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TRANSACTIONS OF THE INSTITUTION

Reinforced Concrete Pile Formulae.

BY

Davip Vicror Isaacs, M. C. E.
Associate Member.*

Summary.—Existing formulae for the calculation of safe loads for reinforced concrete piles are critically examined, and errors
in theory are shown. A new theory of the phenomensa of driving is advanced, and a set of graphs based on the theory, is prepared
for application to reinforced concrete pile driving.  Allowances are made for weight and drop of hammer, size and length of pile, size
and weight of dolly or helmet, degree of cushioning in the helmet (or strength of concrete in pile}, and type of supporting strata.

1.—INTRODUCTION.

(@) The purpose of the paper~—The purpose of this
paper is to find a method by which safe loads for reinforced
concrete piles can be calculated from the observed conditions
of driving. Many formulae at present available attempt to
achicve this, but there are large differences in the results
they give, and there is little to show which, if any, is to be
trusted.

(8) Outstanding differences between concrete piles and
timber piles.~~So much of the knowledge of pile driving has
been based on the behaviour of timber piles, that it is im-
portant to note that: (1) The structural and elastic char-
acteristics of rimber piles and concrete piles are very dis-
similar. (2) In drop hammer driving, timber piles-are
usually driven direct, with a hammer of weight nearly as
great as, or greater than that of the pile; concrete piles are
usually driven using a cushion and helmet, and a hammer
only a fraction of the weight of the pile. (3) Concrete
piles are relatively more expensive, and a good gauge of
their capacity is therefore relatively more valuable,

(c) Driming resistance, and bearving resistance—A pile
partly driven, and left overnight, is often much harder
to move when first struck next morming. In some cases the
reverse is true. It is thus important to distinguish between
the driving resistance (R)—the actual ground resistance to
driving—and the bearing resistance (U)—the ultimate re-
sistance to a static load applied after the ground has become
quiescent subsequent to driving. An attempt to relate the
two will be made in the paper.

{d) Factor of safety.—~The factor of safety to be applied
to a determined driving resistance or ultimate bearing re-
sistance must of necessity depend on the degree of accuracy
likely in such determined resistance, and on the type of
oading to be borne. It is thus controlled by the quality
of the supporting strata, and may usually be made less
where subsurface conditions have been well determined ;
and while vibrating loads require larger factors of safety
than static loads, these factors also may be reduced where
the total penetration is such that the supporting strata are
below the region of lateral vibration in the pile, and where
the previously explored supporting stratz are such as not
to be greatly affected by vertical vibrations.} Whereas

*This paper, No. 370, originated in the Melbourne Division of the Institution.
. +8ec Enginesring News Record, Vol. 104, No. 22, May 29th, 1930, p. 900, It
is there concluded that, due to very small vibrations caused by street or railway
traffic, nearby foundations may settle, settlements being largest in plastic soils, and
almost negligible in sand.

impact is usually omitted from foundation calculations,
it should be included in the load calculated for any pile.
Impactive or live loading of long duration requires more
allowance than such loading of short duration.

In some classes of ground, a single pile may support
much more than the average load supported by a number of
piles driven fairly close together. In ground where the
sets in driving different piles are very variable, an increase
should be made in the factor of safety.

An often-quoted table of factors of safety for bearing
resistances is the following :—

Soil to Silt
Steady loads . e 2O
Vibrating loads, machinery, ete. ... e 4 to 12

It should be remembered, however, that these are not
true factors of safety, but include a * factor of ignorance.”
The author suggests that when the ultimate resistance of
any pile has been determined, in fixing the factor of safety
{as given in the above table) the most unfavourable conditions
possible in the supporting strata should be judged {the range

. of conditions possible being narrowed with better knowledge

of the subsurface conditions and of the possibility of dis~
turbance from extraneous sources) and a proportion of the
factor of safety—a “ factor of ignorance —then allowed in
respect of these possible conditions, the manner of de-
termining the ultimate load, and the type of loading to be
borne. The remaining proportion of the factor of safety-—
ot frue margin of safety—should be approximately constant
for all classes of loadings and foundation conditions involv-
ing the same value of loss in case of failure; and the overall
factor of safety (8) will then be equal to the product of the
true factor of safety with the  factor of ignorance.”” For
permanent work the true factor of safety should not be less
than 1%,

The quotient obtained by dividing the ultimate re-
sistance (R or U) by an appropriate factor of safety (S)
is the bearing value (B) to be assigned to any pile ; and the
use of any formula which always includes the same arbitrary
factor of safety is therefore to a certain extent to .be depre-
cated. The ultimate bearing resistance found by a static
load test is considered to be the maximum for which no
progressive settlement is noted. For some classes of foun-
dation the time element is large, and it may be necessary
to allow the test load to remain on for several days, even
thongh no settlement appears at first.

(e) Height of fall of hammer —In driving with a drop
hammer it is usually convenient to work direct on to the
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winch, instead of using a tripper. Friction and inertia of
the winch parts then seriously reduce the velocity which
the hammer acquires in its fall, and observations by different
observers indicate consistently that the velocity of the

hammer as it hits the pile is only approximately 4/1.15 gH,
i.e., the equivalent free fall is
h==3H .
where H feet is the vertical fall

With new equipment % may be fess than $H. The equiv-
alent free fall {or an actual value of the free fall) should
always be used in formulae.

If the height of fall measured obliquely on raking guides
inclined 0 to the vertical (in driving batter piles) be H feet,

H == H {cos 0 —0.1sin &)
and % = §H (cos 60— 0.1 sin 6)

(f) Mathematical treatment.—Where mathematical treat-
ment is included, the leading results are summarized in
italkics for facility in following the paper, and the essentially
mathematical text is printed in smaller type. '

(g) Notation.—The notation given below includes every
symbeol used in the paper. The symbols are mainly phonetic
or standard. Further explanations are given in the text
as required.
' (@) Physical Quantities,
A == Area of cross section of parallel pile ;  {square inches)
A = Equivalent area of cross section of
tapered pile ;

B = Working bearing load of pile ;

C == Equivalent compression of pile pius
cushion in the Hiley formula; (inches)

¢ == Compression of cushion and dolly alone 3 (inches)

D = Total weight of helmet or cap, and
dolly ; (lb.)

d == Total depth of penetration of pile;  (feet)

E = Young's modulus for concrete ; (lb. per sq.in.)

g = Coefficient of restitution ;

F = Maximum compressive stress on pile
head cross section, during driving ;

f = Equivalent driving resistance compres-
sive stress on pile cross section ;

G = Stiffness of cushion in helmer;

g = Acceleration due to gravity;

(square inches)
(Ib.)

(Ib. per sq. in.)

(Ib. per sq. in.)
(Ib. per in.)
{ft. per sec. per sec.)

H = Height of fall of monkey ; (feet)
H = Height of fall of monkey measured
along raking guides; {feet)

h = Equivalent height of free fall of hammer ; (feer)
h = Equivalent height of free fall of monkey; (feet)
1 = Magnitude of an impulse at any instant ;

1, = Equivalent length of pile; {feet)
L = Actual length of pile; {feet)
1 = Length of hammer; (feet)

! = Length of monkey ; (feet)
A = Length of timber doily or striking piece ; (feet)
M = Weight of monkey; (lb.}
m = Weight of monkey per foot of length ; (ib. per ft.)
4t = A quantity proportional 1o the loga-
rithmic decrement of a longitudinal
wave ;
N = A ratio of driving resistances under
different conditions ;
P = Weight of pile; (b))
p = Weight of pile per foot of length; (b, per fr.)
p = Percentage of steel reinforcement;
Q == Ratio of cushioned to ideally impactive
compressive stress ;
' g == Ratio of driving resistance compressive
stress to ideally impactive compres-
- sive sfress:
R = Driving resistance of pile ; (Ib.)
¢ = Ratio of velocity of sound in the
hammer to the velocity in the pile ;
S = Factor of safety;
s = Set per blow in driving ;
g = Perimeter of pile;

(inches)
(inches)

t == Time required for sound to travel the
length of the hammer ;
¢ = Time generally ;
# = Angle of inclination of pile machine
guides to the verticai;
U = Ultmate bearing capacity of pile after
a period of rest; (Ib.}
u = Velocity of pile after impact; (ft. per sec.)
V = Velocity of sound in pile; {ft. per sec.)
v = Velocity of haramer as impact occurs
with helmet or dolly;
v = Velocity of hammer after impact ;
W = Weight of hammer ;
w = Weight of hammer per ft. length ;

(seconds)

{ft. per sec.)
(ft. per sec.)
1

(Ib.)
(lb. per ft.}

{#1) Mathematical Quantities.

l—r
aTTR
r
b= x%
B = vb—1ia*
D = The operator —
dx
¢ == Base of the Naperian logarithms ;
Y = sin i = Vb

1 2
7 = A phase constant equal to tan —

1
i
c
12vQ
A constant ;
= A constant }
U A
oW + p
= Maodified value of r such that » = } loge {1 — 2r/(l ~ 1)}
= Unit value of x
= Abscissa in wave diagram ;
= Unit value of ¥ or » )
Ordinate in wave diagram measured -+ vé downwards ;
Ordinate in wave diagram measured -+ve upwards ;
Ordinate in wave diagram corresponding with a reflected wave ;
A phase constant; )
A phase constant ;
A phase constant,

K=

ES
i

and a constant having the dimension of time ;

X
I

|
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1I. Formyrae IN Usk.

