x_2 + \Delta x_2)].$$

$$F_s^{t_1} = K_s[(x_1-x_2)+(\Delta x_1-\Delta x_2)].$$
 Eq. 5.2

Substituting Equation 5.1 into 5.2:

$$F_s^{t_1} = F_s^{t_0} + K_s(\Delta x_1 - \Delta x_2)$$
 Eq. 5.3

By definition, at all times:

$$F_D^{t_1} = B \frac{(\Delta x_2 - \Delta x_3)}{\Delta t} . \qquad Eq. 5.4$$

Because point n must be in equilibrium:

$$F_{s}^{t_1} = F_{D}^{t_1}$$
. Eq. 5.5

Substituting Equation 5.3 and 5.4 into 5.5:

$$F_D^{t_0+K_s(\Delta x_1-\Delta x_2)} = B \frac{(\Delta x_2-\Delta x_3)}{\Delta t}$$

$$F_D^{t}o + K_s \Delta x_1 = K_s \Delta x_2 + \frac{B \Delta x_2}{\Delta t} \frac{B \Delta x_3}{\Delta t}$$

$$F_D^{t}o\Delta t + K_s\Delta x_1\Delta t + B\Delta x_3 = \Delta x_2(K_s\Delta t + B)$$
.

Solving for Δx_2 :

$$\Delta x_2 = \frac{F_D^{t} \circ \Delta t + K_s \Delta x_1 \Delta t + B \Delta x_3}{K_s \Delta t + B} . \qquad \text{Eq. 5.6}$$

Substituting Equation 5.6 into 5.4 produces:

$$F_D^{t_1} = \frac{F_D^{t_0+K} (\Delta x_1 - \Delta x_3)}{(K_c \Delta t/B)+1}$$
 Eq. 5.7

The solution begins by setting $F_D^{\ t}$ o equal to zero, and calculating it for the next time interval from Equation 5.7. The quantity K_S is a constant and $(\Delta x_1 - \Delta x_3)$ is simply the change in compression during a single time interval. Therefore, returning to the earlier terminology, Equation 5.7 can be written:

$$DF(I,t+1) = \frac{DF(I,t)+DK(I)[C(I,t+1)-C(I,t)]}{[DK(I)^{\Delta}t/B]+1.0} Eq. 5.8$$

where DF(I,t) is the damping force in dashpot number "I" during time interval "t", DK(I) is the dynamic spring rate of damping spring "I", C(I,t) is the compression in spring I during time interval number t, Δt is the time increment, and B is a damping constant.

The static force in spring I will be computed as before, by

$$F(I,t+1) = K(I)[C(I,t+1)].$$
 Eq. 5.9
Thus by adding the Equations 5.8 and 5.9, the total force acting on each mass can be determined for the next time interval.

Since as far as is known this derivation does not appear elsewhere, the boundary conditions for the damping force given by Equation 5.7 were checked. From Equation 5.7,

(a) Letting
$$K_S = 0:F_D^{t_1} = \frac{F_D^{t_0+0}}{1+0} = F_D^{t_0}$$
.

This is correct since F_D begins at zero and cannot increase in magnitude when $K_S = 0$.

(b) Letting
$$K_s = \infty$$
: $F_D^{t_1} = \frac{F_D^{t_0+\infty}}{\infty+1} = \infty/\infty$.

Since this is indeterminate,

$$F_D^{t_1} = K_s^{\lim} \frac{\frac{d}{dK_s} [F_s^{t_0 + K_s} (\Delta x_1 - \Delta x_3)]}{\frac{d}{dK_s} [K_s^{\Delta t + 1}]}$$

$$= K_{s}^{\lim} \frac{0 + (\Delta x_1 - \Delta x_3)}{\Delta t / B + 0} = \frac{B(\Delta x_1 - \Delta x_3)}{\Delta t}.$$

This checks since it is the equation found when $K_S = \infty$ and only the dashpot remains. In this case the models of Figures 5.13 (b) and (c) would be identical

(c) Letting B =
$$0:F_D^{t_1} = \frac{F_D^{t_0+K_s(\Delta x_1-\Delta x_3)}}{1+\frac{K_s\Delta t}{0}} = \frac{1}{\infty} = 0.$$

This checks since if the dashpot has no damping ability, the damping force must be zero.

(d) Letting B =
$$\infty$$
: F_D^t 1 = $\frac{F_D^t o + K_s (\Delta x_1 - \Delta x_3)}{\frac{K_s \Delta t}{\infty} + 1}$

=
$$F_D^{t_0+K_s(\Delta x_1-\Delta x_3)}$$

But
$$F_D^{t_0} = F_S^{t_0} = K_s(x_1 - x_2)$$
.

Substituting this into the previous equation one finds

$$F_D^{t_1} = [K_s][(x_1-x_2)+(\Delta x_1-\Delta x_2)]$$

= $[K_s][(x_1+\Delta x_1)-(x_2+\Delta x_2)]$

= $[K_S][Total compression at time t]$.

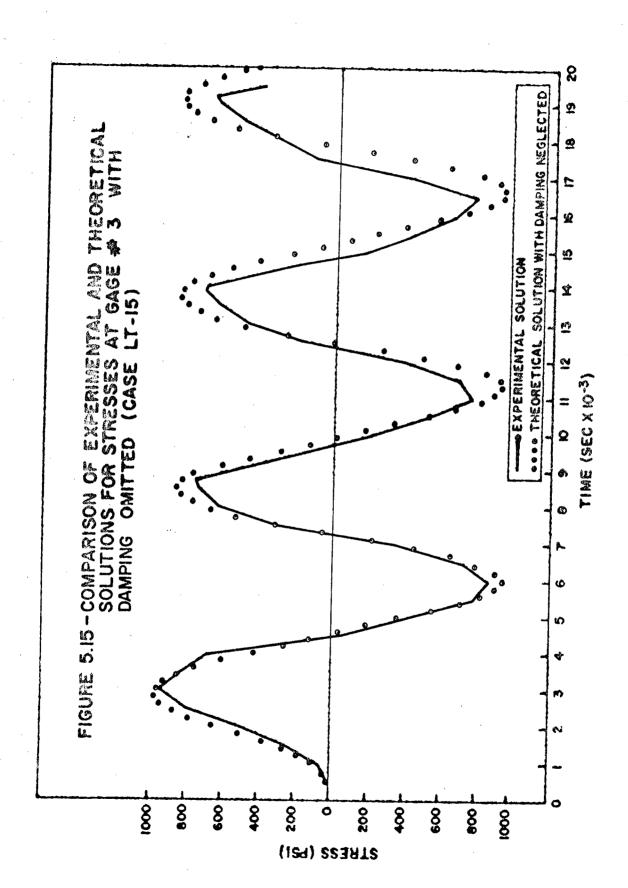
This is correct since it is the equation for the spring and when $B=\infty$, the dashpot is "locked" and no damping occurs.

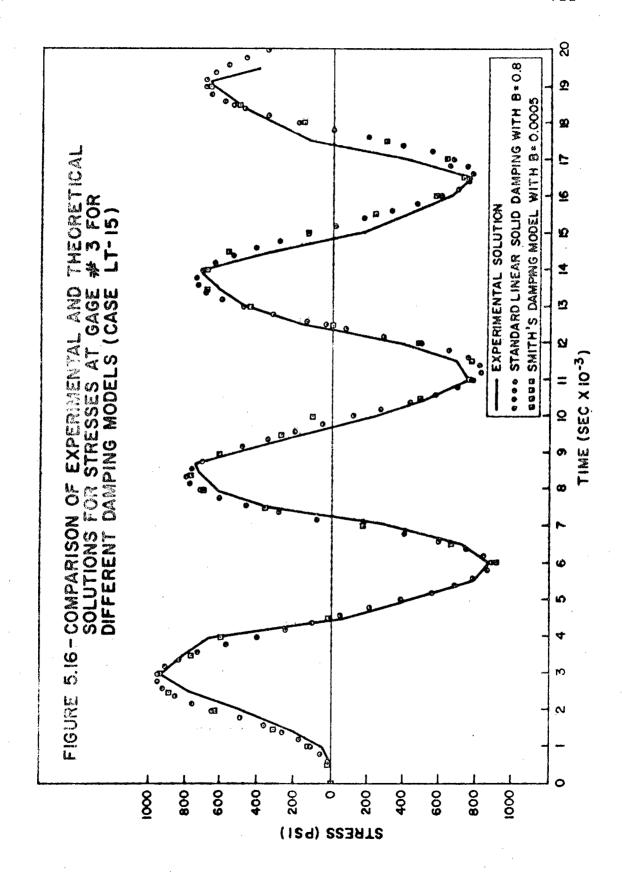
(e) Letting
$$\Delta t = 0:F_D^{t_1} = \frac{F_D^{t_0+K_s(\Delta x_1-\Delta x_3)}}{0+1}$$

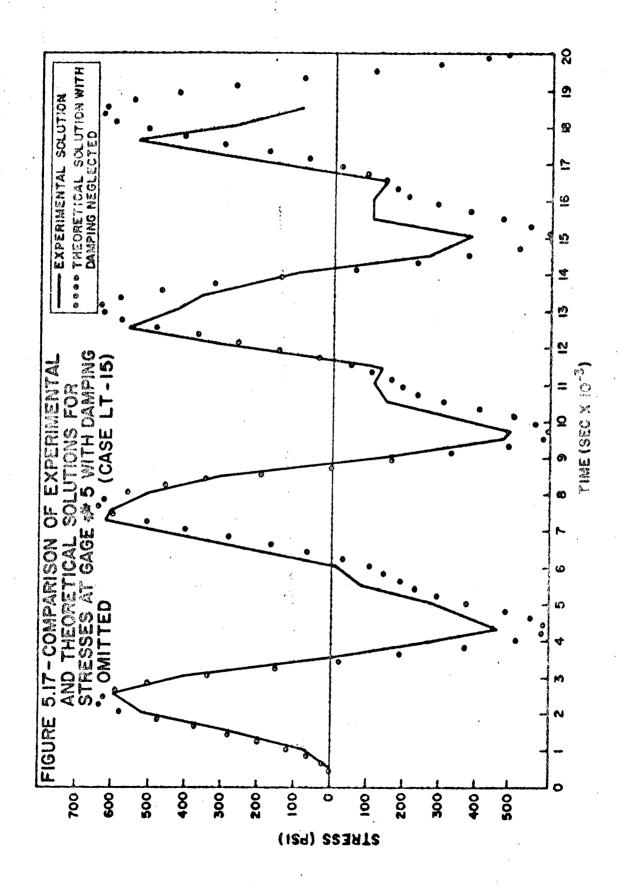
This result agrees because it gives the same result as letting $B = \infty$. (See part (d) above.)

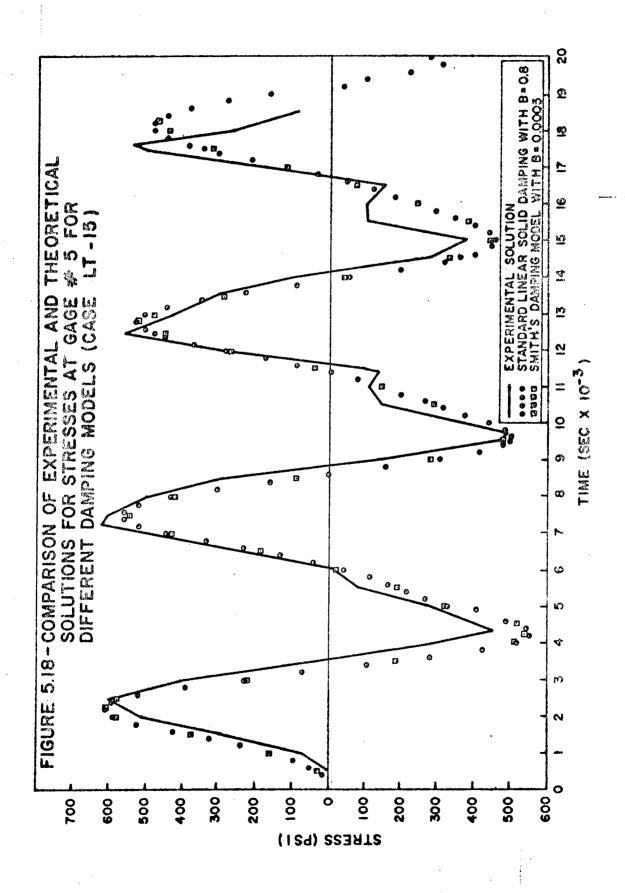
(f) Letting
$$\Delta t \rightarrow \infty$$
: $F_D^{t_1} = \frac{F_D^{t_0} + K_s(\Delta x_1 - \Delta x_3)}{\infty + B} = 0$.

This checks because the force stored in the damping spring would be released by relaxation of the dashpot if $\Delta t = \infty$.


(g) Let $\Delta x_1 = \Delta x_2$ and assume that the damping spring has an initial force stored at $t=t_0$. Although this force should diminish with time, it cannot go to zero during a single time interval, uless $\Delta t = \infty$.


$$F_D^{t_1} = \frac{F_D^{t_0 + K_s(0)}}{\frac{K_s \Delta t}{B} + 1.0} = \frac{F_D^{t_0}}{\frac{K_s \Delta t}{B} + 1.0}.$$


This is correct since the force in the spring is reduced, but will never actually reach zero unless $\Delta t = \infty$.


Figures 5.15 through 5.18 compare the effects of damping in a pile using the damping models shown in Figure 5.13. The results given are for test pile number LT-15 which is described in Table 4.1. This particular pile was of lightweight concrete with E = 3.96×10^6 and $E_s = 4.63 \times 10^6$ psi. This problem was chosen since E_s was relatively larger than E, indicating the possibility of rather high damping.

However, one is often more interested in the maximum stresses found in the pile, which usually occurs
during the first or second pass of the stress wave
along the pile. During this time the effects of damping

are small and can usually be neglected.

This conclusion may not be accurate for timber piles since wood has a much higher damping capacity than either the steel or concrete piles for which experimental data was available. This higher damping capacity might affect the results earlier in the solution which might in turn lower the accuracy of the results. Nevertheless, if more testing should indicate that the damping models are accurate for timber piling too, then the problem, or rather the uncertainties of damping effects will no longer be a problem.

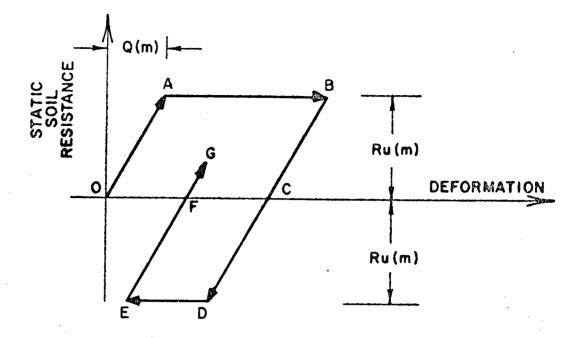
In any case, if the wave is to be studied for an extended period of time, damping in the pile cannot be neglected. This is illustrated in Figures 5.15 and 5.17 where fairly large errors resulted when damping was neglected. On the other hand, Figures 5.16 and 5.18 suggest that in certain cases damping should be accounted for using either of the damping models of Figure 5.13.

The most surprising result of this study is not the accuracy of the damping models, but rather that both models give nearly identical results even though Smith's model is extremely simple while the other is rather complex. Again, this may also prove incorrect for timber piling or other piling which has a large

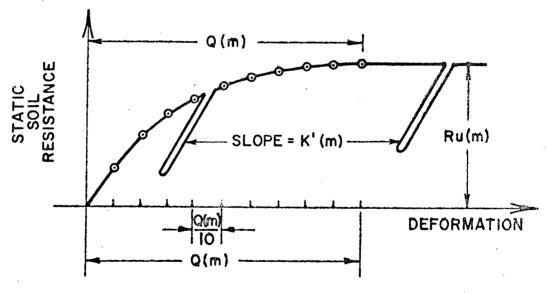
damping capacity. For example, one of the above methods might be more accurate than the other.

C H A P T E R V I SOIL PROPERTIES

Idealized Soil Resistance Curves


The load-deformation characteristics assumed for the soil in Smith's numerical solution are shown in Figure 6.1 (a). This curve excludes the damping effects of the soil caused by rapid loading, and illustrates only the soil resistance caused by static loading. As shown, the two parameters required to define the load-deformation curve are the ground quake "Q(m)" and the ultimate static soil resistance "Ru(m)".

When the soil is located along the side of the pile, it is assumed to resist any rebound of the pile as well as any downward motion. This is typified by the curve OABCDEFG. However, the soil located at the tip of the pile can only exert upward forces, as represented by the curve OABCFCB.


The spring rate for the curve between point 0 and A may now be determined from

$$K'(m) = \frac{Ru(m)}{Q(m)}.$$

In order to include the damping effects of the soil, a third variable J9m) is defined as the damping constant of soil spring "m". Thus the total resistance

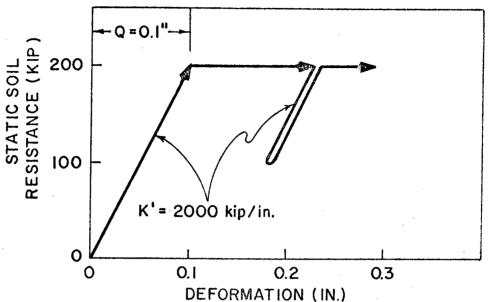
(a) ELASTIC-PLASTIC OR "LINEAR" SOIL RESISTANCE CURVE

(b) GENERALIZED SOIL RESISTANCE CURVE

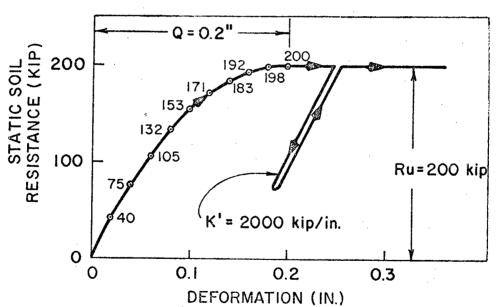
FIGURE 6.1-LOAD-DEFORMATION CHARACTERISTICS
ASSUMED FOR THE SOIL

of the soil, including the effect of loading rate, is given by

 $R(m,t) = \left[D(m,t) - D'(m,t)\right] \; K'(m) \left[1 + J(m)V(m,t-1)\right]$ where m denotes the segment number of the pile, t is the time interval number, D(m,t) is the displacement of segment m at time interval number t, K'(m,t) is the plastic deformation of the soil, J(m) is the soil damping constant, K'(m) is the soil spring constant, V(m,t) is the velocity of mass number m at time interval number t, and R(m,t) is the soil resistance acting on that element at time t.


In cases in which more accurate soil data are available, the general soil resistance curve of Figure 6.1 (b) may be used to advantage. This curve also uses the variables Q(m) and Ru(m), but the curve no longer must be linear. In this case, the ground quake Q(m) is divided into ten equal segments, and the static soil resistances corresponding to these ten points comprise the input data required to establish the curve. Also, as shown in Figure 6.1 (b), the slope of the unloading curve is given by K'(m). A more complete discussion of the use of this method is given in the appendix.

To check out the programming changes involved in this method, several problems were first solved using the regular elastic-plastic curve of Figure 6.1 (a). These problems were then solved again using the generalized soil resistance method with soil resistance values lying on the same curve, the two solutions then being checked for identical results.


A number of other problems were also solved to see what changes might result when the shape of the soil resistance curve was altered. For example, the linear soil resistance curve used in a problem originally solved by Smith 58 is shown in Figure 6.2 (a). This problem was then solved using the nonlinear curve of Figure 6.2 (b).

The solutions for these two problems, shown in Table 6.1, are typical of the results found for the other cases studied, in that a rather large change in the soil curve changed the results only slightly, In this case, for example, although the soil quake was doubled and the curve made nonlinear, the maximum change in stress was less than 9 percent, and the permanent set increased less than 8 percent. Only a drastic change in the soil resistance curve was found to cause an appreciable difference in the solution.

Therefore, if the soil resistance curve for the problem even slightly resembles the curve of Figure 6.2 (a), the linear resistance equation will probably be satisfactory. Whenever it becomes necessary, the

(a) ELASTIC-PLASTIC SOIL RESISTANCE CURVE (AFTER REFERENCE 58)

(b) GENERALIZED SOIL RESISTANCE CURVE

FIGURE 6.2 - SOIL RESISTANCE VS
DEFORMATION CURVES

TABLE 6.1 COMPARISON OF RESULTS FOUND BY USING ELASTIC-PLASTIC VS NON-LINEAR SOIL RESISTANCE CURVES

	Maximum Force					
Type of Soil Resistance	At Head of Pile (kip)	At Center of Pile (kip)	At Point of Pile (kip)	Maximum Point Displacement (in)		
Elastic Plastic	290	300	405	0.203		
Non-Linear	290	301	370	0.218		
Percentage of Change	0.0	+0.3	-8.7	+7.4		

nonlinear soil resistance can be used as explained in the appendix.