(&) Formulae dealt with.—WNumerous fgrmulac are in
use in America and Europe, for concrete piles. A few of
the most widely used will be examined. They are :—

(i) Wellington (American)
(ii) Gow {American}
(iif) Brix {Continental)
(iv) Eytelwein  (Continental)
(v) Hiley {British)

(vi) Formulae of the Rankine type which depend
on a knowledge of the supporting strata only.

(b) Wellington Formulae~The Wellington formula
for timber piles and a drop hammer of weight M Ib. 18
usually quoted as

M
Safe Load (Ib.) = M

s-+1
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with a factor of safety nominally equal to 6, a free fall (4
feet) assumed for the monkey, and s the average set in
inches for the last 5§ blows at least.*

Wellington’s explanation of the formula is that, as-
suming the resistance to penetration during each blow of
the monkey to start at a certain value and rapidly drop to a
much lower value, which remains constant for the remainder
of the penetration, the equivalent set {for the lower resis-
tance) should be increased; and ‘“based on extensive
observations of the behaviour of piles in driving, and on
many vears’ experiment and study as to the general laws of
friction,” the required amount of Increase in set is given as
1in. Equating (in in.-fb.) the work stored in the monkey,
to the work done in producing an equivalent set

12MA = (8 -} 1) x resistance overcome,

Since the value 1 in. is based on actual bearing values (U)
of piles after a period of rest subsequent to driving, the
resistance overcome is really not a driving, but a bearing
resistance, so that, using a factor of safety of 6
. . U 2Mk

Bearing Capacity, B = 6T e {1)
The factor of safety 6, is nominally supposed to include the
effects of brooming of the head of the pile, and other similar
sources of loss, and it is intended to be applied only where
the subsurfzce conditions are unknown. Under known
subsurfzce conditions a factor of 4 or a little less is re-
commended. The results of Goodrich’s investigations on
timber piles show that the resistance of the ground to pene-
tration is, in the average case, almost constant from start to
finish of any movement under one blow of the hammer., The
Wellington formula should therefore be taken merely as a
good empirical one, based on the behaviowr of fimber piles,
and applicable to them provided (as Wellington asserts) the
set per blow is not less than § in. or } in. as an extreme limit,
Remembering the differences in driving phenomena noted in
seetion I (), one should, therefore, on existing knowledge, be
chary of using the formula for concrete pile work, although it
is aften vecommended as bemg quite satisfactory for such use.
Wellingron’s meodification of the above formula, for use
with steam hammers is :

2M#A

5 4 0.1
but tests have indicated that the figure .3 instead of 0.1
would be better for single acting hammers, and approxi-
mately 0.2 has been suggested for double acting hammers.
In double acting hammers the effect of the steam pressure
on the piston would have to be included. Comparing
accelerations during fall of the hammer with and without
steam

Safe load ==

k= Actual fall x wl\l;f {M + Mean net total steam

pressure on piston — Total friction}
for double acting hammers

and & == approx. {Actual fall — 2 in.}
for single acting hammers, when allowance is made for
friction.

{c) Gow Formula—Wellington's formulae have been
modified by Gow, to take account of the heavy weights
(P 1b.) of concrete piles.

*Sce Foundations of Bridges and Bulldings, 2nd Edition, by Jacoby and Davis

For a drop hammer the Gow formula is

2MA
Safe load = 1; ................................. (3)
and corresponding to Wellington’s steam hammer formula
2M
Safe load = h S {4)
, s - O.I'M'
The United States Navy Department uses
2M
Safe load — % .............................. (s)
8 4 0.3M“

It appears as though the alterations to Wellington’s
formulae have been made rather as a guess, but the guess would
appear reasonable, Safe results appear to have been given in
America, but this is inconclusive as fo the correctness of the
Jormulae, because they may merely be comservative. The
remarks concerning factor of safety and minimum set for
the Wellington formulae apply to the Gow formulae also.

{d) Brix Formula—Equating the momentum of a
drop hammer which strikes a pile with velocity v ft. per
second to the combined momenta of pile and hammer
after impact

Mv = Pv + Mo
M
or ] =W .V N L L LR R LR TR (6)

The coefficient of restitution for the impact is here
assumed zero, and the velocities of both pile and hammer
after impact are therefore taken as » fr. per sec. The
hammer is now assumed to play no further part in the
actiont, and the energy available for penetration, due to the
motion of the pile, Is written as

i M 2 ,
~§~g~ x P x {(IVITP)V} x 12 in. Ib.

which equals Rs in. lb., the work done in penctration
against a driving resistance R lb., i.e.,

12 M?ZP

K= - srrry - 7
and since v% == 28
R _ 12M?Ph
T S(M - P)?
or the safe bearing load in Ib. with factor of safety S is
12M2Ph
= Se(M FB)E o m

The formula is thus a driving resistance formula which
attempts to include the effects due to pile weight and lack of
restitution at the head of the pile. No allowance is made
for the following obvious sources of loss

(1) work done in compressing the pile cap;
{if) work done in compressing the pile;
but to offset these

(iii) the available energy of the drop hammer after
impact is neglected.
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One would expect the gains and losses to balance for
sets somewhere between 1 in. and 1 in.

Put P = M, and the formula reduces to

R = :15.009”:7’E et T (8)

Goodrich’s very thorough theorétical and practical
investigations into the behaviour of timber piles* led him
to adopt

10 MH

R=73 - %

for the driving resistance provided the sets are not too small,
and the weight of the hammer is at least as great as that
of the pile. This formula has proved safe and reliable for
timber piles and should therefore serve as a check on formula

(8).
When —g—h is substituted for H, Goodrich’s formula

takes the form

.

et e {10)
Thus the Brix formula, judged by the Goodrich standard
is conservative for timber piles, giving values only £ as grear.

On the above information only, the Brix formula might
be frusted as a driving resistance formula for sets between
}in, and 1 in.

{e) Eytefwern Formula.—If the same conditions are
postulated as were assumed in deriving the Brix formula,
but advantage is taken of the energy left in the hammer
after impact, following on equation (6) the energy available
for penetration is found to be

L o map M Y tZin b
Tg-)(( }{m-"} b e in. .

whence the Eytelwein formula is obtained

B 12M7:
P

Ss(l e M
Losses 1 and ii of the Brix formufa still remain and there is
no gain to offset them.

Putting P = M, and thus making the formula fit timber
piles

R = 6.00~Mﬁ
s

.......... O SUPTUTPUPRRR & o3 |
which gives results for timber piles about 359, higher than
those given by the Goodrich formula (10). Arguments
50 far advanced would thus make the Eytelwein formula unsafe
as a driving resistance formula except for sets above about
1} in

(f) Hiley Formulg t——The following merely outlines
the theory: )

*Trans, Am. Soc. C.B., Vol. 48, page 180, August, 1902,

tTreatment of this formula will be found in:—
Engineering, June, 1922—* The Effect of the Hammer Biow ¥

May and June, r1p25—** A Ratienal Pite Driving Formula.”
Transactions of the Soci:w.o)" Engineers, 1923—"° The Impact of Imperfectly

Elastic Bodies in Pile Driving.

Let = coefficient of restitution of pile head or cap;
== velocity of hammer before impact ;
== yelocity of hammer after impact ;
u == velocity of pile after impact,

Equating the momenta before and after impact

Mv == Mo + Pu
and relating the velocities before and after impact

T EV S5 0l eeiiiiieir e e et e (x4)
Multiplying (14) by M and subtracting from (13)

Mv(l + &) = u(M + P) :

Q< ,m

M
or 1 o= ﬁﬁ“ T EV e (x5}
and muitiplying (14) by P and adding to (13)
M — P
P == i”i + P - Ve (16)

Hiiey assumes that if the hammer doss not rise after the inpact,
the whole energy of the hammer as well ag that of the pile can be
utilized, and the condition for this from equation (16) is

eP

The energy of the hammer after the impact is

I M v gP .
-—i—gXMX m V’} % 12 in. 1b.
and of the pile is
1 M 4 gM # .
“‘2——gXPX W V}X12ln.1b.
and hence the totai energy is
12My® 1 . .
~ag » iy By {M?2 + MP . Pg? (M -4 P)}in. b
12Myt M L+ Pg? ,
=33 MNP 1 s VI - R PPN (7
{M + Pe”} is rermed the efficiency of the blow.
M. P
Putting £ = 1, and subtracting {17} the loss of energy due to impact
2 ] — g8
= 122& I Y R Db e (18)
g 1+ 5

Ifililey then assumes, as a result of his experience in pile driving,
that
(iy Brrors in centring the pile, and longitudinal vibrations
result in 2 Joss of energy equal to § the energy required
to compress the whole pile up 1o a stress of £ Ib. per $q. in.
correspending to the driving resistance.
(ii) A further like amount is absorbed if a dolly is used.
The energy remaining is then absorbed in compressing
the padding on top of the pile, compressing the pile, and
causing penetration. .
(iii) The compression of the pile calculated by taking
E = 2,500,000 lb, per sq. in, is
1261,
2,500,000

(iv) The minimum values for the compression of the pile capping
are taken as 0.10 in. per 1000 lb. per sq. in. of driving
resistance (L.e., are equal to 0,0001 f inches) but the value
is to be increased 50% if the daolly i5 long and by roc%
if the padding is not very stiff.

Combining i, ii, iii and iv under the one heading as a loss due to an
equivalent compression of G inches, against a driving resistance
varying uniformly from 0 w R 1b.

inches

RC
Loss =—5 in. lb.
121, f
2,500,000 ' 16,000
is the minimum likely compression using a helmet and
dolly,
Hiley gives fables for the quantity G for varions condizions ax}d values
of f. Equating the value of energy available, in equation (17
to the work done in penetration, and losses in general,

where C = 1} X

12Mv? M -} Pgt (8]
i e ) =Re Ry
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Whencc_, remembering that v = 2gk

_ 12Mip M 4 Pg? '
R = c XM P e (20)
] +ﬁj_

The value of R cannot be found without first finding C;
hence in practice, a value is assumed for €, R is then found,

and since f = —f{ {A being the area of cross section of the

pile in square inches) a fair vahue of C can be found, from
(19), and R recalculated. The process is repeated wntil
the results are consistent.

IfCis put =0, and ¢ =0

_tamh

T M F P
which is Eytelwein’s formuia.

Hiley gives a number of values of ¢ for varying con-
ditions. Those applicable for concrete piles are :

Steel D.A. steam hammer direct on con-

crete piles o & =205
Cast iron S.A, steam hammer dxrcct on

concrete piles .. e & 0.4
Cast iron S.A. steam hammer, or drop

hammer on wood cap of helmet ... & ==0.25
Deteriorated conditions of wood cap of

helmet or of packing in helmet & =2 0,0

The author cannot see why Hiley should take the whole
energy of the hammer after impact as available if M < Pe,
but concedes that the results would not be far out where
e is small, if the rest of the mathematics were in agreement
with physical facts. For meost cases of driving & is small,
and hence the efficiency of the blow may be taken as being
correct.

Hiley assumes his formula to apply to values of s = 6,
and on theoretical grounds this can be accepted as 2 limiting
case¢ for u approaching zero.

In the absence of further information, the Hiley formula
may therefore be assumed, for the present, to give a reliable
estimate of the driving resistance for all values of the set.
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The next main section of this paper is directed to showing that
the phenomena of driving are wvery different from the com-
paratively simple ones assumed by Hiley and others, but no
account has been taken of this in forming the above judgment.

{g) Formulae depending on a knowledge of supporting
strata.—Formulae which depend on a knowledge of sup-
porting strata allow a certain frictional resistance per sq. ft.
on the sides of the pile, and a certain pressure under the
toe, and can only be approximate.

Side friction often varies in amount at different depths
in the same material, and is a very variable quantity in any
case, as Table I shows.

TABLE L
Material Ultimate friction in lb. per sq. ft.
Sand 400 to 800
Sand and clay 300 t0 1,000
Clay 250 to 1,500, OT More
let and mud 200 10 500
Gravet 300 10 1,000

A fair estimate, however, should be possible if samples
of the strata are available for examination, For soft
materials, the allowable foundation pressure could be
calculated in certain cases by Rankine’s earth pressure
theory, but it would be preferable to allow for cohesion
in an amount consistent with the side friction allowed.*

 The author considers it would be wise to check the load
Jound for any pile by a static load test,or drop hammer test,
by this method, if the underground conditions are known, as
unexpected local wariations in the foundations might thus be
detected. Such a check is particularly necessary where sand
ts the supporting sivatum.

(B) Comparison of results given by the various formulae.—
About 1,500 comparative results have been worked out,
checked, and plotted in Figs. 1, 2, 3, and 4. Curves of

*See A4 Swmmary of Soil Mechanies, by '¥. A. Farrent, THE JourNaL, Vol. 3,
No. 3, p. 107.
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joad supportable, against set, have been plotred for a tactor
of safety of 4, in the cases of the following formulae :

(1) Wellington

(z) Gow

(3) Brix

(4) Eytelwein

(5) Hiley, for ¢ =0 -

{(6) & of the Hiley load for double the drop of monkey

for those cases where f 3> 3,000 lb. per sq. in.
(7) Average of Wellington, Gow and Brix.
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o,
9

oy * - - -
Eyretwem s w0 coriection O

‘Hiley has correction G
“Hiley ()" effectively has a correction C allowed
twice over, i.¢., shows the trend of results for
a more easily compressed packing on top of
the pile.
The effect of packing on top of the pile may thus be gauged
on the basis of the mathematics used tn deriving the Hiley
Sormula.
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Fig, z.~Comparative Graphs for 14 in. x 14 in. Piles,

Curves for {6) are noted in the figures as “ Hiley (§).”
The values of G for the Hiley formula were taken from
Hiley's tables.

The Hiley values apply only for the exact conditions
stated, but altering the drop of the monkey merely alters the
loads for the other formulae, in proportion. All drops are
taken as free drops.

Curves for the Eytelwein, Hiley, and “ Hiley (3)”
are related as follows :

The great divergence of results shown on the grapht
shows how necessary 1t is that there should be some investl
gation of the subject.

It will be seen that there is in general a rough agreemeni
between the Hiley valucs and the averages of the Wellington
Gow, and Brix walues, and constdering previous opinion:
passed on these formulae, it would appear that the Hiley
Formula is the best so far developed. It should be remembered
that the Hiley formula gives the driving resisiance.
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TABLE II.
. Velocity of | Velocity of | Velacity of
IIY. LoNGITUDINAL WAVE MOVEMENTS IN PiLES. striking piece | struck piece struck piece
immediately |immediately, by calcu-
Conditions of experiment before _ after lation by
(@) Imtroductory. impact, impact, ordinary
ft. per ft. per theory, ft.
. . . . 3 C. er sec,
All the driving resistance formulae so far considered see s¢ p
have assumed the pile to act as a unit, when struck by the 3 in, length seriking 3 in.
hammer. The author carried out a simple experiment length 1.700 1.613 1.613
to test a theory which disagrees with this assumption. 3 in. length striking 4} in.
Several straight pieces of } in. diameter bright mild steel were length L.700 L.256 I.290
prepar(;d,dwnh e:llds f{'lin{shed vgerlyl_sli]ghtliy convex. Each t:nglcl1 be 3 in. length striking 6 in.
suspenae at each end in special light ciips, to act a8 a penauium ]ength S 1.700 0.988 1.075

swinging in a fixed plane, with the axis of the piece always perfectly
horizontal. Impact experiments were carried out with these rods : el :
striking endwise in pairs, with corrections for damping. The 5 m'ii;%gtflh Smk]?.g 7 1‘:1: 1.700 0.798 6.922
results shown in Table II were obtained :— : ! '
3 in, length striking 9 in.
fength 1,700 0.681 a.807

N
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4100 rnunkey falting 411,

Fig, 4.—Comparative Graphs for 18 in. x 18 in. Piles.
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From the first row of resuits the coefficient of restitution is

2 x 1.613
1760 ‘) 0.897

which is approximately the accepted result for steel on steel. The
last column gives the velocities of the struck pieces by formula (15),
with £ assumed 0.897 in all cases. The differences between theory
and experiment are far too marked 10 be attributable to experimental
errors; and the writer therefore submits his theory of impactive action
by which results such as the above may be explained. The theory
results in rather complex caleulations, but sufficient of these calculations
have been made to obviate any more being required in practice.

found (from formula 135) to be (

Reference to a good text book on physics is advised
for facts concerning wave motion in elastic media.

&) Application of wave theory to pile driving.
(i) Ideal uncushioned impact of a long hammer on a long pile.

Consider a long elastic hammer of mass w 1b. per ft. length,
approaching a long elastic pile of mass p Ib. per ft. length, with
velocity v ft. per sec.; and assume the hammer to hit the pile head
in perfectly even conract over the whole area of the head. = Assume
the velocity of sound {or any longitudinal impulse) in the hammer
to be g times the corresponding velocity V, in the pile.

If, during any very short period of time dr, during impact of
the hammer on the pile, the pressure exerted between the two causes
impulses of a given magnitude ¢ per second to be sent along the
pile, the total change of momentum induced in a length of pile
Vi, is 16t, producing a velocity

id
pvédr  pV
in that part of the pile in contact with the hammer, The cor-

ft. per sec.

. H
responding velocity in the hammer must obviously be ——gr
D g ¥ Y W (Q V)

ft. per sec., or the total velocity induced is
) 1 1
v{F+ '@Tv}
i row+p
= i)—‘—’{_méh‘*"’_} ft. per sec.

Consider the first instant J¢ after impact begins, and consider pile
and hammer in perfect contact during this instant,

: ow +p
v ()

le, 1= vpV(E)_“%WD

giving the particles, both in the head of the pile, and in the base of
the hammer.a velocity

f Q\V
PV v<m> ft. per sec.

This is the velocity of the head of the pile relatively to the rest of
the pile; and the velocity of the base of the hammer relatively to
the rest of the hammer is

i p
. ft. 3
woV V( ow - p ) T. per sec

These two relative velocities allow the impact to continue for & time
dr, during which time short sections only of the hammer and pile
have become affected. It should be obvious, that a succession of
equal valued compression impulses must occur, keeping the velacity

oW
oW +p
and that as time proceeds portions of the pile more and more remote

from the head pick up this velocity, so that after a time r from the
beginning of the impact, a length Vi of the pile, from the head

ow

gw +p

of the pile head and hammer basc v( ) ft. per second,

downwards, is all moving with a velocity v( ft. per

sec, 3 but no other part of the pile is affected.

: p
The quantity W

will be given the symbol r.
+p

W
wip - 4o

(it) Ideal uncushioned impact of a short hammer on a long pile.

When the impulsive relative velocity vr in the harmnmer reaches
the top end, it is reflected as a tension impulse vr, so thar, for por-
tions of the hammer near to the top where both impulses now overlap,
the relative velocity is 2vr, and the stress is zero. By the rime the
reflected wave has reached the bottom of the hammer the whole
hammer has been given a relative velocity of 2vr and all stress in
the hammer has been eliminated, so that the hammer now has the
same relationship to the pile as a hammer possessed of velociry
(v — 2vr), and just beginning an impact. A new cycle thus starts,
and the process is repeated. If 1 be the length of the hammer, the
time required for a complete cycle will be

Then

21
2t = Q_V seconds. .