Significance of the Soil Quake "Q"

The properties of the soil under the action of dynamic loading are probably the least understood of the many variables affecting the problem 64 . Although a number of values for the soil quake may be used, the value Q = 0.1, recommended by Chellis 65 is probably the most widely accepted for general use, except when a more accurate value can be determined. As might be expected, the trouble stems mainly from the large number of variables influencing the value of Q at any given driving location, the most obvious of course being the type of soil encountered. Much work is presently being done to define these factors and to more accurately determine the actual values for both "Q" and "J" to increase the solution's accuracy 66 , 67 .

While it is beyond the scope of the present research to attempt to determine values for Q, it is interesting to see how the value of Q affects the solution. After a number of the Michigan research problems with varying values of Q were studied, Case BLTP - 6; 57.9 was chosen as being fairly representative. The problems were solved with Q ranging from 0.1 to 0.5, as seen in Table

6.2. To determine whether Q would have similar effects at all magnitudes of soil resistance, Ru_{total} was also varied. The results of this parameter study are given in Table 6.2.

One of the trends noted in Table 6.2 is the small effect Q has on the maximum compressive force found in the pile. The effect on tensile force is more pronounced, although no conclusion could be reached as to whether the tensile stress will increase or decrease as Q changes since the results did not indicate an apparent trend. Maximum ENTHRU values are also relatively independent of the soil quake, with ENTHRU tending to decrease as the soil quake increases.

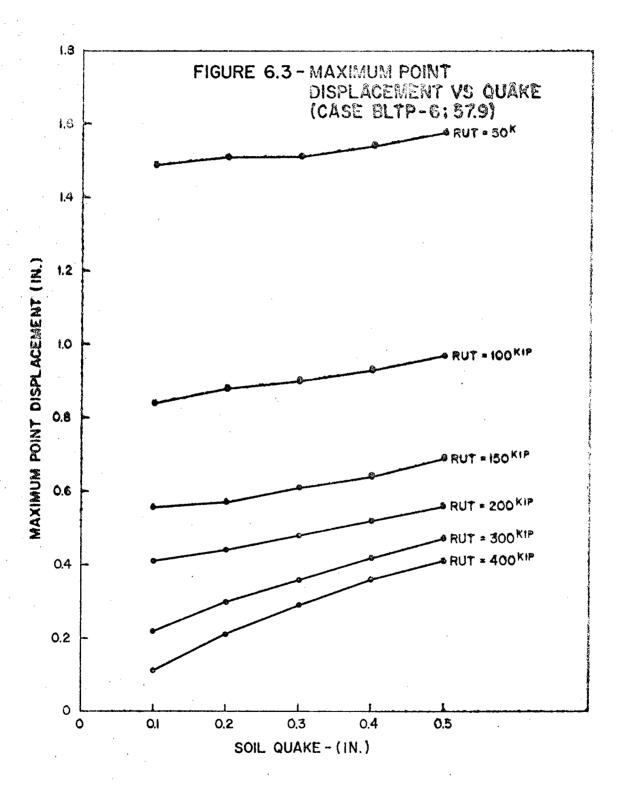

The most pronounced and consistant trend is the marked increase in maximum point displacement corresponding to increasing values of Q. It is also noted that the percent increase in maximum point displacement is relatively small for a small soil resistance, but greatly increases as the total soil resistance becomes large. This is also shown in Figure 6.3. Similar results were found for the other Michigan cases studied, except that the tensile force often varied substantially more than indicated for the case of Table 6.2.

TABLE 6.2 INFLUENCE OF SOIL QUAKE AT DIFFERENT SOIL RESISTANCES FOR CASE BLTP-6; 57.9 WITH NO SOIL DAMPING

			· ·		
Total Soil Resistance (kip)	Q (in)	Maximum Point Displacement (in)	Maximum ENTHRU (kip ft)	Maximum Compressive Force (kip)	Maximum Tensile Force (kip)
50	0.1	1.49	6.80	225	109
	0.2	1.51	6.80	222	109
	0.3	1.51	6.73	221	114
	0.4	1.54	6.71	221	119
	0.5	1.58	6.69	221	124
100	0.7	0.84	6.96	230	68
	0.2	0.88	6.88	224	85
	0.3	0.90	6.86	223	97
	0.4	0.93	6.84	222	98
	0.5	0.97	6.83	222	97
150	0.1	0.56	7.10	235	91
	0.2	0.57	7.05	227	90
	0.3	0.61	6.93	225	128
	0.4	0.64	6.88	223	163
	0.5	0.69	6.85	223	188
200	0.1	0.41	7.21	240	79
	0.2	0.44	7.13	230	67
•	0.3	0.48	7.06	226	7 7
	0.4	0.52	6.99	224	107
	0.5	0.56	6.90	224	118

TABLE 6.2 (Continued)

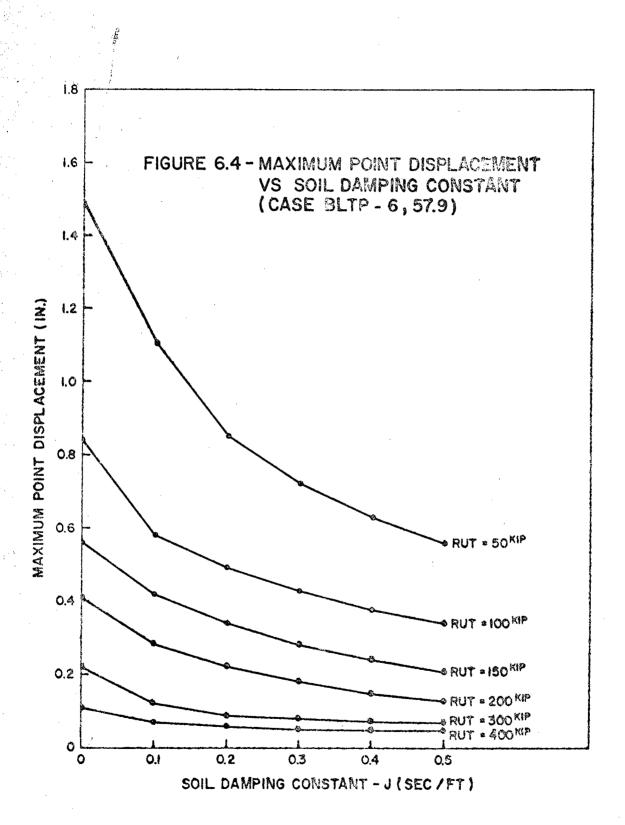
Total Soil Resistance (kip)	Q (in)	Maximum Point Displacement (in)	Maximum ENTHRU (kip ft)	Maximum Compressive Force (kip)	Maximum Tensile Force (kip)
300	0.1	0.22	7.28	250	82
÷	0.2	0.30	7.24	234	108
·	0.3	0.36	7.16	229	111
	0.4	0.42	7.10	225	59
	0.5	0.47	7.05	224	73
400	0.1	0.11	7.30	260	127
	0.2	0.27	7.28	239	114
	0.3	0.29	7.24	233	158
	0.4	0.36	7.18	228	158
-	0.5	0.41	7.12	226	102

Significance of the Soil Damping Constant

Michigan Case BLTP - 6; 57.9 was also chosen to illustrate the damping effects of the soil. These damping constants were given values ranging from 0.0 to 0.05, and as was done in the previous section, the total soil resistance was varied from 50 to 400 kip to see if trends found at low resistances would also be noted when the soil resistance was large. Since the soil damping constants most commonly used are those recommended by Smith 68 , i.e., a soil damping constant of 0.05 sec/ft along the side of the pile and 0.15 sec/ft at the point of the pile, the variation of J = 0.0 to 0.5 very likely covers the true values for most conditions and soils. These results are given in Table 6.3.

As was previously determined for Q, the soil damping constants also have little effect on the maximum ENTHRU values. The maximum compressive forces do have a tendency to increase as J increases, expecially when the soil resistance is large. While the tensile forces still do not follow any definite pattern, they are somewhat more regular than those determined by varying "Q".

The maximum point displacements again show the


TABLE 6.3 INFLUENCE OF SOIL DAMPING ON DIFFERENT SOIL RESISTANCES FOR CASE BLTP-6; 57.9 (Q = 0.1 FOR ALL CASES)

Total Soil Resistance (kip)	J (sec/ft)	Maximum Point Displacement (in)	Maximum ENTHRU (kip ft)	Maximum Compressive Force (kip)	Maximum Tensile Force (kip)
50	0.0	1.49	6.80	225	709
	0.1	1.11	6.89	221	68
	0.2	0.85	7.03	221	41
	0.3	0.72	7.21	221	18
	0.4	0.63	7.23	222	6
	0.5	0.56	7.25	222	5
100	0.0	0.84	6.96	230	68
	0.1	0.58	7.12	222	31
	0.2	0.49	7.20	223	11
	0.3	0.43	7.25	223	14
	0.4	0.38	7.27	224	12
	0.5	0.34	7.28	225	17
150	0.0	0.56	7.10	235	91
	0.1	0.42	7.23	223	23
	0.2	0.34	7.26	224	21
	0.3	0.28	7.28	225	26
	0.4	0.24	7.27	239	24
	0.5	0.21	7.26	251	22
200	0.0 0.1 0.2 0.3 0.4 0.5	0.41 0.28 0.22 0.18 0.15 0.13	7.21 7.28 7.28 7.25 7.25 7.22 7.20	223 225 239 255 267 274	79 35 37 31 27 26
300	0.0	0.22	7.28	250	82
	0.1	0.12	7.23	272	53
	0.2	0.09	7.18	286	41
	0.3	0.08	7.14	293	33
	0.4	0.07	7.11	298	31
	0.5	0.07	7.07	302	30

TABLE 6.3 (Continued)

Total Soil Resistance (kip)	J (sec/ft)	Maximum Point Displacement (in)	Maximum ENTHRU (kip ft)	Maximum Compressive Force (kip)	Maximum Tensile Force (kip)
400	0.0 0.1 0.2 0.3 0.4 0.5	0.11 0.07 0.06 0.05 0.05 0.05	7.20 7.13 7.07 7.02 6.96 6.90	260 308 313 314 314 314	127 61 41 35 33 33

most consistant trend as J is varied, as shown in Figure 6.4. The other cases studied showed this same trend, i.e., as J increases, the maximum displacement decreases rapidly.

C H A P T E R V I I CONCLUSIONS

The correlation between the numerical solution and the experimental data presented in Chapter V indicates the potential accuracy of Smith's method, but the problem involves so many important parameters that it is extremely important to know as much as possible about their actual behavior.

As shown in Chapter III, it is possible to determine valuable information from the wave equation even though some of these parameters are unknown. For example, several problems can be solved in which the unknown parameter varies between some upper and lower values, as was done to determine the effect of the ram's elasticity in Chapter III. This study shows that only for steel on steel impact does the elasticity of the ram affect the solution.

In order to study the Michigan data over 5,000 problems had to be solved because certain key information such as the ram velocity was not reported. Still it was possible to study the behavior of the piledriving hammers discussed. For example, the efficiency of the cushion assembly was remarkably consistent, in that they were nearly independent of the type of pile, pile length, and soil resistance. The correlation be-

tween the wave equation and the field data shown in Chapter III further illustrates that Smith's method is accurate, especially if all the required data is known and need not be assumed.

Much of the value of this method of analysis is its flexibility. As illustrated in Chapter III, the wave equation can be used for any number of studies which otherwise would not be possible.

It was shown that the stress-strain curve for a cushion is not straight line. Instead, it follows a curve which is closely parabolic. However, a straight line which has a slope equal to that of the true stress-strain curve taken at a point halfway between zero and the maximum strain gives accurate results. The cushion's dynamic coefficient of restitution was found to agree with commonly recommended values.

The effect of internal damping the the concrete and steel piles was shown to be negligible in these cases, although it can be accurately accounted for by the wave equation.

The parameter for which further research is most needed is probably the dynamic behavior of the soil.

C H A P T E R V I I I RECOMMENDATIONS FOR FURTHER RESEARCH

The following areas are recommended for further research:

- 1. A complete evaluation of the data collected by the Michigan State Highway Commission, including correlation of hammer energy, permanent set of pile per blow, etc. This would require a major research effort because of the quantity of data reported. Also, because certain variables were not determined, several theoretical solutions must be solved for each attempt correlation until the unknown parameter can be "pinned down" with reasonable accuracy. For example, the solutions for over 5,000 problems were required to complete the 28 case study made in Chapter III.
- 2. A study to determine how to improve the efficiency of the pile-driving hammers presently in use. This type of research should be most interesting to the hammer manufacturers since present equipment could be optimized to drive piling faster and/or reduce the driving stresses during driving. The possibility that today's pile-driving hammers are as efficient as possible through trial and error is remote.
 - 3. Further research is needed to insure that the

damping models proposed in Chapter IV are also accurate for timber piling, and to determine what damping constants should be used.

4. Major research efforts are needed to investigate every aspect of the soil resistance acting on the pile during driving.

REFERENCES

- 1. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Proc. ASCE, Aug., 1960, p. 35.
- Federal Construction Council, "Foundation Piling", Building Research Advisory Board, National Academy of Sciences - National Research Council, Publication 987, 1962, p. 28.
- 3. Ibid, p. 8.

のながら

- 4. Cummings, A. E., "Dynamic Pile Driving Formulas", Journal of Boston Soc. of Civil Engrs., Jan., 1940.
- 5. Forehand, P. W. and J. L. Reese, "Pile Driving Analysis Using the Wave Equation," Master of Science in Engineering Thesis, Princeton University, 1963, p. 5.
- 6. Isaacs, D. V., "Reinforced Concrete Pile Formula", Inst. Aust. Eng. J., Vol. 12, 1931, p. 415.
- 7. Fox, E. N., "Stress Phenomena Occurring in Pile Driving", Engineering (London) Vol. 134, 1932, p. 312.
- 8. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Proc. ASCE, Aug., 1960.
- 9. Chellis, R. D., "Pile Foundations", McGraw-Hill Book Co., New York, 1951, p. 20.
- 10. Fox, E. N., "Stress Phenomena Occurring in Pile Driving," Engineering (London) Vol. 134, 1932.
- 11. Taylor, D. W., "Fundamentals of Soil Mechanics", John Wiley & Sons, New York, 1956, p. 770.
- 12. Isaacs, D. V., "Reinforced Concrete Pile Formula". Inst. Aust. Eng. J., Vol. 12, 1931, p. 312.
- 13. Fox, E. N., "Stress Phenomena Occurring in Pile Driving," Engineering (London) Vol. 134, 1932, p. 263.
- 14. Glanville, W. H., G. Grime, E. N. Fox, and W. W. Davies, "An Investigation of the Stresses in Rainforced Concrete Piles during Driving", British Bldg. Research Bd. Tech. Paper No. 20, D. S. I. R., 1938.

- 15. Cummings, A. E., "Dynamic Pile Driving Formulas", Journal of Boston Soc. of Civil Engrs., Jan., 1940, p. 6.
- 16. Smith, E. A. L., "Pile Driving Impact", <u>Proceedings</u>, Industrial Computation Seminar, September, 1950, International Business Machines Corp., New York, N. Y., 1951, p. 44.
- 17. Smith, E. A. L., "Impact and Longitudinal Wave Transmission", Transactions, ASME, August, 1955, p. 963.
- 18. Smith, E. A. L., "What Happens When Hammer Hits Pile", Engineering News Record, McGraw-Hill Publishing Co., Inc., New York, N. Y., September 5, 1957, p. 46.
- 79. Smith, E. A. L., "Tension in Concrete Piles During Driving", <u>Journal</u>, Prestressed Concrete Institute, Vol. 5, 1960, pp. 35-40.
- 20. Smith, E. A. L., "The Wave Equation Applied to Pile Driving", Raymond Concrete Pile Co., 1957.
- 21. Smith, E. A. L., "Pile Calculations by the Wave Equation", Concrete and Constructional Engr., London, June, 1958.
- 22. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Proc. ASCE, Aug., 1960.
- 23. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Transactions, ASCE, Vol. 127, 1962, Part I, p. 1171.
- 24. Samson, Charles H., Jr., "Pile Driving Analysis by the Wave Equation (Computer Procedure)", Report of the Texas Transportation Institute, Texas A&M University, May, 1962.
- 25. Samson, Charles H., Jr., "Investigation of Behavior of Piles During Driving, Lavaca Bay Causeway", Uniqueblished Report of TTI to Texas Highway Dept., 1932.
- 26. Samson, Charles H., Jr., "Pile Stress Analysis-Harbor Island Bay Bridge", Unpublished Report of the Texas Transportation Institute, July, 1962.
- 27. Hirsch, T. J., "Stresses in Long Prestressed Concerned Piles During Driving", Report of the Texas Transposed tion Institute, Texas A&M University, September, 1988.

- 28. Forehand, P. W. and J. L. Reese, "Pile Driving Analysis Using the Wave Equation," Master of Science in Engineering Thesis, Princeton University, 1963.
- 29. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", <u>Journal of the Structural Division</u>, ASCE, Vol. 89, No. ST4, Proc. Paper 3608, August, 1963.
- 30. Hirsch, T. J., C. H. Samson, Jr., and L. L. Lowery, "Driving Stresses in Prestressed Concrete Piles", Structural Eng. Conf. of ASCE, San Francisco, Oct., 1963.
- 31. Hirsch, T. J., "Field Tests of Prestressed Concrete Piles During Driving", Report of the Texas Transportation Institute, Texas A&M University, August, 1963.
- 32. Hirsch, T. J., "Computer Study of Variables which Affect the Behavior of Concrete Piles During Driving", Report of the Texas Transportation Institute, Texas A&M University, August, 1963.
- 33. Samson, C. H., Jr., F. C. Bundy, and T. J. Hirsch, "Practical Applications of Stress-Wave Theory in Piling Design", Presented to the annual Texas Section ASCE meeting, San Antonio, Texas, October, 1963.
- 34. Hirsch, T. J., and C. H. Samson, Jr., "Driving Practices for Prestressed Concrete Piles", Report of the Texas Transportation Institute, Texas A&M University, April, 1965.
- 35. Hirsch, T. J., "Fundamental Design and Driving Considerations for Concrete Piles", 45th Annual Maeting of Highway Research Board, Washington, D. C., January, 1966.
- 36. Hirsch, T. J., and Thomas C. Edwards, "Impact Load-Deformation Properties of Pile Cushioning Materials", Report of the Texas Transportation Institute, Texas A&M University, July 1965.
- 37. Smith, E. A. L., "Pile Driving Impact", <u>Proceedings</u>, Industrial Computation Seminar, September, 1980, International Business Machines Corp., New York, 1, V., 1951.

- 38. Smith, E. A. L., "Impact and Longitudinal Wave Transmission", Transactions, ASME, August, 1955.
- 39. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Proc. ASCE, Aug., 1960.
- 40. Forehand, P. W., and J. L. Reese, "Pile Driving Analysis Using the Wave Equation", Master of Science in Engineering Thesis, Princeton University, 1963.
- 41. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", Journal of the Structural Division, ASCE, Vol. 89, No. ST4, Proc. Paper 3608, August, 1963.
- 42. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Transactions, ASCE, Vol. 127, 1962, Part I, p. 1152.
- 43. Chellis, R. D., "Pile Foundations", McGraw-Hill Book Co., New York, 1951, p. 29.
- 44. Michigan State Highway Commission, "A Performance Investigation of Pile Driving Hammers and Piles", Office of Testing and Research, Lansing, March, 1965.
- 45. Housel, W. S., "Pile load capacity: estimates and test results", <u>Journal of the Soil Mechanics and Foundations Division</u>, ASCE, Proc. Paper 4483, September, 1965.
- 46. Michigan State Highway Commission, "A Performance Investigation of Pile Driving Hammers and Piles", Office of Testing and Research, Lansing, March, 1965, p. 330.
- 47. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Transactions, ASCE, Vol. 127, 1962, Part I.
- 48. Forehand, P. W. and J. L. Reese, "Pile Driving Analysis Using the Wave Equation," Master of Science in Engineering Thesis, Princeton University, 1960.
- 49. Michigan State Highway Commission, "A Performance Investigation of Pile Driving Hammers and Piles", Office of Testing and Research, Lansing, March, 1965, p. 246.

- 50. Hirsch, T. J., and Thomas C. Edwards, "Impact Load-Deformation Properties of Pile Cushioning Materials", Report of the Texas Transportation Institute, Texas A&M University, July, 1965, p. 1.
- 51. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Transactions, ASCE, Vol. 127, 1962, Part 1, p. 1162.
- 52. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", Journal of the Structural Division, ASCE, Vol. 89, No. ST4, Proc. Paper 3608, August, 1963.
- 53. Hirsch, T. J., and Thomas C. Edwards, "Impact Load-Deformation Properties of Pile Cushioning Materials", Report of the Texas Transportation Institute, Texas A&M University, July, 1965.
- 54. Hirsch, T. J., and Thomas C. Edwards, "Impact Load-Deformation Properties of Pile Cushioning Materials", Report of the Texas Transportation Institute, Texas A&M University, July, 1965.
- 55. <u>Ibid</u>, p. 29.
- 56. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", Journal of the Structural Division, ASCE, Vol. 89, No. ST4, Proc. Paper 3608, August, 1963.
- 57. Jacobsen, L. S., "Steady forced vibrations as influenced by damping", ASME Transactions, Vol. 52, 1930, p. 168.
- 58. Smith, E. A. L., "Pile Driving Analysis by the Wave Equation", Transactions, ASCE, Vol. 127, 1962, Part I, p. 1167.
- 59. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", Journal of the Structural Division, ASCE, Vol. 89, No. ST4, Proc. Paper 3608, August, 1963, p. 417.
- 60. Ibid, p. 427.
- ol. Ibid, p. 429.

- 62. Hirsch, T. J., and Thomas C. Edwards, "Impact Load-Deformation Properties of Pile Cushioning Materials", Report of the Texas Transportation Institute, Texas A&M University, July, 1965, p. 21.
- 63. Ibid, p. 20.
- 64. Samson, C. H., Jr., T. J. Hirsch, and L. L. Lowery, "Computer Study of Dynamic Behavior of Piling", Journal of the Structural Division, ASCE, Vol. 89, No. ST4, Proc. Paper 3508, August, 1963, p. 418.
- 65. Chellis, R. D., "Pile Foundations", McGraw-Hill Book Co., New York, 1951, p. 23.
- 66. Chan, P. A., "A Laboratory Study of Dynamic Load-Deformation and Damping Properties of Sands Concerned with a Pile-Soil System", a dissertation, Texas A&M University, unpublished, January, 1967.
- 67. Hirsch, T. J., and Thomas C. Edwards, "Use of the Wave Equation to Predict Pile Load Bearing Capacity", Report of the Texas Transportation Institute, Texas A&M Uni ersity, unpublished, August, 1966.
- 68. Samson, C. H., Jr., F. C. Bundy, and T. J. Hirsch, "Practical Applications of Stress-Wave Theory in Piling Design", Presented at the annual Texas Section ASCE meeting, San Antonio, Texas, October, 1963, p. 1162.

APPENDIX A

PROGRAM INPUT DATA

CARD 101 (Required)

ID1 and ID2 - All "ID" values are for identification only and can be either alphabetic or numeric.

 $1/\Delta t$ - Time interval. If left blank, $\Delta t cr/2$ will be used. (1/sec)

MP - Total number of segments in the system to be analyzed.

<u>VELMI</u> - Initial velocity of the ram. (ft/sec)

MH - Element number of the first pile sugment.

NR - Number of divisions of the ram. 4

EEM(NR) - Coefficient of Restitution of spring number NR, directly under ram.

EEM(NR+1) - Coefficient of Restitution of spring
number NR+1.

The minimum force in the spring be active the ram once that force has reached a maximum. (kip) For example, if the diesel hasmer explosive pressure cannot set GAMMA(AR) = 158.7 kip. If the minimum force the spring can transmit.

is zero (for example, when no tensile force can exist between the ram and anvil) set the corresponding GAMMA(I) = 0.0. If the spring represents a continuous body such as the spring between any two pile segments, it can transmit tensile forces between the elements. This is signified by setting GAMMA(I) equal to any negative value, usually -1.0 kip.

GAMMA(NR+1) - Same as above, but for spring number O NR+1.

NSTOP - Total number of time intervals the program is to run.

NOP(I)	VALUE	FUNCTION
NOP(1)		Used to read cards 103-106 and print out the data for problem identification.
	=]	No identification card is to be used. \perp
	=2	Read and print a single ID card. (card 103)
	= 3	Read and print two ID cards. (cards
	= 4	Read and print ID cards 103, 104, and 105.

NOP(I)	VALUE	FUNCTION
	= 5	Read and print ID cards 103, 104, 105, and 106.
		·
NOP(2)	dromatic Maria	Used to specify the input method for the segment weights WAM(I).
	= 7	Read one weight for each segment (card series 200).
	= 2	Read the segment weights for only the first five and last five segments of the pile system from a single card (card 200), and equate all remaining
	- -	segment weights to the sixth weight in the system. (NOP(2) = 2 is used when a large number of equal weights are present except for the first or last few weights.)
NOP(3)		Used to specify the input method for the internal spring stiffness, (XKAM(I).
	=]	Read one stiffness for each internations spring from card series 300.

NOP(I)	VALUE	FUNCTION
	= 2	Read the stiffness values for only the
	0 . 1	first five and last five internal
First	J Second	springs on a single card 300, and assign
K meel	J Second I be the	the fifth value to all remaining in-
Jame Jame	the the	ternal springs.
•	100	(NOP(3) = 2 is used under the same
		conditions as NOP(2) = 2.
NOP (4)		Used to specify what soil resistance
		distribution act along the pile.
	=1/	Read RUM(I) for each element from card
		series 400; and set the point bearing
		soil resistance RUM(MP+1) equal to AUP.
	= 2	Set all side resistances equal we zame.
•		and set $RUM(MP+1) = RUP$.
	= 3	Distribute RUT-RUP uniformly along the
	* .	side of ta <u>ب</u> ile from segment MO than
		MP, and set RUM(MP+ ψ) = RUP.
	= 4	Distribute RUT-RUP triangularly along
		the pile petween segments MO and MP
		and set $RuM(MP+1) = RUP$.

NOP(I)	VALUE	FUNCTION
	= 5	Read one 450 series card for each mass
		upon which a nonlinear resistance vs
		displacement curve acts. If a linear
		curve also happens to be acting on an
		element, it must also be input on a
		450 series card.
NOP (5)		Used to specify the input method for
		GAMMA(I). Note: The significance of
		GAMMA(I) is discussed in the "500
		card series".
	=1,2	Read GAMMAI and GAMMA2 from card 101
		and assign GAMMAl to internal spring
		number NR, and assign GAMMA2 to spring
		number NR+1. Then set GAMMA(I) of the
		remaining springs to -1.0.
	= 3	Same as for NOP(5)=2, except that
		GAMMA(AR+2) is also set equal to 0.0
	= 4	Same as for NOP(5)=2, except
		GAMMA(NR+2)=0.0 and $GAMMA(NR+3)=0.0$
		This option is used when a large number
	•	of elements such as an anvil, followers

NOP(I)	VALUE	FUNCTION
		load cell and pile cap are encounter-
		ed, since these elements cannot trans-
		mit a tensile force to the next
		element. This option can be used to
		set up to eight consecutive values
	*	of $GAMMA(T)=0.0$ by setting $NOP(5)=8$.
	= 9	Read GAMMA(I) for each spring from
		card series 500.
NOP(6)		Used to specify the input method for EEM(I).
	= 1	Read EEMT and EEM2 from card 101 set
		EEM(NR) = EEM1, and $EEM(NR+1) = EEM(2)$.
	•	Then set EEM(I) for all other springs
		equal to 1.0 (perfectly elastic).
	= 2	Read EEM(I) for each spring from cara
		series 600.
NOP(7)	· · · · · · · · · · · · · · · · · · ·	Used to specify the input method for
		BEEM(I).
	= 7	Set all BEEM(I)=0.0.
	= 2	Read BIEM(I) for each spring from

NOP(I)	VALUE	FUNCTION
	ş	card series 700.
NOP(8)		Used to specify the input method for $VEL(I)$.
	=]	Read VELMI from card 101 and set VEL(I,t=0) for all segments of the ram (usually one segment) equal to VELMI. Set all other VEL(I)=0.0.
	= 2	Read VEL(I) for each segment from card series 800.
NOP(9)		Used to specify input method for $Q(I)$.
	=]	Read QSIDE and QPOINT from card 102 and set all Q(I) along side of the pile equal to QSIDE. Set Q(MP+1) under pile tip equal to QPOINT.
	= 2	Read Q(I) for each element including $Q(MP+1)$ from card series 900.
NOP(10)		Used to specify input method for So(1).
	=]	Read SIDES and POINTS from card 102. Set all SS(I) along side of pile equal

NOP(I)	VALUE	FUNCTION	
	= 2	to SIDEJ and SJ(MP+1) under pile tip equal to POINTJ. Read SJ(1) for each element including SJ(MP+1) from card series 1000.	
NOP(11)		Used to specify the input method for $DYNAMK(I)$.	álwa 1
	= 1	Set all DYNAMK(I)=0.0. Read DYNAMK(I) for each spring from card series 1100.	
NOP(12)	-	Used to specify input method for $A(I)$.	1 W
	= 7	Read AREA from card 102 and set all A(I) equal to AREA.	:
	= 2	Read A(I) for each internal spring from card series 1200.	
NOP(13)		Used to specify which method of in- ternal damping is to be used in the pile.	1
,	=]	Use Smith's method (refer to Figure 5.13b).	

NOP(I)	VALUE	FUNCTION
	= 2	Use standard linear solid method (refer to Figure 5.13c).
NOP(14)		Used to specify how the force in the cushion after impact is to be determined.
	= 7	Calculate cushion forces from the wave equation applied to the moving ram after impact.
	= 2	In this case, the force at the head of the pile at all times is known, probably by experimental methods, and this force curve is to be applied at
	= 3	the head of the pile. The force at each time interval FORCIN(t) is read from card series 1300 (kip). Same as when NOP(14)=2, except that
	·	galvanometer readings rather than forces at each time interval are input and the cushion forces are determined by the computer. In this case, the information on the 1400 header card

NOP(I)	VALUE	FUNCTION
		needed, followed by the galvanometer deflection at each time interval from card series 1400.
NOP (15)		Used to specify how gravity is to be accounted for in the solution
	=]	The effect of gravity is to be neglected.
	= 2	Gravity is to be considered, with the initial displacement of each segment,
·	=3	D(I,0), and the initial soil resistances RAM(I,0) assumed to be zero. Gravity is to be considered, and
		D(I,0) and RAM(I,0) are to be approximated by Smith's suggested method 60
	= 4	Gravity is to be considered, and the values for D(I,0) and RAM(I,0) are
		computed by Samson's suggested method ⁶ .
NOP(16)		Used to specify the number of problems
		to be solved using the basic data given on cards 101 through the 1700 card series.

NOP(I)	VALUE	FUNCTION
	=]	Only one problem is to be solved using
		this set of data.
	= 2	Run more than one problem with changes
		in this data as specified on card 1600.
NOP(17)		Used to specify whether the ultimate
		pile capacities predicted by various
		pile driving equations are desired.
	=]	No capacities are to be computed.
	= 2	Using the information from card 1760
		and the information provided by the
		wave equation solution, solve for the
		ultimate resistance to failure as pra-
		dicted by several popular pile driving
		equations.

CARD 102 (Required)

<u>ID3</u> - Identification.

ID4 - Identification.

<u>RUT</u> - The total static soil resistance acting on the pile. (kip)

<u>RUP</u> - The total static soil resistance acting beneath the point. (kip)

MO - Number of first element upon which soil resistance acts.

QSIDE - Soil quake along side of pile, if a single value exists. If not, set QSIDE=3.0. (in.)

QPOINT - Soil quake beneath pile point. (in.)

SIDEJ - Soil damping factor in shear along the side of the pile if a single value exists. If not, set SIDEJ=0.0. (sec/ft)

POINTJ - Soil damping factor in compression beneath the pile point. (sec/ft)

NUMR - Number of elements for which the soil spring does not have a linear stress strain curve.

AREA

- A constant used to convert the forces into stresses or other more convenient values (such as changing 1b. to kip by setting AREA=1000.0).

NSI-NS6

- The element numbers for which solutions vs time interval will be printed. Maximum values and other information are always printed for each element after NSTOP time intervals have elapsed.

CARDS 103-106 (Required only if NOP(1)=2,3,4,5)

If NOP(1)=1, no identification card will be read. If NOP(1)=2, read card 103 containing 72 columns of alphabetic or numeric identification and print this information above the problem. If NOP(1)=3, read and print two identification cards, up to a maximum of four cards (NOP(1)=5).

200 CARD SERIES (Required)

IDW1, IDW2 - Throughout this Input, variables beginning with the letters "ID" are for identification, in this case to help identify what segment weights are being used.

WAM(I) - The weight of element number I (kip).
 a) If NOP(2)=1, the computer will read
 MP segment weights, ten segment weights

to a card from cards 201-230, up to a maximum of 300 segments. For example, if the system is divided into 37 segments, four 200 series cards must be included in the data: 201 through 204. b) If NOP(2)=2, in this case the pile must have a constant weight per foot along its length. Since the pile is usually divided into equal segment lengths, only a few of the element weights are different. Therefore, only the top five weights (the ram, anvil, ...) and the bottom five weights (..., pile segment, pile point) must be read from the card 200. The computer then sets all other element weights equal to the sixth value punched in the card.

300 CARD SERIES (Required)

IDK1, IDK2 - Identification.

- - a) If NOP(3)=1, the computer reads MP-3 spring rates from cards 301-330.
 - b) If NOP(3)=2, the first and last fiv.

XKAM(I) are read from card 300, and the remaining XKAM(I) are set equal to the sixth XKAM(I) value, i.e., XKAM(MP-4).

400 CARD SERIES (Required if NOP(4)=1)

IDRL1, IDRL2- Identification.

- RUM(I)
- The ultimate static resistance of the soil acting on pile segment I. (kip)
 - a) If NOP(4)=1, read MP ultimate soil resistances, from cards 401-430, and set RUM(MP+1) equal to RUP.
 - b) If NOP(4)=2, set all side friction = 0.0 and set RUM(MP+1)=RUP.
 - c) If NOP(4)=3, distribute (RUT-RUP) uniformly along the pile starting from segment number MO to number MP, and set RUM(MP+1)=RUP.
 - d) If NOP(4)=4, distribute (RUT-RUP) triangularly between MO and MP and set RUM(MP+1)=RUP.
 - e) If NOP(4)=5, read NUMR cards, each of which can define a linear or non-linear force-displacement curve for the soil (see card series 450).

450 CARD SERIES (Required if NOP(4)=5)

When NOP(4)=5, the soil resistance vs displacement curve is nonlinear. This requires ten soil resistances to be read for each soil spring, one for each displacement corresponding to a multiple of Q/10. As shown on data card 451, I is the number of the element upon which the nonlinear resistance is acting, XKIM(I) is the unloading spring rate (kip/in.), and R(I,J) are the soil resistances (kip) at each of the displacements Q/10, 2Q/10, ..., 9Q/10, Q. Whenever NOP(4)=5, one 450 series card is required for each element upon which soil resistance acts.

500 CARD SERIES (Required when NOP(5)=2)

IDG1, IDG2 - Identification.

GAMMA(I) - The minimum force possible in spring I after a peak compressive force has passed, except that any negative GAMMA(I) is construed to mean that that spring can transmit a tensile force of any magnitude. (kip)

600 CARD SERIES (Required when NOP(6)=2)

IDE1, IDE2 - Identification.

EEM(I) - The coefficient of restitution for MP-1 internal springs. This determines the slope of the unloading curve.
(dimensionless)

700 CARD SERIES (Required when NOP(7)=2)

IDB1, IDB2 - Identification.

BEEM(I) - The damping coefficient of the MP-1 internal springs. (in. sec/ft)

800 CARD SERIES (Required when NOP(8)=2)

IDV1, IDV2 - Identification.

 $\frac{\text{VEL}(I)}{\text{- The initial velocities of each of the}}$ $\text{MP weights.} \qquad \text{(ft/sec)}$

900 CARD SERIES (Required when NOP(9)=2)

IDQ1, IDQ2 - Identification.

1000 CARD SERIES (Required when NOP(10)=2)

<u>IDJ1, IDJ2</u> - Identification.

SJ(I) - The soil damping factor for MP+1 soil spring. (sec/ft)

1100 CARD SERIES (Required when NOP(11)=2)

IDDK1, IDDK2- Identification.

<u>DYNAMK(I)</u> - The dynamic spring rate of MP-1 internal springs. (kip/in.)

1200 CARD SERIES (Required when NOP(12)=2)

IDA1, IDA2 - Identification.

 $\underline{A(I)}$ - The cross-sectional area of each of the MP-1 internal springs. (in. 2)

1300 CARD SERIES (Required when NOP(13)=2)

FORCIN(INTV) - The force acting on the head of the pile (kip) at time interval INTV, for NSTOP intervals with a maximum NSTOP equal to 100 time intervals.

1400 CARD SERIES (Required when NOP(14)=2)

CARD 1400 - Header Card

 $\frac{\text{APILE}}{\text{(in.}^2)}$ - The area of the head of the pile.

RGAGE - The strain gage resistance. (ohm)

RCAL - Calibration resistance. (ohm)

<u>ACTIVG</u> - Number of active gages.

GFACTR - Gage factor for the gages used.

Displacement of the galvanometer trace
when RCAL is thrown into the bridge at
the head of the pile. (in.)

<u>D2</u> Through

D5 - Galvo displacements corresponding to RCAL at any other four strain gage points. (in.)

CARDS 1401 UP TO 1410

CARD 1500 (Required when NOP(15)=4)

F1 and F2 - Forces known to lie on the true dynamic force vs compression curve of the cushion. (kip)

Cl and C2 - The cushion compressions corresponding to Fl and F2, respectively. (in.)

CARD 1600 (Required when NOP(16)=2)

NOPP(I)

- When arnumber of cases are to be solved for which only a few parameters will change, NOPP(I) designates which parameter to vary and how many different values it should be assigned. For example: NOPP(1)=5 indicates that five problems are to be solved, for which only the ram's initial velocity will vary. Each NOPP(I) controls a single variable as shown in Table A.1.

DV1 Through

DK1 - These parameters control the percent change in the variables mentioned above. For example, assume that the

TABLE A.1 LIST OF PARAMETER VARIATIONS AND THEIR CONTROLLING OPTIONS

Controlling Option	Per Cent Increase in Original Value	Parameter Controlled
NOPP(1)	DV1	VELMI (Initial ram velocity)
NOPP(2)	DWI	W(1)
NOPP(3)	DW2	W(2)
NOPP(4)	DWI	W(3) through W(MP)
NOPP(5)	DKI	XKAM(1)
NOPP(6)	DK2	XKAM(2)
NOPP(7)	DKI	XKAM(3) through XKAM(MP-1)
NOPP(8)	DQI	QSIDE
NOPP(9)	DQP	QPOINT
NOPP(10)	DJ I	SIDEJ
NOPP(11)	DJP	POINTJ
NOPP(12)	DRI	RUT
NOPP(13)	DRP	pwe
NOPP(14)	DRI	RUT & RUP
NOPP(15)	DEI	EEM(1)
NOPP(16)	DE2	EEM(2)

effects of ram velocities of 10, 12, 14, 16, 18, and 20 ft/sec are being studied. The value of DVI would be (12 ft/sec - 10 ft/sec)
10 ft/sec

or DV1=0.20. In this case, NOPP(1) would equal 6 since 6 separate problems are to be run.

The variables controlled by DV1 to DK1 are also listed in Table A.1.

CARD 1700 (Required when NOP(17)=2)

AREAP - Cross-sectional area of pile. (in.²)

XLONG - Length of pile. (ft)

CENR - Value for use in ENR pile driving formula.

QAVG - Average ground "Quake". (in.)

WRAM - Ram weight. (kip)

WPILE - Pile weight. (kip)

ENERGY - Actual energy output of the ram. (fr 1b)

A P P E N D I X B

EXAMPLE PROBLEM

Introduction

The following example problem is given to illustrate the steps necessary to arrive at a solution. In the previous chapters, the functional components involved were discussed separately; for example, the driving hammer, pile, soil properties, etc. However, the input data is more easily handled by grouping according to similar physical quantitites rather than functional quantities. For example, one series of cards is used to input all segment weights, another for the spring rates, and so on! The order in which the input data is set up for the example problems is by no means unique, but it probably should be followed until the programmer becomes familiar with the operations involved.

It should be noted that any variable without a decimal point (such as MP, MH, NR, NSTOP, and NOP(I) on card 101) is always an integer and must be entered as far to the right in its field as possible. Also, the decimal point does not have to be punched for any variable which has a decimal place already shown on the data sheet unless it is desired to change its position. For example, if the initial ram velocity (IVEL on card 101) is 13.48 ft/sec, the numbers 1, 3, 4, and 8 should be punched in columns 19 through 22, respectively. How-

ever, to enter a velocity of 127 ft/sec into IVEL, punch 1, 2, and 7 in columns 19, 20, and 21, and punch a decimal point in column 22.

Except for this last case, decimal points need never be punched.

Example Problem

Since case BLTP-6; 57.9 (from the Michigan Pile Study) was one of the problems most often used in this report, the input data required for its solution will be determined first. Figures 3.3 and 3.4 show the real system and the idealized system.