The velocity of the base of the hammer and the head of the piie at
the beginning of the impact is thus v(I —r) feet per second; 2t
seconds later it is v(l 1) (1 — 2r); 4t seconds later it {s V(I =t
(L — 2r)®; 6t seconds later it js v{} —r) {I — 2r)%, and so on. The
compression wave propagated along the pile is thus of stepped form
as shown in Fig. 5, where the ordinates represent velocities or in-
lensities of compression, and abscissae, measured from the line
QO to any portions of the wave, represent the time during which the
wave has been travelling, or the distance travelled along the pile.

(iti) Gushioned impact of a long hammer on a long column,

Duplicating the conditions assumed in section (i) (except that
the pile is now assumed capped with an elastic cushion, through
which any impulse travels so quickly that the time taken may be
ignored) it is noted :

{a) The rate of compression of the padding equals the relative
velocity of the base of the hammer with respect to the
head of the pile.

() The magnitude of the impulses sent inro both hammer and
pile varies as the compression of the packing.

Plot the value of the velocity v as an ordinate Y in Fig. 6, and
the relative velocity of the base of the hammer to the head of the pile
as ¥ measured downwards from the upper horizontal line, Ab-

=1

= =

22,

&=

@ Hﬁmmm‘f’ Pife
L)

2 Whammer wave r()’-y)+r)’(l-e"f}
Ye EONor(-F) N (1-riy)

Figs. 5, 6, and 7.
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scissae x represent time from the beginning of impact. Then

*
f ydx is the comptession of the padding at x, and since the roral
0

rgl’atiVe )veiocity being developed by the compression in the padding is
—Y.

Syde =R(Y =) i (22)
k being a constant depending on the elasticity of the padding,
i ——p A
ie., ¥ =k T
- F
giving ¥ Ve B e i e (23}

i.e., the velocity of the head of the pile at the time represented by
X 18
( _ 3
YE—r) hl—e &
and the velocity by which the base of the hammer has been reduced is

( i
Yr\l—e &

(iv) Cushioned impact of a short hammer on a long pile.

Let X be the value of x for which x = €. Then, for the case of
a short hammer, the action at the beginning of impacr is precisely
as in section {iii) above, till time t has etapsed. Then, from X to 2.X,

%
the wave Yr\l.—¢ k) is being reflected back as a tension wave
from the rop of the hammer.

From 2X to 4X the reflected wave is again reflected—this time
from the bottom upwards as a corpression wave—and therefore the
action of the impact is altered. See Fig. 7.

From now onwards, ¥ will be considered as that relative velocity
between hammer and pile, which results from compression in the padding
alone.

Thus there is obtained, in licy of equation {(22)

2X
- W E
../o' Ye kdx 4 f {y— rY(i v k)}dx w= R (Y y) (24}

as the equation for the period 2.X to 4X,

X
(y—ry \L—e &)}
being the relative yelocity of the hammer and pile at any instant (of
x
which velocity r¥ \lo—g 5«) is the part twice reflected), and
X

2X -3
‘L‘ Ye dy being the compression of the padding
already brought about during the first cycle.

The solution of this equation is

X X
y =Y - (Yyiemr¥)e ™ k=3 ¥xe "

with origin at 2%, where ¥, = the value of y at 2X
2 X
ie, ¥, —~e k
The correspending hammer wave is {(from Fig. 7}
X

r(Y -y +r¥ (l—a_ &

X ry X
=r2¥l—2r)— (Y + YV, —1r¥Y)e "} + e i)
Reflaction of this hammer wave can similarly be shown to cause a
wave during the period 4X to 6X such that

*
Y= Y2 — 1) 4 (Ve r V(2 1)l *—

r _x
~p Y Y0 —rhae™ & o (26)

together with a term

r? x* . .. .
—— Yx% = % which can be shown to be neglizible in
2k®

all practical cases.
Y, = the value of y-at 4X and the origin is at 4X.

. . N . .
Negiecting terms involving —i;m and higher powers, it is thus found

From 6X to 8X

— P Y3 —3r 418 + (Vo—r¥(@—3r + 9} " §

x
“EYe+ Vi VA= 3 £ R @7)
From 8X to 10X
¥ =rY(4 —bér + 4r2 —1r? 4
(Y — Y (4 — br = 4r? e 9 " F

. X

— Yy + ¥y £ Yy b Y (L —6r + 4r®— 1) Jue”
................................................... (28)

From 10X to 12X
vy =r¥Y(5 — 10r 4 10r? — 5r® 4 r¥) +

X
+{Y, —r ¥ (5-—10r + 10r? — 51 4 1) }¢ T fF—

X

~HYu+ Yob Yook ¥y Y(U— 100 £100% — 509 4 r¥jae Tk

civeneen(29)
From 12X 1o 14X
¥ = r¥(6 — 15r + 20r® — 151° 4 61! - r%) -

-+ etc.

and so on in an obvious sequence.

From the previous reasoning, the shaded areas (in Figs, 6 and
7y which represent the integrals of equations (22) and {24), represent
the compression of the padding, and hence at any point x, the ordinate
(¥ —¥) is proportional o the shaded area up to point x.

In the case of a very short hammer, from Fig, 8, the compression
of the padding (represented by the shaded area} is

Yx—j{lur)ydx ——‘[/‘;%’ dx dx

%‘é dx dx representing the area between the curve (I —T)y,
and the lower side of the shaded area. X represents a unit value of
%, and is inserted to preserve the correct dimensions for the integral.
1t should be noted that y is now measured upwards from the bottom
of the diagram.
The relationship

Yx——ﬁl—r)ydx—l[% dx dx = Ry

now holds, giving

@y  fl—=rNdy Tt
dng( % )dx+Xky"‘°
L T

~

1—
Putting =% and <% =
(D2 4 @D - B) % 5 0 cereiecriiniicisiene st (31)

The values of a and b are so related in the cases relevant to pile
driving, that & > }e® and under these conditions the solution of
equation {31) is

v =Ke fax oo B i (32}
where fl = /b — ia?
and K = Y

7
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The values given by equations (25}, (26), (27), (28), €Ic., can be shown
to give a smooth curve, whose form is almost indistinguishable from
that of one long, sweeping curve for all simultanecus values of r,
k and x, which are relevant to the paper; and a comparison of the
results given by these equations (25), (26), {27), etc., shows a close
correspondence with the values given by equation (32).

For the vemainder of the work, then, equation (32) will
be taken as giving the initial part of the wawve form, for a short
hammer striking a long cushioned pile. This wave form is
seen tn Fig. 8.

(v) Waning pressure of contact.

At the value if x for which equation (32) gives a maximum value
1o y, the compression of the padding (which, from the derivation of
equation (32) is proportional to ¥) becomes 2 maximurmn also. For
rope, sawdust, shavings, etc., which are commonly used as * padding,”
it might be expected that the padding would recover relatively so
slowly from each impactive compression, that £ could be taken as 0.
Equation (32) therefore does not apply beyond the point of maximum
compression ; but this equation may be used to derive the correct
one. It is more instructive, however, 1o proceed as follows.

Consider a hammer and cushioned long pile at any stage beyond
the stage of maximum compression in the packing (beyond which
stage, the packing is assumed to remain of invariable thickness,
since & = 0}, Ar first, consider the hammer to act as a unit (so that
all parrs of it move with the same velocity}, )

-

|, Cushigned

iWanmg Pressure
T Reducron in Hommer Velcity

wgnal  Velott
Hammer

of

O
ru

ry-z)
Fr)ty-2)

New Origin z
Figs. 8, 9, and 10,

‘Then, measuring y as for equation (31), if ¥ equals the velocity

of both hammer and head of pile, —% represents the rate of

change of velocity of the hammer, and %{ represents the rate of

change of velocity of the pile head,

B N Y )
Therefore, ol e W7
o
whence, y=Fe @A=D& (33}

where ¥ is a constant.

2r
Thus at time 2.X after v has the value ¥, ¥ has the vaiue ¥ (e 1— r)

(- )
and at time 4X after, f\e¢ 1—1

2r s

and at time 6X after, j‘( e V==
Comparing with the results in section III (5) ii., it is seen that the

_2r

value ¢ 1—F corresponds with (1 — 2r} for the stepped curve
of that section. The difference between these values is slight for
the practical values of r (which are not greater than about 0.13).
Acrtualiy no steps occur, as might be expected from section IIT () ii,
as initial pulsations existing in the hammer at the time the action
begins just cancel them out. This could be shown by proceeding
viz equation (32), instead of as above. Taking x = 0 where the

curve begins and writing » as the equivalent value of to

r
1—
give a curve passing down the centres of the hypothetical steps, the
equation

_xx ‘
y = Fe X . s s (34)
thus represents the * waning curve” form, where

r=4Floge {l—2r/(1 1)} .o (35}
and ¥ is a constant equal to the maximum value of y in equation
32, The * waning curve” gives the form of wave generally
applicable after the padding has reached its maximum com-
pression, in the case of a short hammer striking a long pile.
The form of wave so far deduced is thus represented in Fig. 9,
which also shows between the hatched lines, the progressive
curve of reduction tn welocity of the hammer,

{vi) Loss of amplitude during progress of wave.