- A. Given Information Case BLTP-6; 57.9
 - l. Hammer Data-Vulcan #1
 - a. Manufacturer's Rated Energy = 15,000
 ft lb, normal stroke = 3 ft.
 - b. Ram Weight = 5,000 lb, velocity at impact not measured.
 - c. Driving Cap Weight = 1,000 lb.
 - d. Cushion Data = Oak block, 6-1/4 in. deep by 11-1/4 in. in diameter, direction of grain unknown, condition of cushion unknown (somewhere between new and "crushed and badly burnt").
 - 2. Pile Data-CBP 124 H-section
 - a. Area = 15.58 in.²

- b. Weight = 53 lb/ft
- c. Total Length = 72.5 ft
- d. Driven Length = 57.9 ft
- e. Modulus of Elasticity = 30×10^6

3. Soil Data

- a. Ultimate Soil Resistance = 400 kip
 (static value from load test after
 soil "set-up").
- b. From driving log, 75 percent of the soil resistance is assumed point bearing and 25 percent side resistance.
- c. Soil damping factor "J" and soil quake"O" not known.
- 4. Miscellaneous Data
 - a. Load Cell Weight = 580 lb.
 - b. Additional Helmet Weight = 1,080 lb.
- B. Input Data Calculations

Card 101

- 1. ID1 Identification Tag, use BLTP-6/
- 2. ID2 Identification Tag, use 57.9.
- 3. Segment Lengths Although segment lengths of 10 ft are usually satisfactory, a 5 ft length will be used to increase the accuracy of the solution.
- 4. Time Interval The normal time interval

- of 1/4000 to 1/5000 iterations/sec must be halved since the normal segment length of 10 ft was reduced by half. Therefore, use $\Delta t = 1/10,000$ sec or $1/\Delta t = 10,000$.
- 5. MP The total number of segments as shown in Figure 3.4 is 3 above the pile plus 14 pile segments. Thus, MP = 17.
- 6. Since the ram velocity at impact was not recorded, the following ram velocities will be studied: IVEL = 8, 12, 16, and 20 ft/sec.
- 7. MH The first pile segment weight = 4.
- 8. NR Number of divisions of the ram = 1.
- 9. EEM1 = Coefficient of restitution of cushion = 0.4, EEM2 = coefficient of restitution of load cell = 1.0.
- 10. Since springs 1, 2, and 3 cannot transmit
 tensile forces, GAMMA(1), (2), and (3) are
 0.0. The remaining GAMMA (I) are set
 equal to -1.0. This is done by setting
 GAMMA1 = GAMMA2 = 0.0 and designating
 NOP(5) = 3 so that GAMMA(3) will also
 be set = 0.0.
- 11. To allow the wave time to make two com-

plete passes up and down the pile,

NSTOP is set = 173 iterations. This is

found from the velocity of travel of the

stress wave and the value of Δt . Vwave = $E/\rho = \frac{30,000,000}{(0.283/386)} = 202,000$ ips or

(0.283/386)Vwave = $\frac{202,000}{12}$ = 16,800 ft/sec.

Total distance wave must travel = 4(72.5)

= 290 ft.

Total time required = $\frac{290 \text{ ft}}{16,800 \text{ ft/sec}} = .0173$

sec.

NSTOP =
$$\frac{\text{Total time}}{\Delta t} = \frac{.0173 \text{ sec}}{(1/10,000)\text{sec/iteration}}$$

= 173 iterations

Therefore, use NSTOP = 200 iterations.

- 12. Option Calculations NOP(I)
 - a. NOP(1) No header cards to be read in and printed out, so NOP(1) = 1.
 - b. NOP(2) Read segment weights from card series 200 (long form), so NOP(2) = 1.
 - c. NOP(3) Read spring constants from long form card series 300 (long form), so NOP(3)
 = 1.
 - d. NOP(4) Assume triangular soil distribution along the side of the pile,

- so NOP(4) = 4.
- e. NOP(5) Since GAMMA(3) is to be set equal to 0.0, NOP(5) = 3.
- f. NOP(6) Since all the internal springs are considered perfectly elastic, except for the first one or two for which values of "e" are given by EEM1 and EEM2, set NOT(6) = 1 (short form, no series 600 cards).
- g. NOP(7) Assume zero internal damping in the steel pile, thus set NOP(7) = 1 and do not include the 700 card series.
- h. NOP(8) Only the ram has an initial velocity, so NOP(8) = 1, no 800 card series.
- i. NOP(9) and NOP(10) Since more exact soils information is not available,

 Smith's recommended values for Q and

 J will be used and input on card 102

 (short form). Thus, NOP(9) = NOP(10)

 = 1.
- j. NOP(11) No damping, set NOP(11) = 1.
- k. NOP(12) Use a single factor to change force to stress for all springs
 NOP(12) = 1.

- NOP(13) Use the damping procedure illustrated in Figure 5.13(a), so
 NOP(13) = 1.
- m. NOP(14) Calculate the force at the pile head from the action of the ram so NOP(14) = 1.
- n. NOP(15) Neglect gravity effects NOP(15) = 1.
- o. NOP(16) Since several parameters are to be varied, set NOP(16) = 2, and thus card 1600 must be included in the data.
- p. NOP(17) Do not calculate driving resistance predicted by pile driving equations. NOP(17) = 1.

Card 102

- 1. ID3 Identification Tag, use 12H53.
- 2. ID4 Identification Tag, use L = 72.
- 3. RUT Since the Michigan Report noted a soil "set-up" of about 2.0, the static resistance actually encountered during driving was probably around half of the measured 400 kip, so RUT = 200 kip.
- 4. RUP Assuming 75 percent of the total

- soil resistance at the point, RUP = 150 kip.
- 5. MO Since the length of pile in the ground was 57.9 ft, the first segment upon which soil resistance acts is given by:

M0 = MP+1
$$\frac{\text{Depth Driven}}{\text{Segment Length}}$$

= 17+1- $\frac{57.9}{5.0}$
= 18 - 11.6
= 18 - 12

so MO = 6

- 6. QSIDE and QPOINT Smith's recommended value of 0.1 in. will be used due to lack of better soils data.
- 7. SIDEJ and POINTJ For the same reasons above for values of Q, use SIDEJ = 0.05 sec/ft and POINTJ = 0.15 sec/ft.
- 8. NUMR Since the soil springs all act as shown in Figure 6.1(a), NUMR = 0.
- 9. Set IPRINT = 5 to print out the solution at every 5th iteration.
- 10. AREA A single factor will be used to change all forces from 1b to kip, thus AREA 1000.0.

11. NS1 through NS6 - In this case, the solutions for segments 1, 2, 3, 4, 11, and 17 are desired and, therefore, NS1 through NS6 are given these values.

Cards 201-202

Segment Weights - As shown in Figure 3.4, several weights normally present during driving have been added between the pile and the driving cap to obtain experimental data.

- a. W(1) = Ram Weight = 5.0 kip.
- b. W(2) = Driving Cap Weight + 1/2 of the load cell weight = 1.29 kip.
- c. W(3) = 1/2 load cell weight + helmet = 1.37 kip.
- d. W(4) through W(17) = pile segment weights = (53 lb/ft)(5 ft) = 0.265 kip.

Cards 301-302

Segment Stiffness

- a. Because of the lack of data concerning cushion stiffness, several values of K(1) will be run: K(1) 500, 1,000, and 1,500 kip. in.
- b. The helmet was found to be extremely stiff compared to the load cell, so

- K(2) was taken as the stiffness of the load cell alone. From dimensions of the load cell given in the Michigan Report and using K = AE/L, the spring rate of the load cell was found to be 86,500 kip/in.
- c. The spring rate of each 5 ft pile segment is found by:

$$K = \frac{AE}{L} = \frac{(15.58)(30\times10^3)}{5\times12} = 7,790 \text{ kip/in.}$$

So K(3) through K(16) = 7,790 kip/in.

Card 1600

- Parameter Options NOPP(I) Note that all values of NOPP(I) are set = 1 except when an option is used to vary its assigned parameter, in which case NOPP(I) can equal 2 through 9.
 - a. Since IVEL is to be given the four values of 8, 12, 16, and 20 ft/sec, NOPP(1) = 4.
 - b. NOPP(2) through NOPP(4) = 1 since no segment weights are to be varied.
 - c. NOPP(5) = 3 since three different
 cushion stiffnesses are to be used
 (K(1) = 500,1,000, and 1,500 kip/in.)

- d. NOPP(6) through NOPP(17) 1 since no other parameter changes are required.
- Parameter Change Constants DV1, DE1, DE2, etc. These values specify the desired increase in a given parameter based on the parameter's original value. They may be calculated from the equation:

Constant = Second Value-Initial Value
Initial Value

Thus, since the initial value of IVEL is 8 ft/sec and the second value is 12 ft/sec, so

$$DV1 = \frac{12-8}{8} = \frac{4}{8} = 1.0$$

The value for DK1 is therefore given by $DK1 = \frac{1000-500}{500} = \frac{500}{500} = 1.0$

All other values such as DW1, DW2, etc., May be left blank or given any value for later use since they are not used as long as the corresponding NOPP(I) = 1.

APPENDIX C

PROGRAM LISTING

```
= 2, READ IDENTIFICATION CARD 103 (72 COLS OF ALPHAMERIC POUP)
= 3, READ 2 IDENTIFICATION CARDS
= 4, ETC. UP TO 4 CARDS
                                                                                                                                                                                                                                                                                                                                                                                                                                   2, READ CARD 300 MAXIMUM DIFFERENT XKAM(I) = TEN
0,USE OLD SOIL RESISTANCE VALUES,STANDARD OR GENERAL METHOD
I,READ NEW STANDARD RUM(I),I=1,MPP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4.TRIANGULAR SIDE RESISTANCE(RUT-RUP) WITH RUM(MPP) = RUP 5.READ NUMR CARDS AND USE GENERAL SOIL BEHAVIOR ROUTINE
C - PROGRAM CONSISTS OF APPROXIMATELY 1200 LINES OUTPUT
C - LINES/PROBLEM = 50 +2*MP +NSTOP/IPRINT (UNLESS J5 CHANGES)
C - RUN TIME FOR PROGRAM IS ABOUT 1 MINUTE
C - RUM TIME FOR ONE PROBLEM IS ABOUT = (MP*NSTOP)/60,000 (MINUTES)
C NOP(1) = 0,1,NO IDENTIFICATION CARDS (SERIES 103)
C = 2, READ IDENTIFICATION CARD 103 (72 COLS OF ALPHAMERIC P
C = 3, READ 2 IDENTIFICATION CARDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2, ZERO SIDE RESISTANCE, SET RUM(MPP) = RUT
2, ZERO SIDE RESISTANCE, SET RUM(MPP) = RUP
3, UNIFORM SIDE RESISTANCE(RUT-RUP) WITH RUM(MPP) = RUP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GAMMAS(NR+2) AND (NR+3) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1,2 SET GAMMA(NR)=GAMMA1 AND GAMMA(NR+1)=GAMMA2 (SOP)
3, USE SOP ABOVE AND SET GAMMA(NR+2) = 0.0
4, USE SOP ABOVE AND SET GAMMAS(NR+2) AND (NR+3) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        9, USE LONG FORM INPUT
NOTE THAT NOP(5) IS USED TO SET ADDITIONAL GANMA(I)S
                                                                                                                                                                                                                                                                                                            1, READ NEW WAM(I), I=1, MP
2, READ CARD 200 MAXIMUM DIFFERENT WAM(I)
                                                                                                                                                                                                                                                                                                                                                                                                        1, READ NEW XKAM(I), I=1, N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O, USE OLD GAMMA(I)
                                                                                                                                                                                                                                                                           ii
                                                                                                                                                                                                                                                                                                                                              11 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0 0 0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NOP (4)
                                                                                                                                                                                                                                                                                                                                                                       NOP (3)
```

```
= 1.USE SHORT FORM INPUT
          = 2. USE LONG FORM INPHT
   NOP(8) = 0.USE OLD VEL(I), I=1.MP
         = 1,USE SHORT FORM INPUT
          = 2. USE LONG FORM INPUT
   NOP(9) = 0.USE OLD Q(I), I=1.MPP
          = 1.USE SHORT FORM INPUT
          = 2. USE LONG FORM INPUT
C \text{ NOP(10)} = 0.0SE \text{ OLD SJ(I)}, I=1.MPP
          = 1,USE SHORT FORM INPUT
          = 2, USE LONG FORM INPUT
C NOP(11) = 0, USE OLD DYNAMK(I), I=1,N
          = 1.DYNAMK=0.0
          = 2, USE LONG FORM INPUT
C NOP(12) = 0.USE OLD A(I), I=1.N
          = 1, USE SHORT FORM INPUT
          = 2. USE LONG FORM INPUT
 NOP(13) = 0.1. USE SMITHS EEM ROUTINE
          = 2, USE LINEAR SOLID DAMPING
 NOP(14) = 0.1. USE FOM(MI) COMPUTED FROM RAMS BEHAVIOR
       = 2, READ NSTOP VALUES OF FORCIN(INTV) (CARD SERIES 1300)
          = 3, READ HEADER CARD + NSTOP GALVO DEFLECTIONS(IN.) CARDS 1400
          = 4, READ CARD 1500 AND USE PARABOLIC FOM(1) VS. CEEM(1)
 NOP(15) = 1.NO GRAVITY
            = 2, GRAVITY WITH DEM(1,0) = 0.0
            = 3.GRAVITY WITH DEM(1,0) BY SMITH
            = 4, GRAVITY WITH DEM(I,0) BY EXACT
            = 5, GRAVITY WITH DEM(I,0) AS USED FOR PREVIOUS PROBLEM
 NOP(16) = 0,1,NO PARAMETER CHANGES
          = 2, READ CARD 1600 WITH PARAMETER CHANGES
  NOP(17) =0,1,NO PILE DRIVING FORMULA OUTPUT
          = 2. READ CARD 1700 WITH PILE DRIVING CONSTANTS
C NUMBER OF CASES = NOPP(1)*NOPP(2): ... * NOPP(14)
```

```
NOPP(1) = 1, RAM VELOCITY = VELMI
          = 2.RAM VELOCITY=VELMI, (1.0+DV1)*VELMI
          = 3,RAM VELOCITY=VELMI,(1.0+DV1)*VELMI,(1.0+2.*DV1)*VELMI
          = 4.ETC.
C NOPP(2) = WAM(1) CHANGE
C NOPP(3) = WAM(2) CHANGES
C NOPP(4) = WAM(3, MP) CHANGES
C NOPP(5) = XKAM(1) CHANGES
C NOPP(6) = XKAM(2) CHANGES
C NOPP(7) = XKAM(3,N) CHANGES
C NOPP 8) = OSIDE CHANGES
C NOPP(9) = QPOINT CHANGES
C NOPP(10) = SIDEJ CHANGES
C NOPP(11) = POINTJ CHANGES
C NOPP(12) = RUM(1,MP) CHANGES
C NOPP(13) = RUM(MPP) CHANGES
C NOPP(14) = BOTH RUM(1, MP) AND RUM(MPP) CHANGE
C NOPP(15) = EEM(1) CHANGES
C NOPP(16) = EEM(2) CHANGES
C
     COMMON
               WAM(100), XKAM(100),
                                       RUM(100), BEEM(100),
                                                             EEM(100)
             GAMMA(100), XKIM(100), CEEMAS(100), NFBM(100), XDEM(100)
     COMMON
     COMMON
               DEM(100), XCEEM(100), CEEM(100), FOM(100), XFOM(100)
     COMMON
               VEL(100), DIM(100),
                                       RAM(100), RMAX(100), RSTAT(100)
     COMMON R(100,10) , ITRIG(100), Q(100), FORCIN(100), DFOM(100)
     COMMON
            FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100),
                                                                A(100)
     COMMON DEMAX(100), IDEMAX(100), SJ(100), NOP( 22), DYNAMK(100)
     COMMON CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51) , IROx( 51)
     COMMON
             RUMA(100), WAMC(100), XKAMC(100),
                                                    QA(100).
                                                            SJA(1001
             ICOL( 51), NOPP( 20), ENTHRU(100), ENTMAX(100), IDS( 50)
     COMMON
                                                                            10
     COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP
     COMMON INTV , ISECTN, NUMR , F1 , F2 , C1 , C2
```

```
., DJP, DW1, DW2, DWI, DK1, DK2, DKI
                                                                                                                                                                                                                        INITIALIZE PARAMETER CONSTANTS
   GAMMAZ,
                   VELMI
IOK1
                                   IDE2
IDJ1
                                                     KGRADD,
                                                              AREA
                                            1002
                           I DW2
                                    IDEI
                   RUT
                                                                             COMMON B , C , AREAP , XLONG , COMMON DV1, DE1, DE2, DRI, DRP, DQI, DQP, DJI
                                                              NOPNTS
                                                                      IDEEM
                                                     IDA2
                                    1062
                                            IDQI
                           IDMI
                   RUP
                   QUAKE
                           104
1061
                                                             SMAX
                                            IDV2
                                                   IDA1
 DELTEE,
                          103
IORL2
                                          IDV1
IDDK2
                                                            SMIN
                                                                                                                                                                                                                                                                                  RUMA(I) = RUM(I)
WAMC(I) = WAM(I)
                                                                                                                                                                                                                               DELTAA = DELTEE
                                                                                                                                                                                                                                                         XKAMA = XKAM(1
                                                                                                                                                                                                                                                                  XKAMB = XKAM(2
                                                                                                                                                                                                                                       MAMA = WAM(1)
                                                                                                                                                                                                                                                MAMB = WAM(2)
                 TO 2 0 5
                                           IDB2
IDDK1
                                  IDRL1
                                                            TMAX
                                                                                                                                                                                                                                                                          00 1 I=1,MP
                                                                                                                                                          CALL INPUT
                                                                                                                                                                                                              MPP = MP+
                                                                                                                                         CONTINUE
                                                                                                                                                                                                     N = MP-1
                                          COMMON
                                                                                                                                                  NS1 = 0
        COMMON
                         COMMON
                                                                    COMMON
COMMOD
                                                            COMMON
                                                                                                                                                                                            MH-HW
                                                                                                \circ \circ \circ \circ
```

ပ

```
1,NOPO
1,NOPO
1,NOPN
     H H H H H H B
```

BEGIN PARAMETER VARIATIONS

NOPP(12) NOPP(13)

QA(I) = Q(I) SJA(I) = SJ(I) CONTINUE NOPA = NOPP(1) NOPC = NOPP(2) NOPC = NOPP(4) NOPC = NOPP(4) NOPE = NOPP(6) NOPE = NOPP(6) NOPE = NOPP(7) NOPH = NOPP(8) NOPH = NOPP(8) NOPH = NOPP(9)

[

```
USED
                                                                                                                                                                                                                                                                                                                                                                       END PARAMETER VARIATIONS
                                                                                                                                                                                                                                                                                                       III
X
                                                                                                                                                                                                                                                                                                    DELTEE IS LEFT BLANK, 1/2 THE CRITICAL TIME INTERVAL
                                                                                                                                                                                                                                                                                                                                                39.296*SQRT(XKAM(1)/WAM(I+1)))
                                                                                                                                                                                                                                                                                                                          DO 33 I=1,N
DELTEE = AMAX1(DELTEE,39.296*SQRT(XKAM(I)/WAM(I)),
                                            DWI)
                                                                  001)
                                                                                                                         DV1)
                                                                                                                                                                   0W2)
0K1)
0K2)
0QP)
0AP)
                                                                                                                                                                                                                                   DE1)
                                                                             (Ifd
                                                                                       DRI)
                                                                                                                                                         DW1)
                                                                                                                        *(1.0 + FLOAT(IA-1) *
                                                                                                                                                                             FLCAT(15-1)
FLOAT(1F-1)
                                                                                                                                                        FLOAT(IB-1)
FLOAT(IC-1)
                                                                                       FLOAT(IL-1)
                                                                                                                                                                                                  FLOAT(II-1)
FLOAT(IK-1)
                                                                 FLOAT(IH-1)
FLOAT(IJ-1)
                                                      FLOAT(IG-1)
                                                                                                                                                                                                                                               FLOAT (10-1)
                                            FLOAT(ID-1)
                                                                                                                                                                                                                         FLOAT (1M-1)
                                                                                                                                                                                                                                    FLOAT (10-1)
                                                                                                                                                                                          4
                                            *(1.0
*(1.0
                                                                                                                                                                             *(1.0
                                                                 *(1.0
                                                                            *(1.0
                                                                                       *(1.0
                                                                                                                                                                  *(1:0
                                                                                                                                                                                                                         %(J,0
                                                                                                                                                                                                                                                                               XKIM(I) = RUM(I)/Q(I)
                                                                                                                                                                                                                                                         IF(NOP(4)-5)13,16,13
                                                                                                                                                                                                                                                                                                                IF(DELTEE)32,32,31
                                                      XKAM(I) = XKAMC(I)
DO 98 IA = 1,NOPA
DELTEE = DELTAA
                                VEL(I) = 0.0
WAM(I) = WAMC(I)
                                                                                                                                                                                                             SJ(MPP) = POINTJ
                                                                                      RUM(I) = RUMA(I)
                                                                                                                                                                                                                                              EEM(NR+1)= EEM2
                                                                                                                                                                            XKAN(1) = XKAKA
XKAM(2) = XKAMB
                                                                                                                                                                                                 Q(MPP) = OPOINT
                                                                                                                                                                                                                        RUM(MPP) = RUP
                                                                           SJ(1) = SJA(1)
                                                                                                                      VEL(I) = VELMI
                                                                                                                                                                                                                                                                    DO 15 I=1,MPP
                                                                                                                                                                                                                                   EEM(NR)= EEM1
                                                                                                                                            VEL1 = VEL(1)
WAM(1) = WAMA
                                                                                                                                                                  MAM(2) = WAMB
                                                                Q(1) = QA(1)
                                                                                                           DO 3 I=1,NR
                                                                                                 CONTINUE
                                                                                                                                 CONTINUE
                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                                                                                                            31 CONTINUE
                                                                                                                                                                                                                                                                                          16
IF
                                                                                                                                   ત
                                                                                                   4
                                                                                                                                                                                                                                                                                                     ပ
                                                                                                                                                                                                                                                                                                                                                                       C
```

```
GO TO(50,50,49,48,47,43,50,50,50),NOP15P
                                                                                                                                                                                                                                                                                                                               RAM(I) = FOM(I-I)-FOM(I)+WAM(I)
                                                                                                                                                                                                       RAM(MP+1) = DEN(MP) * XKIN(MP+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE(6,8003)(FOM(I),I=1,MP)
                                                                                                                                                                                         RAM(MP) = DEW(MP) *XKIM(MP)
                                                                                                                                                                                                                                                                                                    CEEM(I) = DEM(I) - DEM(I+I)
                                                                                                                                                                                                                                              CEEM(1) = DEP(1) - DEM(2)
                                                                                                                                                                                                                                                           FOM(1) = CEEM(1) * XKAM(1)
                                                                                                                                                                                                                                                                                                                FOM(I) = CEEM(I) * XKAM(I)
                                                                                                                                                                                                                     HOLDEM(MP) = DEM(MP)
                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE(6,8001)(DIM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                WRITE(6,8002)(DEM(I
                                                                                                                                                                             = HOLDEM(I)
                                                                                                                                                                                                                                   = DEM(1)
                                                                                                                                                                                                                                                                                         = DEM(I)
                                                                                                                                    NOP15P = NOP(15)+1
                                                                                                                                                               00.42 I = 1, MP
                                                                                                                                                                                                                                                                          00 45 I = 2, N
ACELMX = 0.0
                                         IPRINT
                                                                                                                                                                                                                                                                                                                                                           CALL EXACTG
             CALL PRINT
                                                                                                                                                                                                                                                                                                                                                                                      CALL SMITH
                                                                                                                       MPP = MP+1
                           REP 1
                                                                                                                                                                                                                                 HOLDEM(1)
                                                                                                                                                                                                                                                                                      HOLDEM(1)
                                                                                                                                                                                                                                                                                                                                                                        G0 T0 49
                                                                 INTV = 0
                                                                                                                                                                                                                                                                                                                                              60 TO 49
                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                          1-dW = N
                                                                                             MP = MP
                                                                               INIT =1
                                                                                                                                                                            DEM(I)
                                      J5 ==
                                                     KXT=1
                           CALL
                                                                                                                                                                                          77
                                                                                                                                                                43
                                                                                                                                                                           42
                                                                                                                                                                                                                                                                                                                                45
                                                                                                                                                                                                                                                                                                                                                                                      48
```

```
WRITE(6,8006)(XKIM(1),I=1,MPP)
   50 CONTINUE
      NSM = MP-1
      NSM=MINO(NS6, NSM)
      WRITE(6,1104)NS1,NS2,NS3,NS4,NS5,NSM,NS1,NS2,NS3,NS4,NS5,NS6,MPP
C
                                                    BEGIN ITERATION LOOP
   12 CALL REP N
      INTT=INTT
      GO TO(22,9 ), INTT
   22 CONTINUE
      CMAX = 0.0
      DO 24 I=NR.N
   24 CMAX = CMAX+CEEM(I)
      C1PC2 = AMAX1(C1PC2, CMAX)
      IF(INTV-999)25,23,25
   23 \ J5 = 25
   25 CONTINUE
      IF(((INTV/J5)*J5)-INTV)94,26,94
   26 CONTINUE
   27 FOMA = FOM(NS1)/A(NS1)
      FOMB = FOM(NS2)/A(NS2)
      FOMC = FOM(NS3)/A(NS3)
      FOMD = FOM(NS4)/A(NS4)
      FOME = FOM(NS5)/A(NS5)
      FOMF = FOM(NSM)/A(NSM)
      RAMP = RAM(MP)/1000.0
      WRITE(6,99)INTV ,FOMA, FOMB, FOMC, FOMD, FOME, CEEM(1), DEM(NS3),
     1 DEM(NS4), DEM(NS5), DEM(NS5P), (ENTHRU(I), I=2,4), ENTHRU(N), ACCELR
      WRITE(6,99)INTV, FOMA, FOMB, FOMC, FOMD, FOME, FOMF, DEM(NS1), DEM(NS2),
     1DEM(NS3), DEM(NS4), DEM(NS5), DEM(NS6), RAMP
   94 CONTINUE
      IF(INTV-NSTOP )12,14,14
   14 WRITE(6,105)
      MP = MP
      N = MP - 1
```

```
BEGIN ULTIMATE LOAD FORMULAS
                                                            WRITE(6,106)I, IFOMAX(I), FOMAX(I), IFOMIN(I), FOMIN(I),
                                                                                                                OLD STATEMENT OLD STATEMENT
                                                                                                                          WRITE(6,2107)DIM(MP),BLOWS
WRITE(6,2108)DEMAX(MH-1),DEMAX(MP)
SMIN = SMIN/12.0
SMAX = SMAX/12.0
                                                                              ENTHRU(I), ENTMAX(I)
                                                                                                                                                                                                                          EINPUT = (WAK(1)*VEL1**2)/64.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SEGL = XLONG/(FLOAT(MP-MH+1))
                                                                                                                                                                                                          WRITE(6,109) SMIN, SMAX, ERES1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RWAVE = RWAVE+RUM(I)/1000.0
                              FOMAX(I) = FOMAX(I)/A(I)
FOMIN(I) = FOMIN(I)/A(I)
                                                                                                                                                                                           ERESI = SQRT(SMIN/SMAX)
                                                                                                                                                                                                                                                                                                                                         AEL = AREAP*ELAST/XLONG
                                                                                                                                                                                                                                                                                          IF(NOP(17)-1)98,98,5
                                                                                                            BLOWS = 1.0/DIM(MP)
                                                                                                                                                                                                                                           WRITE(6,110) EINPUT
                                                                                                                                                                                                                                                         WRITE(6,111)ACELMX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 10 I=MH, MP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DO 6 I=1, MPP
                                                                                                                                                                                                                                                                                                                                                                         C3 = QAVG
S = DIM(MPP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        RWAVE = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SUMR ≈ 0.0
                                                                                                                                                                                                                                                                                                                                                      NRP = NR+1
                                                                                                                                                                                                                                                                                                                                                                                                                        U = ENERGY
             DD201=1;N
                                                                                                                                                                                                                                                                                                                                                                                                                                        P = WPILE
                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                           C4 = 0.1
                                                                                                                                                                                                                                                                                                                                                                                                         W = WRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
TW II TE
                                                                                             20
                                                                                                                                                                                                                                                                                                          ហ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         9
                                                                                                             ပ ပ
                                                                                                                                                                                                                                                                           ں
```

```
WRITE(6,108) RENEWS, REYTEL, RTERZG, REDTEN, RHILYD, RHILYC, RCOAST, RWAVE
                                                                                                                                                                                                                                                   END ULTIMATE LOAD FORMULAS
                                                                                                                                                                                       RCOAST = (AEL/2.)*(-S+SQRT(S**2+(4.*U*(W+P*EEM1**2)/(AEL*(W+P)))))
                                                                                                                                                                                                                                                                                                                                                AND TENSILE STRESSES
                                                                                           = AEL*(-S+SQRT(S**2+(2.0*U*(W+P*EEM1**2)/(AEL*(W+P)))))
                                                                                                                                                                                                                                                                                                                                                                  1X, 5H TIME
                                                                                                                                                                                                                                                                                                                                                                                  4HTIME, 3X, 6HSTRESS, 7X, 6HENTHRU, 7X,
                                                                                                                                 =AEL*(-(S+C3)+SQRT((S+C3)**2+(2.0*U*(W+P*EEM1**2)/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = F10.1, 10HERES(1)
                                                                                                               # AEL*(-S+SQRT(S**2+(2.0*U*W/(AEL*(W+P)))))
                                                                                                                                                                    RHILYC=U*(W+P*EEM1**2)/((S+0.5*(C1PC2+C3))*(W+P))
                                                                                                                                                                                                                                                                                                                                                                         194
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F15.3,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F15.3,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F15.3,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F15.3,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F15.3,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F15.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                               (KIPS
                                                                                                                                                                                                                                                                                                                                           63HMAXIMUM COMPRESSIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F15.3
                                                                                                                                                                                                                                                                                                                                                                1/119X, THSEGMENT
SUMR+RUM(I )*SEGL*(FLOAT(I -MH)+0.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                         16X,30H ULTIMATE PILE LOADS
                                                                                                                                                                                                                                                                                                                                                                                                                                                             21X,25H BY ENG NEWS FORMULA
                                                                                                                                                                                                                                                                                                                        FORMAT(1X, I3, 5F10.2, 5F11.7,F9.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 110 FORMAT(16X,18H EINPUT (FT LBS) = F9.1)
                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT(20X,14,18,F9.1,19,F9.1,2F13.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AN ACCELERATION (GS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FORMAT(17X, 7HSMIN = F10.1, 7HSMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BY THE WAVE EQUATION
                                                                                                                                                                                                                                                                                                    FORMAT(1X:13;6F9.2;6F9.3;F9.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         BY HILEY (CHELLIS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BY HILEY (DUNHAM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PACIFIC COAST
                  SUMR + RUM ( MPP) * XL ONG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      BY REDIENBACHER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BY EYTELWEIN
                                                                          - U/(S+(C4*P/W))
                                                                                                                                                                                                                                                                                                                                                                                  5 X 3
                                                                                                                                                    (AEL*(W+P)))))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TERZAGHI
                                                                                                                                                                                                                                                                                                                                                              1PSI) IN THE SEGMENTS
                                                                                                                                                                                                                                                                                                                                          FORMAT(1HO,//, 18X,
                                     = SUMR/RWAVE
                                                      = U/(S+CENR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FURBATIL6X,24H
                                                                                                                                                                                                                                                                                                                                                                                2 3X, 6HSTRESS
                                                                                                                                                                                                                                                                                                                                                                                                     10HMAX ENTHRU
                                                                                                                                                                                                           WRITE(6,107)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22X,25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    22X,25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         22X,25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            22X,25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22X,25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      22X;25H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  22X,25H
                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                    60 TO 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORMATE
                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMAT(
                                                                                           RTERZG
                                                                                                             REDTEN
                                                                                                                                RHILYD
                                                      RENEMS
                                    HILEYL
                                                                         REYTEL
                 SUMR
                                                                                                                                                                                                                                                                                                        66
                                                                                                                                                                                                                                                                                                                                                                                                                                        107
0
                                                                                                                                                                                                                                                                   86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                109
```

```
1104 FORMAT(3H T,6(6X,1HF,12):1X, 6(6X,1H0,12) ,6X,1HR,12,//)
C1104 FORMAT(115H TIME F(1) F(2) F(3) F(4) F(5) D(2) D(3) D(
    14) D(5) D(P) ENT(2) ENT(3) ENT(4) ENT(N) ACC(MH-1)
C1104 FORMAT(5H TIME,5(2X,4HFOM( I3, 1H) ) ,5(3X,4HDEM( I3, 1H) ) ,
    1 3X, 12HENTHRU (1) //)
2107 FORMAT(1H / ,17X,24HPERMANENT SET OF PILE = F13.8,8H INCHES/
        ,17X,27HNUMBER OF BLOWS PER INCH = F13.81
2108 FORMAT(1H / ,17X,24HLIMSET FOR (MH-1) = F13.8,8H INCHES/
        ,17X,27HMAX DISPLACEMENT OF POINT= F13.8)
8001 FORMAT(33HOINITIAL VALUES FOR DIM(I), I=1, MP /(6E19.8))
8002 FORMAT(33HOINITIAL VALUES FOR DEM(I), I=1, MP /(6E19.8))
8003 FORMAT(33HOINITIAL VALUES FOR FOM(I), I=1, MP /(6E19.8))
8004 FORMAT(33HOINITIAL VALUES FOR CEEM(I), I=1,N /(6E19.8))
8005 FORMAT(35HOINITIAL VALUES FOR RAM(I), I=1, MP+1 /(6E19.8))
8006 FORMAT(38HOCCNSTANT VALUES FOR XKIM(I), I=1, MP+1 /(6E19.8))
     END
$IBFTC INPUTT
     SUBROUTINE INPUT
              WAM(100), XKAM(100), RUM(100), BEEM(100), EEM(100)
     COMMON
            GAMMA(100), XKIM(100), CEEMAS(100), NFOM(100), XDEM(100)
     COMMON
     COMMON
              DEM(100), XCEEM(100), CEEM(100), FOM(100), XFOM(100)
              VEL(100), DIM(100), RAM(100), RMAX(100), RSTAT(100)
     COMMON
     COMMON R(100,10) , ITRIG(100), Q(100), FORCIN(100), DFOM(100)
     COMMON
           FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100),
     COMMON DEMAX(100), IDEMAX(100), SJ(100), NOP( 22), DYNAMK(100)
     COMMON CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51) , IROW( 51)
     COMMON
             RUMA(100), WAMC(100), XKAMC(100), QA(100),
                                                           SJA(100)
     COMMON
            ICOL( 51), NOPP( 20), ENTHRU(100), ENTMAX(100), IDS( 50)
     COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP
     COMMON INTV , ISECTN, NUMR , F1 , F2 , C1 , C2
                                                                          51
     COMMON IPRINT, DELTEE, EEMI , EEM2 , GAMMA1, GAMMA2, INT
                                                                          52
     COMMON INTT , I , ITST , IX , NR , MO , MP
     COMMON NPAGE , N
                       . QUAKE , RUP
                                        , RUT
                                                , VELMI , IDI
                                                                          54
     COMMON 102 , 103 , 104 , 10W1 , 10W2 , 10K1 , 10K2
     COMMON IDRL1 , IDRL2 , IDG1 , IDG2 , IDE1 , IDE2 , ID81
```

```
09
                                                                   DVI, DEI, DE2, DRI, DRP, DQI, DQP, DJI, DJP, DWI, DW2, DWI, DK1, DK2, DKI
                             .S2,NS6
                                          ACCELR
                                                                                                                        READ(5,101)ID3,ID4,RUT,RUP,MO,QSIDE,OPOINT,SIDEJ,POINTJ,NUMR,
 IDJ2
               MIMI
                                                                                              READ(5,100)ID1,ID2,DELTEE,MP,VELMI,MH,NR,EEM1,EEM2,GAMMA1,
                                                        ACELMX
                                           VEL 1
                             NS 1
                                                                                                                                                                                                                                                                                                                                                                                                                       READ(5,111) IDW1, IDW2, WAM(1), [WAM(I), I=NRP1, NRP5),
               KGRADD.
                                                        ELAST
                             AREA
 1002
                                           I
                             NOPNIS
                                         OFEM
                                                        XLONG
                                                                                                                                      . IPRINT, AREA, NSI, NS2, NS3, NS4, NS5, NS6
                                                                                                                                                                                                                                                                                                                                    READ(5,102)IDW1,IDW2,(WAM(I),I=1,MP)
               10A2
  1001
                                                                                                                                                                                                                                                                                                                                                                                                                                     (KAM(I), I=MPM3, MP)
                                                                                                           GAMMA2, NSTOP, (NOP(I), I=1,20)
                                                                                                                                                                                                                                                                                            READ(5,103)(IDS(I),I=1,NOIDS)
                                                      AREAP
                            SMAX
               IDA1
                                         NS5
                                                                                                                                                                                                                                                                                                                                                                                                                                                  111 FORMAT(A5, A4, -3P10F6.4)
                                                                                                                                                                                                                                                                               NOIDS = 12*(NOP(1)-1)
              I DDK2
                          NIMS
                                                                                                                                                                                                                                                                                                                       IF(NOP(2)-1) 1,1,14
                                         NS4
                                                                                                                                                                   = RUP*1000.0
                                                                                                                                                                                                                                                                 IF(NOP(1)-2)9,7,
                                                                                                                                                     = RUT*1000.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = WAM(1)
                                                                                                                                                                                 = MAXO(NR,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                DD 76 I=1;NR
             1 DOK1
1082
                           XVWI
                                                                                                                                                                                                                                                                                                                                                                              = NR+5
                                                                                                                                                                                                                                                                                                                                                                 = NR+1
                                                                                                                                                                                                                                                                                                                                                                                             NR + 6
                                                                                                                                                                                                                                                                                                                                                                                                         = MP-3
                                         NS3
                                                                                                                                                                                                            = MP+1
                                                                                                                                                                                                                                                   XKAM (MPP)
                                                                                                                                                                                              = MP-1
                                                                                                                                                                                                                        WAM (MPP)
                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                       XKAM (MP)
                                                                   COMMON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               COMMON
             COMMON
                           COMMON
                                         COMMON
                                                      COMMON
                                                                                                                                                                                                                                                                                                                                                    GO TO
                                                                                                                                                                                                                                                                                                                                                                 NRP1
                                                                                                                                                                                                                                                                                                                                                                                                          MPM3
                                                                                                                                                                                                                                                                                                                                                                              NRP5
                                                                                                                                                                                                                                                                                                                                                                                             NRP6
                                                                                                                                                                   RUP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             91
                                                                                  ပ
```

```
RUM(I) = (2.0*(RUI-RUP)*(FLOAT(I-MO)+0.5))/(FLOAT(MPP-MO))**2
                                                                                                                                                                                                                                                                                                                                                                                                     CONVERT TO
                                                                                                                                              READ(5,112)IDK1,IDK2,XKAM(1),(XKAM(1),I=NR,NRP5),
                                                                                                                                                                                                                                                                                                                                                                                            C INPUT RUM(I) IN UNITS OF KIPS - THE COMPUTER WILL
                                                                                                                                                                                                                                                                                                                                                                             READ(5,106)IDRL1,IDRL2,(RUM(I),I=1,MPP)
                                                                                                                                                                                                                                                                                                                                                            GO TO(10,22,11,13,17,22,22,22,22),NOP4
                                                READ(5,104)IDK1,IDK2,(XKAM(I),I=1,N)
                                                                                                                                                                                                                                                                                                                                                                                                                             RCONST = (RUT-RUP)/FLOAT(MPP-MO)
                                                                                                                                                                  (XKAM(I),I=MPM3,N)
                                                                                                                                                                               FORMAT(A5, A4, -3P10F6.0)
                                                                                                                                                                                                                                              XKAM(I) = XKAM(MPM3)
                               IF (NOP(3)-1) 3,3,15
WAMILL = WAM(NRPS)
                                                                                                                                                                                                                                                                              IF (NOP(4)-1)22,5,5
                                                                                                                                                                                                                             DO 79 I=NRP6,MPM3
                                                                                                                                                                                                              XKAM(I) = XKAM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GENERAL R(1,3) INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                              RUM(I) = RCONST
                                                                                                                                                                                               DO 78 I=1,NRM1
                                                                                                                                                                                                                                                                                                                                             RUM(MPP) = RUP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              13 DO 16 I=MO,MP
                                                                                                                                                                                                                                                                                                                                                                                                                                             DO 12 I=MO,MP
                                                                                                                                                                                                                                                                                             NOP4 = NOP(4)
                                                                                                                                                                                                                                                                                                                             RUM(I) = 0.0
                                                                               = NR-1
                                                                                                 NR+5
                                                                                                                 NR+6
                                                                                                                                = MP-3
                                                                                                                                                                                                                                                                                                              DO 6 I=1,MP
               COLLINE
                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                              G0 T0 22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G0 T0 22
                                                                                               NRPS
                                                                                                               NRP6
                                                                                                                               MPM3
                                                                                NRM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              91
                                                                                                                                                                                                              78
                                                                                                                                                                                                                                               61
                                                                                                                                                                               112
                                                                                                                                                                                                                                                               4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ()
```