So far, consideration has centred round the wave form being
propagated along the pile from the head of the pile, As the propagared
wave passes along the pile it progressively loses amplitude. In
what foliows, the value of a unit impulse which has travelled for a
time corresponding to x on the wave diagram will be considered to

X

have a value ¢ X where ¢ is the base of the Naperian logarithms

" and Y is a constant. [t should be noted that the value of the impulse

10 be taken is its stress value ; and therefore, for exampie, if In its
passage along the pile a compression wave encounters a tension
wave passing along the pile in the opposite direction, the loss in
propagation at any point will be proportional to the residual stress.
The actual calculation of propagation losses is thus complicated,
and an approximate solution: only will be adopted, which assumes
the loss to be always proportional to the amplitude of the wave under
consideration. The final results which concern this paper will then
be nearly consistent, provided the value of i is small, or passing
waves of opposite stress are considerably different in absclute value

(vii) Action ar-the toe of a parallel pile,

The ordinate ¥ of the wave diagram corresponds with a definite
stress existing in the pile head, and this stress would be reduced
in value by propagation to the toe of the pile. At the toe of the
pile a stress due to resistance of the ground to driving is introduced,
of value, say, g titnes the toe stress corresponding with ¥. It should
be obvious that the ground resistance is thus defined as a magnitude
purely relative as far as it concerns the wave diagram.

A compression impulse of instantaneous value 7, on reaching
the roe of the pile, and being reflected as a compression impulse of
value 1 and opposite sense of initial movement, entails a stress impulse
at the toe of the pile, corresponding with {a).destroying the original
impulse and (b) creating an opposite one, l.e., corresponding with
an impulse of 27 from the toe of the pile. At the same time, the toe
of the pile suffers ne movement.

If the original impulse ¢ meets with no resistance from the toe
of the pile and thus becomes reflected as a tension impuise ¢ having
initial movements in the same sense as the original impulse had, then
during the process of reflection the toe of the pile is moving forward
with a velocity corresponding with an impulse of 27.

Thus, writing y as an instantaneous compression value
of the wave diagram, and qY as corresponding with the ground
resistance (&) where 2y B> qY no penetration of the pile toe
occurs, and the reflected wave is a compression wave of value
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v, (B) Where 2y > qY > y, penefration proceeds at a velocity
corresponding with (2v —qY), and the reflected wave is a

compression one of walue (qY —~3). () Wherey > ¢¥,
penetration proceeds at a velocity corvesponding with (2y —- g Y),
and the reflected wave is a tension one of value (y —g¥).

(viii} Reflected waves during cushioning.

Where the packing on top of the pile is liberal in amount, waves
reflected from the toe of the pile may reach the head before cushioning
{as given by equation 32) is complete. Calling the instantaneous
value of the reflected wave z (positive values applying fo a tension
wave, which impels the head of the pile to greater forward maove-
ment) the compression of the padding becomes (see Fig. 10}

Constant + Yx —ﬁl— r){y - 2)dx~ jf 113;_;3) dxdx —‘—/; dx

which equals % (y —2) . .
(V—23) being the erdinate representing the relative velocity of the pile
head and hawmmer.

Hence in lien of equation (31), the following is obtained :
(D 4 aD 4+ B) (y—m 2) = — %Dz

Allowing for losses in propagation, z will be of the form
— dax
z =K sin fx -+ Constant
whence the solution of equation (36) can be shown to be of the form

ax — fax
sin(ffx + 86 —Kse xeos (fx +0)

y=K,e

where K, K,, £ and { are constants,
The solution in this form is tedious in application, bur the general
form of equation is readily solved for practical purposes by a closely
approximate arithmetical methed.
— dax
{Put ¥ =y, —3y, + 2z where v; = Ke sin ﬁx as in section
111 (&) iv, and then

g (I —Tlys—r %dx:k D v

which allows arithmetic calculation in steps).

{x) Reflected wauves during waning contact.

Reflected waves always affect the curve of waning contact to

some degree. Using the same ideas of y as in Section 111 (&) v and
of z as in the last section, the rate of change of velocity of the piie

head, due to compression in the padding is (J’—;i

whence as in section III (&) v
dy _ y— =z

———=

dx X

or Dy ﬁm%(ywz)

a differential equation: readily solved arithmetically or mechanically.
If at any point Dy becomes so great that the compression in the
pa;idmg exceeds its former maximum value, equation (36) then
rules.

{(xt) Multiple impact.

The values of z may be such that the walue of Dy in
equdtion (39) reaches zero (just as z reaches v). If x still
incregses, the pile head fravels with velocity 5, and the hammer
separates from the padding, travelling onwards with a velocity
2y (comstant for all practical purposes) which equals that
attained just as separation occurred, When a point is reached
where  fzdx equals z\x (x being zero where separation begins)
a wew contact begins, with the initial value of » equal to 2,
and from then onwards
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Cushionedi mpact +#+-Wanin Separation Wanirg Pressurs Waning Pressure et
ET‘ i 9 ¥ 9

{ Pressure SegarJJEion
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Origuagl Velodiry of |

| Velocity of
Hammer File Heao

Velagity cf} lVetorily of E
Pile Head l Hammer } E

( | (1-r {t-r} (i-n)
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L //////////////7//7////\—-—--. .
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Fig. 11.—Wave Diagram for L = 20, v = 0.13, k = 20, 1 = 3§,
g = O.I,; 4iae., a-20 ft. Pie, well cushioned, a light hammer, and
medium Driving.

Dy = -—:;2, {y — &) as before.

Suchk a case occurs twice in Fig. 11.
(xit) The general wave form.

Plotting the appropriate walues of y, y/(1 —1), or
{v 4+ r5/(1 — 1)} for the various cases so far considered, the
general wave form is obtained in Fig. 11. This figure repre-
sents a particular case only, and other cases may be quite
different in detail ; but the two main features exist
(@) the cushioned blow.
{(B) the waning contact,
(xiii) Cushioning expressed mathematically.
The velocity produced in the pife equals
g x Force acting in 1b.
pv
pV being the mass of the pile affected per second.
Hence the total relative velocity produced is
¢ X Force acting in 1b.
{1—rpV
If G is the stiffness of the padding in lb. per in, compression, the
force acting is 12G x (compression in feet).

Now, the relation expressed in equation (22), and in many of the
following equations is

Compression: = % times velocity being produced
and the reasoning immediately above gives

ft. per sec.

fr. per sec.

L {l—1pV . .
Compression == 256 % velocity being produced,
L d=mpV
hence % = TZEG s {40)

which has the dimensions of tine.

Consider a hammer of infinire length striking a padded pile
of infinite length, with a velocity v ft. per sec. In infinite time the
hatched part ogf Fig. 6 has an area

x

, Y b gy = Yk

corresponding to an actual compression of vk feet, when the total
velocity being produced is v ft. per sec.
Therefore, suppose the maximum value of ¥ from cquation (32),
or the maximum value of (y — 2) from equation {36) equals QY ;
then at the times corresponding, the compression of the padding is
Q Yvfeer.
Hence, if ¢ inches is the actual maximum compression of the padding

C oz AZOQEBY et i (41)
or ¢ =962 Qhy/h i (42}
and QF thus represents the time taken to reach a compression €
inches if compression proceeds at a uniform velocity of v ft. per
sec,

The physical significance of k s thus the time required, if com-
pression were to occur at a welocity of v fI. per second, to compress the
padding o an ideally impactive value (which value i the valug of the
compresiive stress voacked in a perfect uncushioned impacr) ; and k15
thus proportional to a certafn extent to the compressibility of the packing.
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{xiv) Compressive stress during driving.

The following will be assumed :

Weight of concrete pile
Weight of hammer
Young’s modulus-~concrete
Young’s modulus—hammer
Whence velocity of sound in concrete
velocity of sound in hammer
giving o= L350 R
1Itt; the area of the concrete pile be Asq. in. the weight per ft. run in
3 B
hence from equation (40)
_ (l—r)x L04A x 8,800
- 12 3 322G

150 Ib. per c. ft
460 lb. per ¢. ft.
2,500,000 1b, per sq. in,
17,000,000 lb, per sq. in,

2,800 ft. per sec.
13,200 ft. per sec.

I

i

Pk

A
=237(1—r) T e (43)
and from equation (41)

C
k= 120v

cG . , . :
But - equals the maximum compressive stress I attained in the

head of the pile during impact and v = 8.02+/h
hence F= 284 1—1)Qv (Ib. per sq. in} ...

ie., T = 2,280 1 — r)Q+/h {Ib. per sq. in.)

More generally, and from first principles
Velocity being produced in pile head  F
Y I U
whence, T == 284 % Velocity being produced in pile head
= 2,280 (1 — 1) Q4/n, as before.

The intensity of stress set up in the head of the pile, due
to impact of the hammer thus varies as the square root of the
Jall of the hammer, and is readily calculated, when Q is
known ; and Q can be shown to vary slowly with variations
of ¢, the compression of the padding.

(4

Toeof plle  Head of pite

Joral compressive

Driving resistance
- Reflecred wave

Fig, 12.

The initial impulse reflected from the tce of the pile in driving is
always compressive, and in Fig. 12, such a compressive impulse is
shown with its maximum value coincident wirth the maximum value
of the outgoing wave from the pile head, Due account should be
taken of the losses in propagation, ir: calculating this absolute maxi-
mum value of the compressive stress. The compressive stress at
the head, however, wili usually be more severe on the pile, as it may
not be so evenly distributed over the pile cross section, and the
longitudinal reinforcement is there ineffective.

(xv) Tensile stress during driving.

In many cases the combined actions of an outgoing com-
pressive wave and a returning lensile wawe produce a tension
in the pile, The net tension values may be high, and will be
discussed in section 111 (&) iv.

(xvi) Driving resistance.