DO 77 I=NRP6, MPM3

```
17 DO 20 I=1.MPP
   20 \text{ XKIM(I)} = 0.0
      DO 21 K=1, NUMR
   21 READ(5,115)1, XKIM(I), (R(I,J),J=1,10)
   22 CONTINUE
C THE R(I, J) INPUT CARDS CAN BE IN RANDOM ORDER
C THE R(I, J) ARRAY NEED NOT BE ZEROED SINCE IF XKIM(I)=0 THE GENERAL
C SOIL RESISTANCE ROUTINE FOR SEGMENT(I) IS NOT CONSIDERED
C NUMR = TOTAL NUMBER OF SEGMENTS W/GEN. R (DONT FORGET TO ADD MPP)
CC I = THE SEGMENT NUMBER FOR WHICH R(I, J) VALUES ARE BEING INPUT
C R(I,J) = STATIC RESISTANCE ON SEGMENT I AT EACH OF TEN POINTS J
      IF(NOP(5)-1)29,27,26
   26 IF(NOP(5)-9)24,25,24
   25 READ(5,106) IDG1, IDG2, (GAMMA(I), I=1, N)
      GO TO 29
   24 \text{ IGAMMA} = \text{NOP}(5) + \text{NR} - 1
      DO 23 I=1.N
   23 \text{ GAMMA(I)} = -1000.0
      DO 19 I=NR, IGAMMA
   19 \text{ GAMMA(I)} = 0.0
      GAMMA(NR) = GAMMA1
      GAMMA(NR+1) = GAMMA2
      GO TO 29
   27 DO 28 I=1.N
   28 \text{ GAMMA(I)} = -1000.0
      GAMMA(NR) = GAMMA1
      GAMMA(NR+1) = GAMMA2
   29 GAMMA(MP) = -0.0
      GAMMA(MPP) = -0.0
      IF(NOP(6)-1)33,31,30
   30 READ(5,107) IDE1, IDE2, (EEM(I), I=1,N)
      GD TO 33
   31 DO 32 I=1.N
   32 EEM(I) = 1.0
      EEM(NR) = EEX1
```

```
EEMINR+1) = FEM2
   33 EEM(MP) = -0.0
      EEM(MPP) = -0.0
      IF(NOP(7)-1)37,35,34
   34 READ(5,107) IDB1, IDB2, (BEEM(I), I=1, N)
      GO TO 37
   35 DO 36 I=1,N
   36 \text{ BEEM(I)} = 0.0
 .37 \text{ BEEM(MP)} = -0.0
      BEEM(MPP) = -0.0
C DO NOT TRY TO USE LAST PROBLEMS VALUES OF VEL(I)
      IF(NOP(8)-1)39,39,38
   38 READ(5,108)IDV1,IDV2,( VEL(I),I=1,MP)
      GO TO 71
   39 DO 40 I=NR, MPP
   40 \text{ VEL(I)} = 0.0
      DO 41 I=1.NR
   41 \text{ VEL(I)} = \text{VELMI}
   71 VEL(MPP) = -0.0
      IF(NOP(9)-1)45,43,42
   42 READ(5,107) IDQ1, IDQ2, (Q(I), I=1, MPP)
      GO TO 45
   43 DO 44 I=1, MPP
      Q(I) = QSIDE
   44 CONTINUE
      Q(MPP) = QPOINT
  45 IF(NOP(10)-1)49,47,46
  46 READ(5,107) IDJ1, IDJ2, (SJ(I), I=1, MPP)
      GO TO 49
  47 DO 48 I=1,MP
   48 SJ(I) = SIDEJ
      LITATION = POINTJ
  49 IF(NOP(11)-1)53,51,50
  50 READ(5,104) IDDK1, IDDK2, (DYNAMK(I), I=1, N)
      00 72 i=1.N
```

```
READ(5,122)AREAP, EMODUL, RGAGE, RCAL, ACTIVG, GFACTR, D1, D2, D3, D4, D5
                                                                                                                                                                                                                                                                                                                                                 READ(5,121)(FURCIN(I),I=1,NSTOP)
CE = (AREAP*EMODUL*RGAGE*1000.0)/(ACTIVG*GFACTR*RCAL)
                                                          0.0 SO SMITHS ROUTINE WILL
                                                                                                                                                                                                                                                                                                    Ħ
                                                                                                                                                                                                                                                                                                MAXIMUM NSTOP
                                                                                                            READ(5,109)!DA1;!DA2;(A(I),I=1,N)
                                                                                                                                                                                                                                                                                                         READ(5,120)(FORCIN(I), I=1,NSTOP)
  DESCRING [I] - XKAM(I)
                                                                                                                                                                                                                                                                             60 TO(65,65,62,63,65),NOP14
                                                           11
                                                                                                                                                                                                                                                                                            READ NSTOP VALUES OF FOM(1,T)
                                                     STATEMENT 52 SETS DYNAMK(I)
                                                                                              IF(NOP(12)-1)57,55,54
                                                                                                                                                                                                                                      XKIM(I) = 30/(I)/9(I
                                                                                 DYNAMK(MPP) = -0.0
                                                                      0.0-
                                                                                                                                                                                                                                                                 NOP14 = NUP(1/4)
                          51 DO 52 I=1,N
52 DYNAMK(I) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                           CE/02
                                                                                                                                                                                A(MPP) = -0.0
                                                                                                                                                                                             1F(WCP(4)-1)6
                                                                                                                                                                                                         IF(NOP(4)-5)5
                                                                     DYNAMK(MP) =
                                                                                                                                                                   A(MP) = -0.0
   11
                                                                                                                                        00 56 I=1,N
                                                                                                                                                      = AREA
                                                                                                                                                                                                                        00 60 I=1 0
DYMARKILL
                                                                                                                          GO TO 57
                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                           A(NS2)
                                                                                                                                                                                                                                                                                                                                                                                                         (CSWIV
                                                                                                                                                      A(I)
                                                                                                                                        55
56
57
                                                                                                                                                                                                                                     60
                                                                                                                                                                                                                       8
                                                                                                                                                                                                          ω
ω
                                                                                                                                                                                                                                                                                                          62
                                                                                                                                                                                                                                                                                                                                    63
                                                                                                                                                                                                                                                                                                                                                                                                                                                               $ U
                                                      Ų
                                                                                                                                                                                                                                                                                            ں
```

```
IF (NOP(14)-4)67,66,67
 66 READ(5,123)F1,F2,C1,C2
 67 CONTINUE
     DO 90 I=1.20
 90 \text{ NOPP}(I) = 1
     IF(NOP(16)-2)69,68,69
 68 READ(5,124)(NGPP(I), I=1,20), DV1, DW1, DW2, DWI, DK1, DK2, DKI, DOI,
   1 DQP, DJI, DJP, DRI, DRP, DE1, DE2
 69 CONTINUE
     D0 8 I=1.20
    NOPP(I) = MAXO(NOPP(I), 1)
  8 CONTINUE
     IF(NOP(17)-1)74,74,73
 73 READ(5,125) AREAP, XLONG, ELAST, CENR, QAVG, WRAM, WPILE, ENERGY
     XLONG = XLONG * 12.0
 74 CONTINUE
100 FORMAT(A5, A4, F6.0, I3, F4.2, 213, 2F4.3, 2F6.0, I4, 2011)
101 FORMAT(A5, A4, 2F7, 2, I3, 4F4, 3, 2I3, F6, 2, 6I3)
102 FORMAT(A5, A4, -3P10F6.4, /(9X, -3P10F6.4))
103 FORMAT(12A6)
104 FORMAT(A5, A4, -3P10F6.0, /(9X, -3P10F6.0))
106 FORMAT(A5, A4, -3P10F6.1, /(9X, -3P10F6.1))
107 FORMAT(A5,A4, 10F6.5,/(9X, 10F6.5))
108 FORMAT(A5,A4,
                    10F6.3,/(9X,
                                     10F6.3))
109 FORMAT(A5,A4,
                    10F6.2,/(9X,
                                     10F6.2))
115 FORMAT(13;-3P11F6.1)
120 FORMAT(-3P10F6.1)
121 FORMAT( 10F6.4)
122 FORMAT(F7.2,3F7.0,7F4.2)
123 FORMAT(-3P2F6.1, OP2F6.5)
124 FORMAT(2011,17F3.2)
125 FORMAT(F6.2,F5.2,F7.2)
    RETURN
    FNO
```

SIBFIC PRINT

```
EEM(100)
XDEM(100)
                                                    4(100)
                      XFGM(100)
                                RSTAT(100)
                                          DFOM(100)
                                                            NOP( 22), DYNAMK(100)
                                                                       IROW( 51)
                                                                                           50)
                                                                                SJA(100)
                                                                                                                                                                                                                      DW2, DWI, DX1, DK2, DK
                                                                                          IDS
                                                                                                  NGDIV , NORAMS, NSTOP
                                                                                                                                                                                Z
                                                                                                                                                   0 X 2
                                                                                                                                                             1000
000
                                                                                                                                                                       216
                                        Q(100), FORCIN(100),
                      FOM(100).
                                               FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100),
                                                                                      NGPP( 20), ENTHRU(100), ENTMAX(100),
                                                                                                                     GAMMA2,
                                                                  CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51)
                                                                                                                                        VELM]
                                                                                                                                                   2
2
2
3
                                                                                                                                                                      170
                                                                                                                                                                                        NS 1
                                                                                                                     GAMMAL
                                                                                                                                                                               KGRADD
                                                          $3(100),
                                                                                                                                                                                                            ELAST
                              RAM(100),
                                                                            WAMC(100), XKAMC(100),
          XKIM(100), CEEMAS(100),
  RUM(100),
                     CEEM(100),
                                                                                                                                                  280
                                                                                                                                                           IDEI
                                                                                                                                                                    1002
                                                                                                                                                                                        ANNA
                                                                                                                                        FOR
                                                                                                 POINTJ,
                                                                                                                                                                                       NOPNTS
                                                                                                                                                                                                 IDEEM
                                                                                                                                                                                                          XL ONG
                                                                                                                   255
                                                                                                                                                                              I OA2
                                                                                                                                                          562
                                                                                                                                                                    IDOI
                                                                                                                                                  XKAM(100),
                                                         DEMAX(100), IDEMAX(100),
                   DEM(100), XCEEM(100),
                             DIM(100),
                                      ITRIG(100),
                                                                                                                                                                                                                  , DE2, DRI, DRP, DQI,
                                                                                               QPOINT, SIDEJ,
                                                                                                                                       QUAKE
                                                                                                          NUMR
                                                                                                                             ITST
                                                                                                                   EEM1
                                                                                                                                                                    0V2
                                                                                                                                                          1061
                                                                                                                                                                             [DA1
                                                                                                                                                                                       SMAX
                                                                                                                                                104
                                                                                                         SECTN
                                                                                                                                                                            DDK2
                                                                           RUMA(100),
                            VEL(100);
WAR(100),
         GAMMA(100),
                                                                                                                                                                                     NINS
                                                                                                                                                         DRL.
                                                                                                                                                                   0.71
                                                                                                                                                103
                                     R(100,10)
                                                                                     ICOL (
                                                                                                                 IPRINT,
                                                                                                                                                                                                                  DV1, DE1
                                                                                               QSIDE
                                                                                                                                                       I DRL1
                                                                                                                                     NPAGE
                                                                                                                                                                           I DDK1
                                                                                                         INTV
                                                                                                                            INI
                                                                                                                                                                  1082
                                                                                                                                                                                     TMAX
                                                                                                                                               102
                                     COMMON
        COMMON
                  COMMON
                           COMMON
                                                                                                                 COMMON
                                                                                                                           COMMON
COMMON
                                              COMMON
                                                        COMMON
                                                                 COMMON
                                                                           COMMON
                                                                                    COMMON
                                                                                              COMMON
                                                                                                        COMMON
                                                                                                                                     COMMOS
                                                                                                                                                                           COMMON
                                                                                                                                                                                                                 COMMON
                                                                                                                                             COMMON
                                                                                                                                                       COMMON
                                                                                                                                                                 COMMOD
                                                                                                                                                                                    COMMON
                                                                                                                                                                                              COMMON
                                                                                                                                                                                                       COMMON
```

NPAGE = NPAGE+1 WRITE(6,102)NPAGE

IF (NOP(1)-2)3,2,2

NOIDS = 12*(NOP(1)-1) WRITE(6,101)

2

WRITE(6,103)(IDS(I),I=1,NGIDS)

CONTINU

ں ں

SUBROUTINE PRINT 1

```
WRITE(6,122)I, WAM(I), XKAM(I), RUM(I), GAMMA(I), EEM(I), BEEM(I),
                                                                                                                                                                                       WRITE(6,107) IDI, ID2, VELMI, NGP(3), NOP(18) WRITE(6,108) ID3, ID4, NSTOP, NOP(4), NOP(19)
                                                                                                                                                                                                                                   WRITE(6,110)IDW1,IDW2,RCT,NOP(5),NOP(20)
                                                                                                                                                                                                                                                                                                                                                                                WRITE(6,116)IDV1,IDV2,POINTJ,NOP(11)
                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE(6,118)10J1,10J2,IPRINT,NOP(13
                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(6,119)IODK1,IDDK2,AREA,NOP(14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SJ(I), DYNAMK(I), A(I
                                                                                                                                                                                                                                                                                                                                                     WRITE(6,115)1091,1082,SIDEJ,NUP(10)
                                                                                                                                                                                                                                                                                                                                 WRITE(6,114)10E1,10E2,QPOINT,NOP(9)
                                                                                                                                                                                                                                                                                                         WRITE(6,113)ID61;ID62,QSIDE,NOP(8)
                                                                                                                                                                                                                                                                                                                                                                                                      WRITE(6,117)1001,1002,NUMR,NOP(12)
                                                                                                                                                                                                                                                                                    WRITE(6,112) IDRL1, IDRL2, MO, NOP(7)
                                                                                                                WRITE(6,105)DELTEE,NOP(1),NOP(16)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE(6,120)IDA1,IDA2,NR,NDP(15)
                                                                                                                                                                                                                                                          WRITE(6,111) IDK1, IDK2, RCP, NOP(6)
                                                                                                                                                                WRITE(6,106)MP,NOP(2),NOP(17)
                                              = RCT + RUM(I)/1000.0
                                                                                            RCP = RUM(MPP)/1000.0
                                                                                                                                          DELTEE = 1.0/DELTEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(LINES-58)5,4,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    481TE16,102,1946E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LINES = LINES+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               . VEL(I),Q(I),
                      00 6 I= 1, Mpp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NPAGE = NPAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO 5 I=1, MPP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE(6,121)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MRITE(6,101)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE(6,101)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LINES = 19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MPP = MP+1
RCT = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LINES
                                                                        9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4
```

```
WRITE(6,124)1,(R(I,J),J=1,10)
                                                                                                                                                           F(NQDIV-LINADD*10)13,14,13
                                                                                                                                                                                                                  IF(XKIM(1)-0.0)29,29,20
                                                                                                                                                                                                                                                                                                                                                                                                                        [F(MP-LINADD*8)40,41,40
                                                                                                                WRITE(6,123)(J,J=1,10)
                                                                                                                                                                                                                                                                                        WRITE(6,123)(J,J=1,10)
                                                                                                                                                                                                                                 LINES = LINES+LINADD
                                                                                                                                                                                                                                               F(LINES-59)24,24,23
                                                                       WRITE(6,102)NPAGE
                                                                                                                                            LINADD = NQDIV/10
                                                                                                                                                                                                                                                                          WRITE(6,102)NPAGE
                                                                                                                                                                        INADD = LINADD+1
                                                                                                                                                                                       LINADD = LINADD+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                    = LINADD+2
                                                                                                                                                                                                                                                                                                                                                                                                                                     LINADD = LINADD+1
            IF (NOP (4)-5)30,7
                                                                                                                             LINES = LINES+6
                                                                                                                                                                                                                                                                                                                                                               LINES = LINES+2
WRITE(6,101)
                                                                                                                                                                                                                                                                                                                                                                                            LINES = LINES+2
                          IF(LINES-50)9,9
                                         NPAGE = NPAGE
                                                                                                                                                                                                     DO 29 I=1,MPP
                                                                                                                                                                                                                                                            NPAGE = NPAGE
                                                                                                                                                                                                                                                                                                                                                                                                           LINADD = MP/8
                                                                                                 WRITE(6,101)
                                                                                                                                                                                                                                                                                                                                                 WRITE(6,101)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT(1HO)
CONTINUE
                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                        LINES =
                                                                                                                                                                                                                                 20
                                                                                                                                                                                                                                                             23
                                                                                                                                                                                                                                                                                                                     24
29
                                                                                                                                                                                                                                                                                                                                                                              30
                                                                                                                                                                                                                                                                                                                                                                                                                                      40
                                                                                                                                                                                                                                                                                                                                                                                                                                                   41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 101
```

```
122 FORMAT(14,-3PF10.4,3F10.1,0P2F10.6,F10.3,2F10.6,-3PF10.3,CPF12.3)
                   R(Min) * STATIC SOIL RESISTANCE FOR SALVER SEGVENTS
                                                                                                                                                                                                                                                                                 NOP(15) =12
                                                                                                                                                                                                                                                                                           RUM(M) GAMMA(M) EER(M)
                                                   NOP(1).
                                                                                       NOP(3)
                                                                                                                                        NOP (5)
                                                                                                                                                                 (9)dON
                                                                                                                                                                                                                                                        NOP(13)
                                                                                                                                                                             NOP (7)
                                                                                                                                                                                                                   (OF (10)
                                                                                                                                                                                                                              (11)dON
                                                                                                                                                                                                                                           NOP(12)
                                                                                                                                                                                                                                                                   VOP(14)
                                                                                                                                                                                         NOP (8)
                                                                                                                                                                                                      (6)dDN
                                                                                                                                                                                                                                                                                                         A(V)
                                                                           =12)
66X,7HPRCBLEM 14)
                                                                          NOP(17)
                                                                                                                                                                                                                                                                                                                               (IN) (SEC/FT) (KIPS/IN) (SQ IN)
                                             fD2 1/DELTEE = F8.0,12H
                                                                                     VELMI = F8.2,12H
                                                                                                              NSTOP = 18 ,12H
                                                                                                                                                                                       OSIDE = F3.4,12H
QPOINT = F3.4,12H
SIDEJ = F8.4,12H
                                                                                                                                       RUT = F8.1,12H
                                                                                                                                                                                                                                                                  AREA = F8.2,12H
                                                                                                                                                                                                                                                                              NR = I8 ,12H
                                                                                                                                                                                                                            POINT J = F8.4,12H
                                                                                                                                                                 RUP = F8.1,12H
                                                                                                                                                                                                                                                                                                      Q(M) SDILJ(M) DYNAMK(M)
                                                                                                                                                                                                                                                                                                                     (KIPS)
                                   1/1 5X,10(8X;12)
                                                                         NOP(2) = 12,12H
                                                                                                                                                                                                                                                       IPRINT = 18
                                                                                                                                                                                                                                                                                                                                                      FORMAT(/4H 7 = 13,2X,10F10.1,(/9X,10F10.1))
                                                                                                                                                                                                                                          NUMR
                                                                                                                                                                                                    CPOINT
                                                                                                                                                                                                                                                                                                                    (KIPS)
                                                                                                                                                                                                                                                                                          MAM(M) XKAM(M)
                                                                                     A6, A4, 12H
                                                                                                             A6, A4,12H
                                                                                                                                                                                                                                                                                                                                                                                                                     XKAM(100);
                                                                                                                                                                                                                                                                                                                   (KIPS/IN)
                                                                                                                                                                                                                                                      A5,144,12H
                                                                                                                                      WAM A6, A4, 12H
                                                                                                                                                                                       A6, A4, 12H
                                                                                                                                                                                                                 A6, A4, 12H
                                                                                                                                                                                                                             A6, A4, 12H
                                                                                                                                                                                                                                         46, A4, 12H
                                                                                                                                                               A6, A4,12H
                                                                                                                                                                            A6, A4, 12H
                                                                                                                                                                                                     A6,84,12H
                                                                                                                                                                                                                                                                  46, A4, 12H
                                                                                                                                                                                                                                                                               A6, A4, 12H
                                                                     106 FORMAT(28X, 5H MP = 18,12H
                                                                                                 12)
                              1 OTHERS HAVE R(I, J) = 0.0
                                             FORMAT(4X,29H CARD ID1
                                                                                                                                                  = 12)
                                                          NOP(16) =
                                                                                                                        NCP(19) =
                                                                                                NOP(18) =
                                                                                    101
                                                                                                                                                              XXXX
                                                                                                                                                                          ₩
Ω
₩
                                                                                                                                                                                                              BEEM
                                                                                                                                                                                       GAMMA
                                                                                                                                                                                                                                                                                                                   (KIPS)
                                                                                                                                                                                                                                                     SOILJ
                                                                                                                                                                                                                                                                                                                                                                                                                     MANGE 1001;
                                                                                                                                                                                                                                                                 DYNAMK
                                                                                                                                                                                                                                                                                                     VEL(M)
         FURMAT(1X,12A6)
                                                                                                                                                                                                                                                                                                                                                                                                         SUBROUTINE REPI
                                                                                                                                                NOP (20)
                     L23 FORMATIBSH
                                                                                                                                                                                                                                                                                         FORMAT(116H
                                                                                                            LOS FORMAT(11H
                                                                                  107 FORMAT(11H
                                                                                                                                    110 FORMAT(11H
                                                                                                                                                            FORMAT(11H
                                                                                                                                                                         FORMAT(11H
                                                                                                                                                                                      FORMAT(11H
                                                                                                                                                                                                                                                    FORMAT(11H
                                                                                                                                                                                                                                                                FORMAT(11H
                                                                                                                                                                                                  FORMAT(11H
                                                                                                                                                                                                              FORMAT(11H
                                                                                                                                                                                                                                       FORMAT(11H
                                                                                                                                                                                                                                                                             FORMAT(11H
                                                                                                                                                                                                                           FORMAT(11H
                                                                                                I2, 12H
                                                                                                                        I2, 12H
                                                                                                                                                                                                                                                                                                                                                                                            SIBFIC REPUNE
                                                                                                                                                                                                                                                                                                                                                                   RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                     NOWWC0
                                                                                                                                                                                                                                                                                                                                                                                                                                  COMMON
                                                                                                                                                 12H
                                                                                                                                                                                                                                                                                                                  116H
                                                                                                                                                                                                                                                                                                                              3FT)
        103
                                                                                                                                                                                                                                                              119
                                                                                                                                                                                     113
                                                                                                                                                                                                                                     117
                                                                                                                                                                                                              17.5
                                                                                                                                                                                                                          116
                                                                                                                                                                                                                                                    118
```

```
DFCM(100)
                                          NOP( 22), DYNAMK(100)
                                                    IROW( 51)
                                                                                                                                                                                                 DEZ, DRI, DRP, DQI, DQP, DJI, DJP, DWI, DXZ, CWI, DK1, 5K2, DKI
                                                             SJA(100)
             RMAX(160), PSTAT(100)
                                                                       10S ( 50)
                                                                             QPOINT, SIDEJ, POINTJ, NQDIV, NORAMS, NSTOP
                                                                                                                                                              DK2
                                                                                                                                                    210
                                                                                                                                           081
                                                                                                                        101
                      Q(100), FORCIN(100),
                             FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100),
                                                             QA(100),
                                                                     NGPP( 20), ENTHRU(100), ENTMAX(100),
                                                                                                   GAMMA2,
                                                CEEMIN(160), HOLDEM(100), ANSVEC( 50), SE(50,51)
                                                                                                                      VELMI
                                                                                                                                          DE2
                                                                                                                                                   011
                                                                                                              Ο
Σ
                                                                                         F2 ,
GAMMA1,
                                                                                                                                                             KGRADD
                                                                                                                                                                                          ELAST
                                                          RUMA(100), WAMC(100), XKAMC(100),
            RAM(100),
                                                                                                                                                                       AREA
                                                                                                                                I DW2
                                                                                                                                          IDEI
                                                                                                                                                   I DQ2
                                                                                                                      RUT
                                                                                                            N
N
                                                                                                                                                                      NOPNTS
                                                                                                                                                                                IDEEM
                                                                                                                                                                                          XLUNG
                                                                                                  EEM2
                                                                                                                               IDW1
                                                                                                                                        1062
                                                                                                                                                            IDA2
                                                                                                                                                  IDCI
                                                                                                                      RUP
                                      DEMAX(100), IDEMAX(100),
          DIM(100),
                    R(100,10) , ITRIG(100);
                                                                                                                    QUAKE
                                                                                                                                                                                         AREAP
                                                                                        NUMR
                                                                                                 EEM1
                                                                                                            ITST
                                                                                                                                                 I DV2
                                                                                                                                        1001
                                                                                                                                                                     SMAX
                                                                                                                                                           IDA1
                                                                                                                               1 D4
                                                                                       I SECTN,
                                                                                                DELTEE,
                                                                   ICOL( 51),
                                                                                                                                       IDRL2
                                                                                                                                                          1DDK2
          VEL (190),
                                                                                                                                                                     ZIES
                                                                                                                                                  IDVI
                                                                                                                              103
                                                                                                 IPRINT,
                                                                                                                                                                                                 DVI, DE
                                                                                       INTV
                                                                             QSIDE
                                                                                                                    NPAGE
                                                                                                                                       IDRL 1
                                                                                                                                                          IDDKI
                                                                                                          LIVI
                                                                                                                                                 ID82
                                                                                                                                                                    TMAX
                                                                                                                             102
                                                                                                                                                                             NS3
                                                                                                                                                                                                 COMMON
          NUMBOU
                   COMMON
                             COMMON
                                       COMMON
                                                COMMON
                                                          COMMON
                                                                             COMMON
                                                                                      COMMON
                                                                                                COMMON
                                                                                                          COMMON
                                                                                                                    COMMON
                                                                                                                                                          COMMON
                                                                                                                                                                    COMMON
                                                                                                                                                                              COMMON
                                                                                                                                                                                       COMMON
                                                                   COMMOD
                                                                                                                                       COMMON
                                                                                                                                                COMMON
NUMMOD
                                                                                                                             COMMON
```

MP = MP MPP = MP+1 SMAX = 0.0 SMIN = 0.0 DO 64 I = 1, MPP ITRIG(I) = 1 DEM(I) = 0.0 XDEM(I) = 0.0 DEMAX(I) = 0.0 IDEMAX(I) = 0.0 CEEM(I) = 0.0 XCEEM(I) = 0.0

EEMAS()

```
EEM(100)
                                                                                                                                                                                                                                                                                                                                                                   XDEM(100)
                                                                                                                                                                                                                                                                                                                                                                              XFCP(100)
                                                                                                                                                                                                                                                                                                                                                                                         RSTAT(100)
                                                                                                                                                                                                                                                                                                                                                       BEEM(100),
                                                                                                                                                                                                                                                                                                                                                                 NFOM(100),
                                                                                                                                                                                                                                                                                                                                                                             FOM(100);
                                                                                                                                                                                                                                                                                                                                                                                        RMAX (100),
                                                                                                                                                                                                                                                                                 AND C2 ONLY MUST
                                                                                                                                                                                                                                                                                                                                                      RUM(100),
                                                                                                                                                                                                                                                                                                                                                                XKIM(100), CEEMAS (100),
                                                                                                                                                                                                                                                                                                                                                                            CEEM(100),
                                                                                                                                                                                                                                                                                                                                                                                       RAM(100),
                                                                                                                                                                                    F1*C2**2)/(C1*C2*(C1-C2))
                                                                                                                                                                         = (F1*C2 - F2*C1)/(C1*C2*(C1-C2))
                                                                                                                                                                                                                                                                               FORMAT(47HOPARASOLA BASED ON F2
                                                                                                                                                                                                                                                                                                                                                                          XCEEM(100),
DIM(100),
                                                                                                                                                                                                                                                                                                                                                      XKAM(100),
                                                                                                                                                  IF(NOP(14)-4)18,65,18
                                                                                                                                                                                                                                                                                                                                                   WAW (100),
                                                                                                                                                                                                                                                                                                                                                                          DS#(100);
                                                                                                                                                                                                                                                                                                                                                              GAMMA(100),
                                                                                                                                                                                                                                                                                                                                                                                     VEL(100),
                                                                                                                                                                                                           IF(F1-F2)24,23,23
                                                                                                                                                                                                                                                                                                                                        SUBROUTINE REP N
                                                                                                                                                                                     = (F2*C1**2 -
                                                                                                                                                                                                IF(B)22,22,18
                                                                    0.0
                                                                                                    DIM(I) = 0.0
                                                                                                                                                                                                                                            C = F2/C2 * *2
                                                                                                                                                                                                                       C = F1/C1**2
                                                                                                                                                                                                                                                                   WRITE(6,104)
                                                                                 н
                                                                                                                ENTHRU(1)
                                                                                                                           ENTMAX(I)
                                           I FOMIN(I)
           FOMAX(I)
                                  I F O M A X ( I )
                                                                                         RSTAT(I)
                                                                                                                                                             CONTINUE
                                                                                                                                      CONTINUE
                      FOMIN(I)
                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                         0.0
                                                       NFOM(I)
                                                                              RMAX(I)
XFOM(I)
                                                                                                                                                                                                                                                                                                                             $IBFTC REPREP
                                                                   RAM(I)
                                                                                                                                                                                                                                                                                                      RETURN
                                                                                                                                                                                                                                                                                                                                                    COMMON
                                                                                                                                                                                                                                                                                                                                                              COMMON
                                                                                                                                                                                                                                                                                                                                                                          COMMON
                                                                                                                                                                                                                                             24
25
                                                                                                                                                                                                                                                                               104
                                                                                                                                        64
                                                                                                                                                             65
```

FUM(I)

```
NOP( 221, DYNAMK(100)
                              IROM( 51)
                                      SJA(100)
    DFOM(100)
             A(100)
                                                                                                                                                               DW2, DW1, DK1, DK2, DK1
                                               IDS
                                                                                                                                     NS2, NS
                                                                                                                                               ACCELR
                                                                                                                             Z
                                                                                                    IDK2
                                                                                                                     0.12
                                                                                                            1861
                                                                         INT
                                                                                          101
                                                                                  Σ.
  Q(100), FORCIN(100),
          FOMIN(100), IFOMIN(100),
                                            NOPP( 20), ENTHRU(100), ENTMAX(100),
                                      QA(100),
                                                       NODIV , NORAMS,
                                                                        GAMMA2,
                         CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51)
                                                                                         VELMI
                                                                                                  [ DK ]
                                                                                                           DE2
                                                                                                                    0.11
                                                               C 1
                                                                                                                                     NS 1
                                                                                 0
                                                                                                                                                               , DJP, DW1
                                                                       GAMMA1
                                                                                                                            KGRADD
                                                                                                                                                      ELAST
                   SJ(100);
                                   WAMC(100), XKAMC(100),
                                                                                                                                     AREA
                                                                                                                   1002
                                                                                                  I DW2
                                                                                                           IDEI
                                                                                         RUT
                                                               F.2
                                                                                 αZ
                                                      POINTJ,
                                                                                                                                    NOPNTS
                                                                                                                                             IDEEM
                                                                                                                                                      XL ONG
                                                                       EEM2
                                                                                                                           IDA2
                                                                                                 I DW1
                                                                                                          1 DG2
                                                                                                                  1001
                                                                                         RUP
        FORAX(100), IFOMAX(100),
                 DEMAX(100), IDEMAX(100);
 ITRIG(100),
                                                     QPOINT, SIDEJ,
                                                                                         QUAKE
                                                                                                                                                     AREAP
                                                              NUMR
                                                                               ITST
                                                                                                                  1072
                                                                       EEM1
                                                                                                         IDGI
                                                                                                                           DA1
                                                                                                                                   SMAX
                                                                                                 l D4
                                                                                                                                            NS S
                                                             I SECTN,
                                                                      DELTEE,
                                                                                                                          I DDK 2
                                            51),
                                                                                                         I DRL2
                                  RUMA(100),
                                                                                                                                  SMIN
                                                                                                                 DV1
                                                                                                 03
R(100,10)
                                           ICOL (
                                                                                                                                                            DV1,DE1
                                                                      IPRINT
                                                    QSIDE
                                                                                        NPAGE
                                                                                                                          I D D K 1
                                                             INTV
                                                                                                        IDRLI
                                                                                                                 DB2
                                                                               LINI
                                                                                                                                  TMAX
                                                                                                102
                                                                                                                                           NS3
COMMON
        CONMON
                 COMMOD
                         COMMON
                                                                     COMMON
                                                                              COMMON
                                  COMMON
                                           COMMON
                                                    COMMON
                                                             COMMON
                                                                                       COMMON
                                                                                                COMMON
                                                                                                        COMMON
                                                                                                                 COMMOD
                                                                                                                         COMMON
                                                                                                                                  COMMON
                                                                                                                                          NOMMON
                                                                                                                                                   COMMOD
                                                                                                                                                            COMMON
```

= NOP(13)NOP (14 NOP(15 (5) d ON = INTV+1 MPP = MP+1 Ħ NOP(13) Ħ NOP (4) NOP (14) NOP (15) ITESTP I TEST 1 89 OO dW=dh INTV

IF (I-MP)18,17,18

17 ITESTP = 2

18 CONTINUE

XDEM(I) = DEM(I)

```
FOM(I)=AMAXI(XKAM(I)*(CEEMAS(I)-(CEEMAS(I)-CEEM(I))/EEM(I)**2),0.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOM(I)=AMIN1(XKAM(I)*(CEEMIN(I)-(CEEMIN(I)-CEEM(I))/EEM(I)**2),0.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = FORCIN(INTV)
                                                                                                                                                                                               DAMPING METHOD
                                                                                                                                                                                                                                                  SOLID DAMPING
                                                                                                   STATEMENT 34 MUST USE A COMPUTED VALUE FOR THE ACTUAL DEM(I+1)
                                                                                                                                                                                                        BEEM(I) * XKAM(I) * (CEEM(I) - XCEEM(I)) / (DELTEE * 12.0)
                                                                                                                                                                                                                                             STANDARD LINEAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1F NOP(14)=2, SET FOM(1)
                                                                                                                                                                                            SMITHS
                                                                                                                                                                                                                                                          (DFGM(I)+DYNAMK(I)*(CEEM(I)-XCEEM(I)))/
                                                                                                                                                                                                                                                                            (1.0+DYNAMK(I)*DELTEE/(1000.0*BEEN(I)))
                                                                                                                   DEM(I) -DEM(I+1) -VEL(I+1)*12.0*DELTEE
                                                                                                                                                                                                                                                                                                                                                                                                  AMAX1(CEEMAS(I), XCEEM(I))
AMIN1(CEEMIN(I), XCEEM(I))
                                                                                                                                                                                                                                                                                                                                                                = AMAX1(CEEMAS(I), XCEEM(I))
XDEV(1) +VEL(1)*12.0*05LTEE
                                                                                                                                                                                                                                                                                            CEEM(I) *XKAM(I) + DFOM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (CEEM(I)-CEEMIN(I))38,14,14
                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(CEEM(1)-CEEMAS(1))11,11,38
                                                                                                                                                      IF(BEEM(I)-0.000001)36,36,30
              IF (DEMAX(1)-DEM(1))20,21,21
                                                                                                                                                                                                                                                                                                                             IF(0,99999-EEM(I))38,38,39
                                                                                                                                                                                                                                                                                                                                               FOM(I) = CEEM(I) * XKAM(I)
                                                                                                                                                                      IF(DYNAMK(I))31,31,32
                                                                  GO TO(34,19), ITESTP
                                                                                  XCEEM(I) = CEEM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(CEEM(I))13,43,5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO(1,16), JTEST1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NOP14 = NSP(14)+1
                                 DEMAX(I) = DEF(I)
                                                                                                                                       = FOM(I)
                                                                                                                                                                                                                                                                                                                                                                                                      ļī
                                                                                                                                                                                                                                                                                                                                                                                                                     11
                                                                                                                         11
                                                                                                                                                                                                            11
                                                                                                                                                                                                                                                             11
                                                                                                                                                                                                                                                                                                                                                                CEEMAS(I)
                                                                                                                                                                                                                                                                                                                                                                                                 CEEMAS(I)
                                                                                                                                                                                                                                                                                                                                                                                                                  CEEMIN(I)
                                                                                                                                                                                                                                                                                               Ħ
                                                                                                                                                                                                                         60 T0 33
                                                                                                                                                                                                                                                                                                             G0 T0 43
                                                                                                                                                                                                        DFOM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CONTINUE
                                                                                                                    CEEM(I)
                                                                                                                                      XFOM(I)
                                                                                                                                                                                                                                                          32 DFOM(I)
                                                                                                                                                                                                                                                                                            FOM(1)
                                                                                                                                                                                                                                                                                                                              36
                                                                                                                                                                                                                                                                                             33
                                20
                                                                  21
                                                                                 34
                                                                                                                                                                       30
                                                                                                                                                                                                        33
                                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                                                                 39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       63
                                                                                                    ب
                                                                                                                                                                                        ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ب
```

```
GO .TO(5,6,2,2,6),NOP14
            2 \text{ FOM(I)} = \text{FORCIN(INTV)}
                   IF(FOM(1)-1.0)3,3,4
             3 DEM(1) = XDEM(1)
                  CEEM(1) = XCEEM(1)
                  GO TO 16
C IF NOP(14) = 4. USE PARABOLIC FOM(1) VS. CEEM(1) CURVE
C THE RAM MUST BE A SINGLE MASS IF FOM VS. DEM IS PARABOLIC
             6 IF(NOP(14)-4)4,7,4
            7 IF(CEEM(1) - CEEMAS(1))9,8,8
            8 \text{ FOM}(1) = C*CEEM(1)**2 + B*CEEM(1)
                  GO TO 12
            4 IF(CEEM(1)-CEEMAS(1))16,12,12
            9 FOMAX(1) = AMAX1(XFOM(1), FOMAX(1))
                  FOM(1) = FOMAX(1) - ((CEEMAS(1) - CEEM(1)) * FOMAX(1) * * 2) / (2.0 * SMAX * 2) / (2.0 
                                EEM(1)**2)
                  GO TO 16
         12 SMAX = SMAX+((FOM(1)+XFOM(1))/2.0)*(CEEM(1)-XCEEM(1))
         16 CONTINUE
                  IF (GAMMA(I)) 46,44,45
         44 \text{ FOM}(1) = AMAX1 (.0, FOM(1))
                  GO TO 46
         45 IF(FOM(I) - XFOM(I))48,47,47
         48 \text{ NFOM}(I) = 2
         47 IX = NFUM(I)
                  GO TO (46,49), IX
         49.HOLDF = FOM(I)
                  FOM(I) = AMAXI(FOM(I), GAMMA(I))
COMMENT THE . 01 HOLDS MIN. PRESSURE AT GAMMA(I) FOR . 01 SECONDS WHILE THE
COMMENT .0025 REDUCES THE PRESSURE TO ZERO IN .0025 ADDITIONAL SECONDS.
                  TINT = INTV
                  IF(TINT - .01/DELTEE)46,46,90
         90 FOM(I) = AMAX1(0.0, GAMMA(I)*(1.0-(DELTEE*TINT-.01)/.0025), HOLDF)
         46 CONTINUE
                  ENTHRU(1) = ENTHRU(1)+(FOM(1)+XFOM(1))*(DEM(1+1)-XDEM(1+1))/24.0
```

```
RAM(MP) + RAM(MP+1) APPLIED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RAM (MP) =RAM (MP) = (DEM(I) = DIM(MPP) + SJ(MPP) *Q(MPP) *VEL(MP)) > XKIM(MPP)
                                                                                                                                                                RESISTANCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                RAM(MP+1) MAY BE TENSILE
                                                                                                   RESISTANCE
                                                                                                                                                              SOIL
                                                                                                                                                                                                                                                                                                                                                            IF(DEM(I) -DIM(I) -Q(I) )56,57,57
RAM(I) = (DEM(I)-DIM(I))*XKIM(I)*(1.0+(SJ(I) *VEL(I)))
                                                                                                GENERALIZED SOIL
                           IF(CEEM(1) - CEEMAS(1))15,19,19
SMIN = SMIN-((FOM(1)+XFOM(1))/2.0)*(CEEM(1)-XCEEM(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SJ(I) *Q(I) *VEL(I))*XKIM(I)
                                                                                                                                                               SMITHS
                                                                                                                                                                                                                                                                                                                                                                                                            RAM(MP) = RAM(MP)+(DEM(MP)+DIM(MPP ))*XKIM(MPP )*
                                                                                                                                                                                                                                                                                                                                                                                                                                             SEGMENT MP HAS
AMAX1 (ENIMAX(I), ENIHRU(I))
                                                                                                                                                                                                                                                                                                              DIM(MPP ) =AMAX1 (DIM(MP), DIM(MPP
                                                                                                                                                                                                                       151,52,52
                                                                                                                                                                                                                                                                IF(DIM(I) -DEM(I) -0(I) )53,53,54
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (DEM(I)-DIM(I)+
                                                                                                                                                                                                                                                                                                                                                                                                                           (1.0+(SJ(MPP)*VEL(MP)))
                                                                                                                                                                                                                   IF(DIM(I) -DEM(I) +Q(I)
                                                                                                                                                                                                   IF(XKIM(MPP ))50,55,50
                                                                                                                                                                                                                                  DIM(I) = DEM(I) - Q(I)
                                                                                                                                                                                                                                                                                DIM(I) = DEM(I) + Q(I)
                                                                          IF(NOP(4)-5)29,28,29
                                                                                                                                                                     IF(XKIM(I))50,155,50
                                                                                                                                                                                    GO TO(55,156), ITESTP
                                                                                                                                                                                                                                                                                                                                                                                            60 TO(55,171),ITESTP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GO TO(55,172), [155]p
            GO TO(22,19), ITESTI
                                                                                                                                                                                                                                                                                                                                            GO TO(10,57), ITST
                                                                                                                                                                                                                                                                                                                             ITST = ITRIG(I)
                                                                                                         CALL GENRAM
                                                                                                                                      CONTINUE
                                                         CONTINUE
                                                                                                                        GO TO 55
                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RAK(I) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ITRIG(1)
                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                   156
50
51
52
                                                                                                                                                                                                                                                                 70
                                          15
                                                         19
                                                                                                         28
                                                                                                                                       59
                                                                                                                                                                                                                                                                                                                                                             56
                                                                                                                                                                                                                                                                                                                                                                                                            171
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    172
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5
                                                                                                                                                      ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                          ပ ပ
```

```
il.
O
                                                                                                                                                                                                                                                                                                             TO THE VELOCITY
                                                                                                                                                                                                                                                                                                                                                                       TO THE VELOCITY
                                                            VEL(I) = VEL(I)+(FOM(I-1) -FOM(I) -RAM(I))*32.17*DELTEE/WAM(I)
             VEL(1) = VEL(1)-(FGM(1) +RAM(1))*32.17*DELTEE/WAM(1)
ITEST1 = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                             = (FOM(LDCELL-1)-FOM(LDCELL))/WAM(LDCELL)
                                                                                                                                                                                                                                                                                                        RATIO OF THE VELOCITY OF W(2)
                                                                                                                                                                                                                                                                                                                                                                     RATIO OF THE VELOCITY OF M(P)
                                                                                                       VEL(I) = VEL(I) + 32.17*DELTEE
CONTINUE
                                                                                                                                                                                                                                                                                                                                       -2.1)63,62,62
                                                                                                                                                                                                                                              -2,1161,60,
                                                                                                                                     IF(FOMAX(I)-FOM(I))67,67,66
                                                                                                                                                                                 IF(FOMIN(I)-FOM(I))68,69,69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ACELMX=AMAX1 (ACELMX, ACCELR)
                                                                                                                                                                                                                                                                                                                                                                  106 FDRMAT(76H0 THE RATIO
1THE RAM EXCEEDS 2.1.)
                                                                                                                                                                                                                                                                                                                       1THE RAM EXCEEDS 2.1. )
                                                                                         IF (NOP(15)-1)85,85,83
GO TO(58,72), ITEST1
                                                                                                                                                                                                 FOMIN(I) = FOM(I)
                                                                                                                                                     FOMAX(I) = FOM(I)
                                                                                                                                                                   (FOMAX(I) = INTV
                                                                                                                                                                                                                 - INTV
                                                                                                                                                                                                                                                                                                                                      61 IF(VEL(MP)/VEL1
                                                                                                                                                                                                                                                                                                        FORMAT(76H0 THE
                                                                                                                                                                                                                                            IF(VEL(2)/VEL1
                                                                                                                                                                                                                                                                                                                                                                                                                                              LDCELL = MH-1
                                                                                                                                                                                                                                                           WRITE(6,105)
                                                                                                                                                                                                                                                                                                                                                    62 WRITE(6,106)
                                                                                                                                                                                                               IFOMIN(!)
                                             GO TO 59
                                                                          CONTINUE
                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                          INTT = 2
                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                          RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                RETURN
                                                                                                                                     65
                23
                                                            72
                                                                                                                                                                                   99
                                                                                                                                                                                                                                                                                                         105
                                                                                                         83
82
                                                                                                                                                                                                                                &
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ا
ا
ا
                                                                                                                                                                                                69
                                                                                                                                                                                                                                                            09
                                                                                                                                                                                                                                                                                                                                                                                                                                63
```