Substituting the value g [of section 111 (b) vii] instead of Q in
equation (45), the equivalent value at the head of the pile of the
driving resistance, is "

2,280 (1—r) g+/h Ib.

With a pile of length L feet, the factor &
allows for the loss in propagation along the pile whence, in lb.

oz
R=¢ ( vt ) % 2,280 (1—1) gv/B.oen.... {46)
a formula giving the driving resistance, for a given value of q.

(xvii) Set per blow.

For a given value of g, and known values of r, &, L, and I, the
exact wave form may be plotted as in Fig. 11.  The shaded area in
that figure represents the product of time with haif the velocity of

i times the product of x and

the value 1 (2y — g¥") of section TII (&) vii.

. 1
the toe-~or more precisely (__:__;

When due allowance has been made for propagation
losses, the penetration of the toe per blow is thus represented

L
+ M(Xv—t)
by 2 X (1 — 1) x Shaded arca of Fig. 11 e

(the positive correction for propagation losses being made since
Fig. 11 already gives a double negative correction, in order to make
the values of the reflected waves applicable to the head of the pile}.

After the end of the penetration due to one hammer blow, the
toe of the pile exerts an upward force on the foundations, 'This
force can never be greater than # the driving resistance and may be
practically ignored in the case of the set because if the toe does rise

- owing to it (thereby reducing the set for that biow} the first parc of

the penetration under the next blow is much easier and an approxi-
mate compensation is introduced.

When piles are driven to rock, through soft strata, the
last blow of the hammer may thus cause the toe of the pile
to separate a little from its foundation, and the author therefore
considers that two or three lght taps with the hammer should
be used to complete driving under such conditions.

{xviit) The effectiveness of the hammer

It is noted (see section III (b) iv) that
o l=r b= —
“ETE T xR
and f} = b —{a®
and for constant values of the maximum value of y from equation (32)
a (1 —r)2x '
= COMSIANL = St

. . r
Also, from equations (33), (34) and (35}, if T=1% = ¢onstant,

the equation for the waning curve is practically unvaried.

Thus & o« 1—1) .
in order to give an unvarying waning curve starting from the same
value ; and for this condition, the value of x for which cushioning

. . . . [ . i
reaches its rmaximum point varies as "ﬂ“, 1.e., varies as 2 and

hence is constant, while % is also adjusted to suit the above equations
by being simultaneously varied in the ratio (1 --r), Now, for the
same stiffness of the padding, and the samne pile, equation {40) shows
that % varies as (1 — ). Therefore, for the same pile, with padding
stiffness unaltered, and different hammers of such size that

r
{1~ 1)
are practically similar, and the sets for the same driving resistances
are equal for all the hammers,

T .
and hence W_»—rj is the same for all, the wave forms
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r .
Now I(1 — ) lgw
-
oW
1.04A
T1.5W
r being equal to _-—P——,
¢w +p

and hence, for all practical purposes, where paddings have the
same Young's modulus, the ratio (%;) f.e. the weight of

hammer per square inch of pile cross section, determines the
wave form, and hence the set, and the maximum stresses sel
up tn the pile during driving.

(xix) Corrections for dolly.

Adequate consideration of the phenomena connected with a
dolly, helmet or cap, would require far more space than can be
devoted here.

Figure 13 shows diagrammatically a driving cap of form between
that of two types commonly employed. The timber striking piece
acts approximately as an equivalent part of the pile, and the metal
section as part of the monkey. If ¢ for the striking piece be zero,
the average velocity of the monkey plus helmer, as a unit, after

impact from the monkey, is times the welocity of the

M S
M 4 D
monkey before impact (D being the weight of the helmet and dolly
and M being the weight of the monkey alone).  Actually, oscillations
occur in the helmet and dolly, which are superimposed on the wave
forms already considered, but the following zpproxitnate rules may
be applied. (See Fig. 13}

{a) The equivalent height of free fall of the hammer
{which is consideved as being the helmet, dolly and monkey
acting as a unit) is

2

M
h=( _ " h
<M+D>
%
\ M
£, h=0. b
ie 075<M—E—D H

where H f1. s the actual drop of the monkey worked direct
from a friction winch.

(B) The weight per ft. run of the hammer (w Ib. per
ft.), equals the weight per foot run of the monkey {m lb. per
feot), and the length of the hammer | ft. should be taken as

............... e (48)

! (1\%-9») feet, the monkey alone being I fi. long.

The equivalent length of a pile of actual length L feet is
L=L 424 i (s50)
A feet being the length of the striking piece (Fig. 13).

{xx} Driving resistance supplied by side friction.

When an attempt is made to modify the previous theory to
aflow for side friction, many difficultics are encountered, and an
approximate solution only is practically possibie.

1t can be shown that the line CB changes approximately to the
dotted line AB of Fig. 11, when side friction is encountered for the
full length of the pile and this friction increases stightly towards the
bottom of the pile. Equation (36) thus becomes

(Dt + abd - b) (y — 2) = _Ti Dz

where x is a constant

and the solution of this is

ax R P24
(3~ z) == Ke sin ( Bz — @) 4 B {52)
where sin ¢ = fbﬁ—

The maximum value of (¥ ~ z)—which practicaily gives the maximum
value of the compression on the pile head~—is rarely more than 5%
in excess of the corresponding value of (y — z) in equation (36}
1t is then noted
(o) Of the total energy reaching the pile head, part is expended in
driving the pile forward, part in propagation losses, part in compres-
sing the pile, and part in uselessly setting clinging earth in motion.
(ﬁ) Comparing propagation losses when the driving resistance is
encountered at the point of the pile, and when encountered at the
sides, a small decrease in the losses might be expected for the latter
case ; but actually, owing to the upper sections of the pile tending
to move faster than the toe for the corresponding portions of most
waves, temporary locked up stresses occur. An increase of the
propagation losses might therefore be expected.
() The compression losses in the pile are not large, and would re-
main practically unaitered, any change being a reduction.
(8) Goodrich's investigations into timber piles, when applied to
concrete ones, indicate that clinging earth is uniikely to increase
the weight of any concrete pile cross section by more than t5%.
Assuming added weight on any cross section to absorb velocity,
but not 1o return it, by analogy with the impact equation (18) for g = 0,
a loss of not more than 15% of the energy reaching the pile could
be expected, .

By taking account of the modified cushion losses (by
means of equation 52) and of the other factors enumerated
above, an approximate solution is thus obtained. The
driving resistance calculated as applying to the toe of the pile
is multiplied by a factor N, fo convert to the dviving resistance
where side friction is encountered. Based on the work de-

scribed in section 111 (c¢) ii, the factor may be given as :

Weight M
_i
A

-
Weight D

L
'Q_Jl

Where the supporting strata are fairly uniform for the
full depth of penetration (d feet, of Fig. r3),

N = (1—0.3% ........... e (53)

Where the main supporting strata are in the lower half
of the length d feer,

N = (1 wo.z_fg ........ oo {(54)

(xxi) Tapered piles. , .
The action in tapered piles is involved, and would reguire
a special investigation ; but general comsiderations woul

indicate that if the area of cross section be assumed A square
tnches so that a parallel pile of A square inches cross sectionql




area would be of the same tofal weight as the tapered pile, the
Sinal relation between set and driving resistance will not be far
out.

{c) Application of Theory.

(i} Calculation of curves, The mathematical cal-
culation of the curves so far described was found tedious,
and arithmetical methods prove faster; but by far the
fastest method of attack was a mechanical method.

The author designed and constructed a curve drawing
machine, which considering all factors involved, saved some
weeks of work, and allowed results to be obtained with a
minimum poessibility of practical error.

A diagram of the machine is given in Fig. 14.

c .
L egend:-
ﬂk ép JE o Pin joint
—=Sliding connection
*\z + fixed to base
M -] 4
G ] H

b £ Direction of translation of dase

Fig. x4.—Diagram illustrating Principle of Curve Drawing Machine

ABCD is a pin jointed paralielogram attached o a base which
causes the motions of pointers ¢ and A 10 be drawn by a pen at H,
te a smaller verrical scale corresponding to propagation losses,
The base moves sideways against a straight edge, and M is moved
te follow a curve already delineated.

W is & sharp edged heavy wheel, which by virtue of its weight
and setting, compels the arm ¥'Z to slide always in the direction YZ,
as the base is translated. When G and H become level Y.2 is moved
by the slide KL, into a position parallel to the direction of trans-
lation of the base, and & pen at ¥ touches the pen at /. Thus the
inclination of ¥Z 1o the direction of translation is proportional to
the difference in position of & and H. The distance GA is pro-
portionai to the driving resistance being considered, and diagrams
are drawn with basc lines under the zero position of G. Thus, if
M follows a curve x, ¥ corresponding to the wave form leaving the
pile head, the actual movement of M corresponds with that of a re-
flected wave uncorrected for propagation losses, and the movement
of H is similar, but is corrected for these losses, and the pen at H
draws the curve &, 2. The pen at ¥ obviously draws a curve such
that its slope is proportional to the difference in level of G and H
and thus equation (39) is plotted by this pen.

Thus, provided the curve for cushioned impact is first drawn for
M 10 follow, the machine draws the remainder, with M following
a machine~drawn curve in all parts except those corresponding to
cushioned impact.

P is a specially constructed small planimeter which can be set
10 operate so that, if set at zero where the hammer leaves the piie,
it returns to zero where contact begins again ; and this latter point
is thus readily noted during operation of the machine.

The average time taken to draw a curve completely, by means
of the machine described above, was fess than 1o minutes. Two
views of the machine arc shown. Fig. 15 shows it completely set
up, and Fig. 16 shows it in a different position, with the wheel W
and its attachments lifted out and placed to the right. Several
pointers are shown corresponding with different driving resistances,
A standard planimeter is aiso shown in these views, set so as to measure
automatically the area giving the set per blow, but, as these areas
were all checked, it was found quicker to do all the planimeter work
separately.

All adjustments to allow for different length piles, different
vaiues of r, etc., were made into carefulty set centres, which allowed
accurate repeated setfings.

CONCRETE PILE FORMULAE-~[saacs. 3re

In constructing the machine, care was tzken in all details re-
quiring accuracy, and the writer believes that errors due to the
machine alone are wo stnall to be of any account.

: Fig. 15.~Curve Drawing Machine Complately Assembled.
Fig. 16, —~Showing Curve Drawing Unit Separate from Machine.

(ii) Graphs for practical application.

The 192 combinations possible with the following
values of the variables were investigated with the curve
drawing machine

Vaiues of r:o.07, 0.10 and 0,13

Values of %:4.00, 6.67, 11.11, and 20.00

Values of L : 20, 30, 45 and 60

Values of ¢:0.45, 0.30, 0.18 and .10
The value of 1 was taken as 3%, and propagation losses were
assumed such that an impulse travelling 60 ft. through a
pile would be reduced to 75%, of its original value. This
assumption is discussed in section III (¢) v.

From the results the graphs of Figs. 17, 18, and 19
were drawn. .

Fig. 17 relates the set per blow to the compressive stress
corresponding with the pile point driving resistance, for various
values of the compression of the cushion.

Fig. 18 relates the weight of hammer per square inch of
pile cross section and compressive stress set up in the pile head
(for sets above the limit mentioned in the next sub-section)

Fig. 19 gives the percentage (p) of steel required in the
upper two~thirds of the pile length, for various wvalues of the
driving vesistance, length of pile, and weight of the hammer
per square inch of pile cross section. The steel is required
to prevent opening of cracks in the pile due to tension as
mentioned in section I () xv,

{1ii) Maximum compressive stress in the pile.

Provided the driving resistance is not more than § of
the compressive value for the head, given in Fig. 17, this
value is the criterion for strength of the pile in driving.
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For very hard driving, with the shorter piles, the region near
the toe of the pile becomes stressed more than the head of the
pile. (See section III () xiv). ,

An indefinitely repeated stress of a little mote than 75%
of the ultimate strength of concrete will cause failure. In
practice there will be a certain amount of uneven distribution
of stress over the pile head, but the number of repetitions
of stress will not be great, and except for hard driving the
stress will only become serious for the last few blows. The
effective strength of the concrete in the head might thus be as-
sumed about 80%, of the ultimaie strength for ordinary driving,
and possibly down to about 65%, for very hard driving. As
the maximum safe drop of the hammer increases as the square
of the strength.of the concrete in the pile, high strength concrete
shows a marked advantage.

(iv) Stress in fensile reinforcement.

The maximum tension exists for a few thousandths of
a second only, during which period a stress even somewhat
beyond the yield point of the steel would be expected to
cause very little actual yielding. Small scale experiments
by the author indicate that very little yielding does take place
under such conditions. A rapidly applied and rapidly
removed stress 25% in excess of the yield point stress is
therefore assumed no more severe than a slowly applied
yield pointstress. A small amount of resilience in the helmet
cushion will reduce the tensile stress, as will also slight
yielding under stress, and the presence of surrounding con-
crete. Large tensile stresses are always followed by large
compressive stresses which would nullify any practical
stretch in the steel, The steel itself, in propagating com-
pression waves, tends to propagate these more rapidly thas
the concrete and hence bhurs the waves and reduces the
maximum values. In view of all these factors, the author
would set the danger point of theoretical stress for mild steel
at 56,000 Ib. per sq. in. ; and since the stress in the steel is
dependent on that in the concrete, and the concrete is
assumed never to reach an average of more than 809% of
its ultimate strength, a factor of safety of 1} for the steel
should suffice. A theoretical working stress of 45,000 Ib.
per sq. in. was therefore adopted for calculating the steel
percentages.  The values apply for 3,000 Ib. per sq. in. con-
crete, and may be adjusted proportionally for other strengths
(higher stremgths requiring higher percentages). The lower
lizz?’ for this percentage of reinforcement should be about
14%.

(v} Losses in propagation,

There is no definite information regarding propagation
losses. On the one hand, phenomena such as the trans-
mission of vibrations through buildings and even through
fairly soft earth show that the damping cannot be excessive ;
and on the other hand the relative freedom from impact
in the main members of concrete bridges, and the absence
of “ ring > in concrete when struck show that the damping is
of practical magnitude. In piles, the propagation losses
correspond with a rapid shortening of the pile each blow,
and a slow recovery., The author’s test for propagation
losses, is that the results for long piles and large sets by
the new theory should approximate to the results given
by existing formulae. If such is the case, the results for
the shorter piles and heavier loads should be little affected
by an error in the assumed propagation losses.

The comparisons in Table III are made for 2,400 Ib.
per sq. in. developed in the pile head during driving, and
N taken as (I —0.2x §) = 0.85, They show that the
?ssumptions made regarding propagation losses cannot be
ar out.

TABLE IIL

18 in. X 18 in. Concrete Piles, Factor of Safety 4.
Helmet Weight 600 b,

3 ton monkey, 5 ft. | 4 ton monkey, 4 ft.
Method free fall; 0.625 in. free fall; o0.75 in.
or -set per blow set per blow
Formula
45 ft. pile | 6o ft. pite | 45 ft. pile | 60 ft. pile
Author’s ... .| 194 tons | 144 tons | 194 tons | 14 tons
Wellington el 274 . 2% 27 s 27
G()_W e IS e 2 » 19 5 ET S
Brix el I8 4, 124 15 » 134 5
Eytelwein ... 21k, 178 4 238 5 19
Hiley ee wo] 1BE 5% 5 208 7 =
“Hiley 37 cd 1T 4 » 19 » 6,

The values given above were obtained from Figures
3, 4, I7 and 18,

(vi) A Relation betaseen Driving Resistance and Bearing
Resistance. '

That it is almost impossible to develop a relationship
between driving and bearing resistances, unless the soil
conditions are well known, may be judged from the in-
formation given in * Jacoby and Davis,” articles 34 and 35,
bur a rough relationship may be struck as follows.

Wellington’s timber pile formula is reckoned reliable
for bearing resistances. Goodrich’s timber pile formula
was closely investigated by its author* for driving re-
sistances. A comparison of the two formulae for a factor
of safety of 4 gives coefficients of M# for safe loads, as in

Table IV.
TABLE 1V.
Values of Set per blow
Yin.| #in. | 3in, | rin. |13 in) 2in. | 3in.
Wellington i 2.40 | 2.00] 171} 1.50| .20} 10O | O.75
Goodrichk 4 3.33| 1.67] 1.11| 0.83 | 0.56 : 0.42| 0.28
. Wellington
Ratio “Goodrich 0,72 1.20| 1.54 | 1.80| 2.1 | 2.40( 2.7C
__36s
8 41
Neither Wellington’s nor Goodrich’s formula is

considered reliable below about § in. set. Just below } in.
set the values given by them become coincident, and this
is confirmatory. Goodrich’s formula being designed for a
restrained fall of 15 ft. for the monkey, the values are
assumed to apply for that drop, and for a monkey of 2,000 Ib.
weight (corresponding, say, with a softwood pile 50 ft. long
and weighing 40 lb. per ft.). Under such conditions
Goodrich’s formula for & in. set gives R = 200,000 [b.
Assuming somewhat less increase tn friction per square
foot for concrete piles and remembering the Wellington formulae
for drop hammers and steam hammers, the author proposes
the following formulae (which include their own factors of
ignorance).
U 3
For drop hammers : _i = mm—En
1+ 500a

............ (55)

s Transactions of the American Society of Civil Enginecrs, Vol. 48, p. 180, August,
1982,
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For S.A. steam hammers ; —g S S (56)
R
T+ 15004
For ID.A. steam hammers : g S S (572
., R
L+ 3505

where o tnches is the perimeter of the pile and no value of

L is taken less than 1. The formulae should not be used unless

R
it 15 known that the earth will cohere moderately well round
the piles. Pending further investigation they could be used for
(1) damp, but not saturated, fine and very fine sands, (2) soft
clav, (3) soft clay and fine or medium sand mixtures, including
stiff muds, and damp, but not saturated, silts ; but they would
be inapplicable for (1) dry, and saturated sands of all sizes,
(2) coarse sand, (3) gravel, {4} stiff and medium clays, (5)
stiff and medium clays combined with sand or gravel, If
the driving resistance 1s found for the firsi few blows after a
period of rest, this vesistance will be close to the bearing re-
sistance, and the formulae are inapplicable.  In stiff and medium
clays, bearing resistance may be reduced by water percolating
down the sides of piles.

Assuming a softwood pile as above, with d = 35 ft.
and ¢ = 40 in., formula (55) becomes

which is safer than the ratios given in the above

3.6s
s--1
table.

Where possible, tests should be made after a period of rest
as well as at the end of driving, as the tesis after rest more
nearly give the bearing resistance, and a true relationship
is then established between driving resistance and bearing
resistance, and this may be applied to ovdinary driving re-
sults,

(vil) Measurement and effect of wvariables.