CONTINUE

S S NQDIV = NO. OF EQUAL SEGMENTS INTO WHICH Q(I) IS DIVIDED = 10 RSTAT(I) = STATIC SOIL RESISTANCE WEGLECTING THE SOIL DAMPING EFFECTS PERCQ = DISTANCE FROM ZERO DISPLACEMENT TO DEM(I) IN UNITS (1.732,.. = A TEMPORARY MAXIMUM STATIC SOIL RESISTANCE RMAX(I)

000000

XDEM(100) DFGM(100) NOP(22), DYNAMK(1,00) XFOM(100) RMAX(100), RSTAT(100) A(100) EEM (100 INUM(51 501)418 1050 POINTJ, NODIV , NORAMS, NSTOP f DK2 1061 500 1 1/2 1/20 1/200 GAMMAI, GAMMAZ, INT Q(100), FORCIN(100), FOM(100), BEEM(100), NFOM(100), NOPP(20), ENTHRU(100), ENTHAX(100), FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100), 04(100); CEEMIN(100), HOLDEM(100), ANSVEC(50), SE(50,51) VELFI INGI 1052 IDOI KGRADD, RUMA(100), WAMC(160), XKAMC(100), \$1(100); ELAST CEEM(100), RAM(100), 1002 RUM(100), XKIM(100); CEEMAS(100); I DW2 AREA IDE1 F2 RUT VOPNTS MI DNG FL SEM2 IX 1062 1001 IOM! IDA2 30P XKAM(100), DEMAX(100), IDEMAX(100); XCEEM(100), DIM(100); R(100,10) , ITRIG(100), QPOINT, SIDEJ, QUAKE ITST EEM1 IDGI I D y 2 I SECTN, NUMR IDAI SMAX *38G* 104 DELTEE, OVU, DE1, DE2, DRI DEM(100), IDR12 100K2 WAM(100), VEL(100), SMIN ICOL(51), GAMMA(100), IOV1 103 IPRINT, OSIDE NPAGE IDDK1 IDRL1 INT **VINI** TMAX 102 1082 COMMON COMMON COMMOD COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMOD COMMON
ر

```
R(K, IPERCQ) + (PERCQ-NPERCQ) * (R(K, IPERCQ+1)-R(K, IPERCQ)
                                                                                                                                                                                                                                                                                                                                                                                SLOPE AND REMAIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                     200 FORMAT(11HORMAX(I) = F10.2, 6X, 12H RSTAT(I) = F10.2,6X,4H STATEMENTS 50 THRU 70 INCLUDE THE SOIL DAMPING EFFECT
                                                                                                                                                                                                                                                                                                                                                      RSTAT(K) = RMAX(K)-(DIM(K)-DEM(K))*XKIM(K)
STATIC FORCE SHOULD REALLY LEAVE THE XKIM(I)
                                                                                                                                                                                                                                                                                                                                                                                             CONSTANT IF RMAX(I)+RSTAT(I) EVER EXCEEDS 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RSTAT(K)+R(K*NODIV)*SJ(K)*VEL(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RSTAT(K)+RSTAT(K)*SJ(K)*VEL(K)
                                                                                                                                                                                                                                                                                                                                     RMAX(K) = AMAX1(RMAX(K), RSTAT(K))
                                                                                                                                                                                                                                                                                                                                                                                                                                   WRITE(6,200)RMAX(K), RSTAT(K), K
                                                                                                                                                                                                                                                                                                                                                                                                                  IF(RMAX(K)+RSTAT(K))39,50,50
                                                                                                                                                                            = DEM(K)/(Q(K)/QDIV)
                                                                            IF(DEM.(K)-DIM(K))32,3,3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (DEM(K)-Q(K))56,57,57
                                                                                                                                                                                                                                                         # PERCQ*R(K,1)
                    IF(XKIM(K)-0.1) 1,2,2
                                                                                                                                     = R(K,NQDIV)
                                                                                                                  IF (DEM(K)-Q(K))7,6,6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 30 TO(51,57), ITST
                                                                                                                                                                                                                  XPERCQ = IPERCQ
                                                                                               DIM(K) = DEM(K)
                                                                                                                                                                                                                                   IF (IPERCO)8,8,9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              50 \text{ ITST} = \text{ITRIG(K)}
                                                                                                                                                                                              IPERCQ = PERCQ
                                                                                                                                                                                                                                                                                                    ij
NQDIV = 10
                                      RAM(K) II
                                                                                                                                      RSTAT(K)
                                                                                                                                                                                                                                                                                                RSTAT(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RAM(K) =
                                                                                                                                                          GO TO 50
                                                                                                                                                                                                                                                         RSTAT(K)
                                                           30 TO 70
                                                                                                                                                                                                                                                                                                                    GO TO 50
                                                                                                                                                                                                                                                                           GO TO 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ITRIG(K)
                                                                                                                                                                            PERCQ
                                                                                                                                                                                                                                                                                                                                                                           出上
                                                                                                                                                                                                                                                                                                                                                                                                                                     39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                                                                                            ں ں
```

```
71 CONTINUE
      K = MP+1
     1F(XKIM(K)-0.01)80.80,72
   72 DEM(K) = DEM(MO)
      VEL(K) = VEL(MP)
     GO TO 2
   73 CONTINUE
 73 IF(RAM(K))74,75,75 (OLD STATEMENT)
C 74 RAM(K) = 0.0 (OLD STATEMENT)
  74 CONTINUE
  75 RAM(MP) = RAM(MP)+RAM(MP+1)
C
                                     RAM(MP+1) CAN
                                                      GO INTO TENSION
   80 RETURN
     END
*IBFTC EXCTG
     SUBROUTINE EXACTS
               WAN(100), XKAM(100), RUM(100), BEEM(100),
     COMMON
            GAMMA(100), XKIM(100), CTEMAS(100), NFOM(100), XDEM(100)
     COMMON
               DEM(100), XCEEM(100), CEEM(100), FOM(100).
     COMMON
                                                            XF0X(100)
     COMMON
               VEL(100), DIM(100), RAM(100), RMAX(100), RSTAT(100)
     COMMON R(100,10) , ITRIG(100),
                                        Q(100), FORCIN(100), DFOM(100)
     COMMON FOMAX(100), IFOMAX(100), FOMIN(100), IFOMIN(100),
                                                               A(100)
            DEMAX(100), IDEMAX(100), SJ(100), NOP( 22), DYNAMK(100)
     COMMON CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51) , IROM( 51)
     COMMON
            RUMA(100), WAMC(100), XKAMC(100), QA(100).
                                                                            Ģ
     COMMON
            ICOL( 51), NOPP( 20), ENTHRU(100), ENTMAX(100),
                                                                           10
     COMMON QSIDE, QPOINT, SIDEJ, POINTJ, MSDIV, NORAMS, NSTOP
     COMMON INTV , ISECTN, NUMR , F1
                                        , F2
                                                • C1
                                                                           51
     COMMON IPRINT, DELTEE, EEMI , EEM2
                                        , GAMMAI, GAMMAZ, INT
                                                                           52
     COMMON INTT , I
                      , ITST , IX
                                         • NR

    MO

                                                                           53
     COMMON NPAGE , N
                        . QUAKE . RUP
                                         , RUT
                                                 , VELMI , ID:
                                                                           F_{ij} \lesssim
     COMMON ID2 , ID3
                        , 104 , 10W1
                                        • IDW2
                                                 • IDK1 • 1042
                                                                           55
     COMMON IDELL , IDEL , IDEL , IDEL , IDEL , IDEL , IDEL
     COMMON IDB2 , 10V1 , 10V1 , 10Q1 , 10Q2 , 10J1 , 10J2
     COMMON IDDK) : 180%2 : IDAL : KGRADD: J5 : IMIN
```

```
COMMON DVI,DEl,DE2,DRI,BRP,DQI,DQP,DJI,DJP,DWI,DW2,DYI,DKI,DK2,DKI
    NS2,NS6
                                  ELAST , ACELMX
                   1327
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F10.7)
                                                                                                                                                                                                                                                                                                                                                                     SE(MAD,NSOD) = SE(NSDD,MAD)
SE(NSDD,NSOD) = XKAM(MP-1)+XKIM(MP) + XKIM(NP+1)
  AREA
                                                                                                                                                                                                                                                                                                                      SE(K,K) = XKAM(NN) + XKAM(NNN) + XKIM(NNN)
SE(K+1,K) = -XKAF(NNN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           Ħ
                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMATI33HOTHE VALUE OF THE DETERMINANT
 NOPNTS,
                                , AREAP , XLONG ,
                 DET = TAMINY(SE, ICOL, NSDD, 50, 0.00001)
                                                                                                                                                                                                                                                                                                                                                                                                                     IF(0.0000) - ABS(DET))14,12,12
WRITE(5,100)DET
                                                                                                                                                                                                                             XXIM (MD)
 SMAX
                                                                                                                                                                                                                         SE(1,1) = XKAM(MO) +
SE(2,1) = -XKAM(MO)
                                                                                                                                                                                                                                                                                                         SE(K-1,K) = SE(K,K-1)
 NIMS
                 <+
(/)
[3]
                                                                                                                                                                                                          SE(NSEW, NSE) = 0.0
                                                                                                                                                                          DO 6 NSEW = 1,NSDD
                                                                                                                                                                                          DO 6 NSE = 1,NSDD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00 15 NEEW = 2.80
                                                                                                                                                                                                                                                          DO 13 K = 2, MAC
                                                                                                                                                            NSDD = MP-MO+1
                                                                                                                                                                                                                                                                         NN = K + MMOO
                                                                                                                                                                                                                                                                                         NNN H R + MMO
                                                                                                                              MMOO = MO = 2
                                                                                                                                             MAO = MP - MO
COMMON TRAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WARTI = 0.0
              COLMON NSS
                                                                                                             MMO = MO-1
                             COMMON B
                                                                                                                                                                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INTT = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                              MO = MO
                                                                               MP = MP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7
                                                                                                                                                                                                                                                                                                                                                                                                                                                    100
                                                                                                                                                                                                                                                                                                                                                        13
                                                                                                                                                                                                            ø
                                                               Ç
```

60

```
ANSVEC(IM1) = ANSVEC(IM1)+SE(IM1,IM2)*SE(IM2,NSDD+1)
                                                                                                                                                                                                                                                                                                                                                                                                          = DEM(NST) - DEM(NST+1)
                                                                                                                                                                                                                                                                                                                                       CEEM (NEL
                                                                                                                                                                                                                                                                                                                                                                                                                        = CEEM(NST) *XKAM(NST)
                                                                                                                                                                                                                                                                                                                                                                                                                                     = DEM(NST) *XKIM(NST)
                                        SE(NSEW, NSDO+1) = WAM(NUTZ)
                                                                                                                                                                                                                                                           CEEM (NST) = WOS/XKAM(NST)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RAM(MP) = DEK(MP) *XKIM(MP)
                                                                                                                                                                                                                                                                                                                                                HOLDEM(NEL) = DEM(NEL)
                                                                                                                                                                       DEM(NST) = ANSVEC(NAT)
                                                                                                                                                                                       = DEM(NST)
                                                                                                                                                                                                                                                                                                                                 DEM(NEL) = DEM(NEL+1)
            DO 16 NSEW = 2,NSDD
                                                     DO 17 IANS = 1,NSDD
                                                                        0.0
                                                                                   DO 23 IMI = 1,NSDD
                                                                                                  1,NSDD
                                                                                                                                                                                                                                                                                                                                                                                           DO 29 NST = MO, MAM
                                                                                                                                                                                                                                             MOS = WOS+NAM(NST)
                                                                                                                                            DO 26 NST = MO, MP
                                                                                                                                                                                                                              DO 27 NST = 2, MMO
                                                                                                                                                                                                                                                                                                      DO 28 NST = 1, MMG
                           NUTZ = MMO+NSEM
                                                                                                                                                                                                                                                                         FOM(NST) = MOS
SE(1,NSDD+1)
                                                                    ANSVEC(IANS)
                                                                                                                                                                                                                                                                                                                    NEL = MO-NST
                                                                                               DO 23 IM2 =
                                                                                                                                                                                    HOLDEM(NST)
                                                                                                                                                        NAT = NAT+1
                                                                                                                                                                                                                                                                                                                                                                              MAM = MP-1
                                                                                                                                                                                                                 0°0 ≈ SOM
                                                                                                                                                                                                                                                                                                                                                                                                         CEEM (NST)
                                                                                                                                                                                                                                                                                                                                                                                                                                      RAM (NST)
                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                        FOM (NST)
                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                             NAT = 0
                                                                                                               23
                                         15
                                                                                                                                                                                                  26
                                                                                                                                                                                                                                                                                         27
                                                                                                                                                                                                                                                                                                                                                               28
                                                                                                                                                                                                                                                                                                                                                                                                                                                    ^{\circ}_{\infty}
```

```
XDEM (100)
                     XFUM(100)
                                                                                                                                                                                                                                 1,0%2,0%I,DK1,FK2,OKI
                                                    4(100)
                                         DFOM(100)
                               RSTAT(100)
                                                              NGP ( 22), DYNAMK (100)
                                                                                   SJA(100
                                                                        IROW(
                                                                                                     POINTJ, NODIV , NORAMS, NSTOP
                                                                                                                                                                                        2
                                                                                                                                                                   G
(1)
BEEM(100),
NFOM(100),
                     FUM(100),
                               RMAX (100),
                                         Q(100), FORCIN(100),
                                                   FGMAX(100), IFCMAX(100), FOMIN(100), IFOMIN(100),
                                                                                 QA(100),
                                                                                           NOPP( 20), ENTHRU(100), ENTMAX(100),
                                                                                                                          GAMMA2.
                                                                                                                                                                                                                      ACELMX
                                                                       CEEMIN(100), HOLDEM(100), ANSVEC( 50), SE(50,51)
                                                                                                                                               VELMI
                                                                                                                                                         DK1
                                                                                                                                                                   DE2
                                                                                                                                                                             0.11
                                                                                                                                                                                       5
                                                                                                                         GAMMAL
                                                                                                                                                                                       KGRADD
                                                                                                                                                                                                                                 DJP, DW
                                                                                                                                                                                                                       ELAST
                                                             $3(100);
                                                                                 WAMC(100), XKAMC(100),
                              RAM(100),
          XKIM(100), CEEMAS(100),
                    CEEM(100),
                                                                                                                                                         05/2
                                                                                                                                                                   <u>u</u>.
                                                                                                                                               RUT
                                                                                                                                                                                                 NOPNIS
                                                                                                                                                                                                           MEE O
                                                                                                                                                                                                                      XLONG
XLONG
                                                                                                                        IDA2
                                                                                                                                                                   1082
                                                                                                                                                                             1001
XKAM(100),
                    XCEEM(100),
                              DIM(100),
                                                            DEMAX(100), IDEMAX(100),
                                        , ITRIG(100),
                                                                                                     SIDEJ ,
                                                                                                                                                                                                                               DV1, DE1, DE2, DRI, DRP, DQ
                                                                                                                                               OUAKE
                                                                                                                                                                                                                     AREAP
                                                                                                                                    ITST
                                                                                                                                                                                                 SMAX
                                                                                                               I SECTN, NUMR
                                                                                                                         EEM1
                                                                                                                                                                 1001
                                                                                                                                                                             IDV2
                                                                                                                                                                                       IDAl
                                                                                                                                                        104
                                                                                                     QPOINT,
                                                                                                                         DELTEE,
                                                                                                                                                                 I DRL2
                                                                                                                                                                                      I D D K 2
                                                                                RUMA(100),
                   DEM(100),
                              VEL(100),
                                                                                           ICOL(51),
                                                                                                                                                                            IDVI
                                                                                                                                                                                                 SMIN
38×(100);
         GANMA (100);
                                                                                                                                                        E01
                                        R(100,10)
                                                                                                                         IPRINT.
                                                                                                                                                                                                                                                                                                     QSIDE
                                                                                                                                             NPAGE
                                                                                                                                                                                     I DOK1
                                                                                                              INTV
                                                                                                                                   IDRLI
                                                                                                                                                                            1082
                                                                                                                                                                                                TMAX
                                                                                                                                                                                                                                                                                 \overset{\circ}{\circ}
                                                                                                                                                                                                                                                                        0.0
                                                                                                                                                       102
                                                                                                                                                                                                                                                              = MP-1
                                                                                                                                                                                                                                                    MP = MP
                                                                                                                                                                                                                               COMMOS
                                                                       COMMON
                                                                                                    COMMON
                                                                                                               COMMON
                                                                                                                         COMMON
                                                                                                                                             COMMON
                                                                                                                                                                                                COMMON
                                                                                                                                                                                                           COMMON
          COMMOS
                                        COMMON
                                                   COMMON
                                                                                 COMMOD
                                                                                          COMMON
                                                                                                                                                                 COMMON
                                                                                                                                                                            COMMOD
                                                                                                                                                                                      ZOMMO!
                                                                                                                                                                                                                     COMMOD
COMMOD
                    COMMON
                              COMMON
                                                             COMMON
                                                                                                                                   COMMON
                                                                                                                                                                                                                                                                        WAMTL
                                                                                                                                                                                                                                                                                  RAMTL
                                                                                                                                                                                                                                                                                                      MARINE IN
```

Ç

SUBROUTING

```
DEM(MP) = (RAM(MP) + RAM(MP+1))/(xxIM(MP) + xxXIM(MP+1))
                                                                                                                                                                                                                                             DIM(JTM)=DEM(JTM)-WAMTL*Q(JTM)/RAMTL
                                                                                          RAM(MP+1) = RUM(MP+1)*WAMTL/RAMTL
                                                                                                                                                                                    CEEM(JTM) = FOM(JTM)/XKAM(JTM)
DEM(JTM) = DEM(JTM+1) + CEEM(JTM)
HOLDEM(JTM) = DEM(JTM)
                                   FOM(JT) = FOM(JT-1)+WAR(JT)-SAV(
                    (RUM(JT)*WARTL)/RABIL
                                                                        RAM(MP) = RUM(MP) * WAMTL/RAMTL
                                                      RAM(1) = RUM(1) *WAMIL/RAMIL
                                                                                                                                 HOLDEM(MP) = DEM(MP)
                                                                                                                                                  00 11 JT = 1,N
                                                                                                                                                                    JTM = MP-JT
                                                                                                                                                                                                                                                                CONTINUE
                 RAMILITY
                                                                                                                                                                                                                                                                                  RETURN
α
0
                                     ထ
                                                                                                                                                                                                                                                                 11
                                                                                                                                                                                                                                                                                                                       $D4TA
```