A little care in measurement will have to be taken in
finding the exact drop of the monkey for the test blows.
The set per blow should be averaged for at least § blows;
and when testing after & period of rest two or three sets of
3 to § blows each should be taken to obtain an estimate of
the set per blow for the first blow after rest. The impactive
compression of dolly and cushion may require special means
of measurement, attd (as uneven impact over a struck surface
corresponds with a non-restitutive compression) the value of
¢ should be taken not less than

¢ == measured compression 4 0.1 il ......... (58)

A heavy monkey is advantageous because :

(1) An Increase in the weight of the monkey causes
a greater proportional increase in the set, for the same
maximum compression developed in the pile head and the
larger sets can be more accurately measured.

(2) A heavy monkey involves less tensile stress in the
pile during driving.

Where possible the weight of the monkey should be not
less than 25 b, per sq. in. of the pile cross section, irrespectively
of the pile length, Very little is gained by tncreasing the weight
over 30 lb. per sq. in.

Vaiues of A4

Cushioning should not be much more than that neces-
sary to keep the pile head from breaking, as a large proportion
of lost energy for all sets consists of temporary compression
losses. For heavy hammers and very hard driving, losses
due to excessive cushioning are such that short piles suffer
Jess set per blow than piles of somewhat greater length.

IV, ConcLusion.

(a) Likely accuracy of results.—Frrors in measurement
of the conditions of driving may result in errors of abour -
15%. The author considers in view of the comparisons of
formulae given in sections III {¢) v and IV (c), and the
assumptions made in the varfous methods, that his own
method, including errors of measurement, should give
driving resistances with errors not greater than abour -
30%, and would allow a factor of ignorance of 1} in any
application of the method.
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Fig. 17.—~Graphs giving Driving Resistances for given Sets per Blow.

(b} Summary of formulae, and illustrative example :

The following formulae will enable all problems to be
attacked. (See Figs. 13, 17, 18, and 19.)

(Section III (b) xix) W=M+D ............... e (59)
u M 2
(SCCtiOnS 111 (b) Xix h = 0.75H (Wﬁ) ------ (60)
and I (8)) h = 0.76H (cos 8 e 0.1 sin 0) %

% Mﬁ%_D> ............ {61)
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Fig. 18.—Graph giving

(Sections II (8) and h = Actual fall x T\ITI {M 4+ Mean
III {b) xix)
net total steam pressure on
piston — Total friction} x

T —

for D.A. steam hammers.
(Sections IT () and h = {Actual fall — 2 in} X

and IIX (&) xix) M 2
X (m) ............ (63)
for S.A. steam hammers.
(Section IIT (B) xix) L =L -1 .iiiiiiiiiiinnnnnnn (50)

(Section III () xx) N = (14}.3%)

where the supporting strata are’

fairly uniform for the full depth
of penetration.

(Section TII (3) xx) N = ( 1 —.e.zmg>

where the main supporting strata
are in the lower half of the full
depth of penetration,

(Section III (¢) vi) %: S (5%)
Ly R
500d
for drop hammers.
. . U 3
(Section III {¢) vi) BT TR e (56)
1+ 1560a
for S.A. steam hammers. -
. . U 3
(Section III {¢) vi) T TTTTTIIIIT e (57}
R
!+ 2%60d

for D.A. steam hammers.

(Section IIY {¢) vii) ¢ = Measured compression of dolly

and cushion + 0.Ii0.......... 58
A = Area of pile (sq. in.)
D = Weight of dolly (Ib.)
d = Depth of pile toe below ground (ft.)
H == Restrained drop of monkey (ft.)
H = Rc(sg:rained oblique drop of monkey in raking guides
t.
I = Length of pile (ft.)
A = Length of timber striking piece (ft.)
M = Weight of monkey (Ib.) ’
R = Driving resistance (lb.)
s = Set per blow (in.)
g = Perimeter of pile (in.)
U = Bearing resistance (Ib.)
§ = Inclination of raking guides to vertical.

The following problem illustrates the application of
the above formuiae.

500
N

400 ﬁ
Ny
300

200 W
oo LLLULE

45 piles
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Fig. 19.—Giving Percentage of Tensile Reinforcement (p) for Piles

of 3,000 Ib! per sq. in. Concrete.

(For other Strengths of Concrete the Percentages are proportional to
the Strengths. For Piles longer than 4% ft., use Percentages as for
45 fr. Piles.)
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A 15 in, X 15 in. concrete pile, 40 ft. long, for a light
highway bridge over a river is driven 34 ft. into ground known
to be of rather soft soil for 20 ft. depth, with a thick layer
of stiff clay beneath. A $,400 Ib. drop hammer worked
direct from a friction winch with 7} fr. fall, gives a total
set for 5 blows, of 2§ inches. No record is kept of the
compression of cushion and dolly, but the concrete in the
pile head shows signs of weakness for the last blows, and is
thought to be of a compressive strength of 3,000 1b. per sq.
in, at the time of driving. The pile helmet weighs 450 1b.,
and has a timber striking piece 12 in. long.

From (59) W = 5,400 + 450 = §,850 (Ib.)
w3850

therefore — =

A 225 26.0

From (60) h =} x 7§ x (%) = 4.80 {ft.)
L)

and /b = 2.19
Assume maximum pile head stress equais 2,400 lb. per sq. in. (Se¢
section III {c¢} iii). "Then

2,400 _ 2,400

Vi = g = b0 (b, per ﬁq- in)
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W
From Fig. 18, for 1,100 b, per sq. in. and X == 26,0,
[+
— == 0,18,
Vi
The value of ~5e = 28 5 _L_ = 0.25

vh 5 2.19
From{6o), L. == 40 -} 1 = 41 (feer)

From Fig. 17, with T = 0,18 and 7 = 0,25
h
W _ R 1 _
for K =24 and L = 30, AVE X gf T 453
w
for ¢ =24, and L =45, ,, = 387
w
for 4+ =35 and L =30, = 745
w
for o =35 and L =45, = 645

From these values (and preferably others for v 17, and

A
= 60) an mterpolated value of 485 is found which is the value of

w
A\/" X = for L o= 41, &= 26.0, _\/s—}—l_ = .25, and *;7; = 0,18,
For the conditions of driving d == 34 and formmula (54) gives
34

The value of the driving resistance is thus
R = 225 % 2.19 X 485 X 0.83
= 198,000 lb.

The bulk of the support given to the pile comes from the clay and

hence formuia (5§5) is inapplicabie.

The following factors of ignorance are used
{1) for methed of calculation 1}
{2) for type of ground and loading 1%
and a margin of safety of 2 is added.

Thus the factor of safety to be used is
If X I % 2 = 3%

The safe bearing load of the pile is thus
"]_:9'_8“3'9:9_0_ = 52,800 lb.

= 23} tons.

{c) Comparison with other formulae.—A method similar
to that given above was used to find results for Table V.
The author’s modification of Hiley's formula in Table V con-
sists of putting the compression of the pile capping (see sub-
heading 1o of section IT (f)) as equal to the value found from
Fig, 18 and caleulating the energy lost from cushion compression
tndependently, The remaining energy is then put equal to Mh
in formula (20), and G of that formula is taken as due fo
Hiley's value of the pile compression alone (f.e., 1% times the
pile compression). The modification thus really consists of
modifving Hilev's value of C.

For the larger sets, the author’s values agree roughly
with the average values given by other formulae, and fairly
closely with the results given by the modified Hiley formula.
For large sets outside the vange of the graphs of Fig. 17 it 4s
suggested that the modified Hiley formula be used, as exami-
nation of the wawve forms for large sets inclines the writer fo
the opimion that the theory of this formula is then approxi-
mately correct.

It is noted from the following results that most of the
formulae are conservative for the smaller sets.

TABLE V.,
16 . X 16 in. Concrete Piles. Loads in tons for Factor of
Safety, 4, N taken 0.85, and D 400 [b.

4 ton monkey
4 fr. free fall

2 ton monkey
7 ft. free fall

Method or formula Length | Length | Length | Length
30 ft. 60 ft. 30 ft. 60 ft.

Set | Set | Set | Ser | Set | Set | Set [ Set
§in1 inf} inff in2 ing1 ing$ indx in,

Author’s (3,000 1b. con-

crete) ... .133.4] 10.8/36.6] 8.5|4B.0{17.8/36.3] 0.8
Aunthor’s (2,500 th, con-
crete) ... 28.5 9.7130.5] 7.6]|39.5|16.1]30.5] 9.2

Author’s modification of
Hiley (3,000 lb. con-

crete) ... 9.3 7.4 17.6 11.8
Author’s mod:ﬁcanon of

Hiley (2,500 1b. con-

crete) ... 8.7 6.9 15.9 16.7
Hiley v .o20% {14 [22 |104(43% 22820 |15
* Hiley x}“ or243 13837810 (3% |28 {23314
Brix . .f25%| 9&128%) obi32 |12 {20 |II
Eytelwem w30 |15 (36 112 |66 25 [45 |7

Author's applying formula
(55) (3,000 lb. concrete}| 33.4 13.8| 36.6 16.7| 48.9| 17.8| 36.3/ 18.3
Author’s applying formula)
(55) (2:500 Ib. concrete) 28.5} x2.6| 31.5| 15.5) 39.5| 16.1]| 31.5! 17.5
Wellington 30422 (334} 24 (35 124 |35 |24
Gow 119 118 [Ir | ok [36%{z25 |22 {17

Space will not permit a discussion of the apparent
correctness of the new theory when applied to timber piles,
but it can be shown that an approximation to the Goodrich
formula may be obtained. | Goodrich’s experimental re-
sults for the exact movenient of the pile head and hammer
base under 2 blow can be explained by the theory. A
certain periodic movement noted in these results can be
seen to coincide with the time taken for a wave to complete
a cycle in the pile, and the total observed time during which

the pile moves (averaging about ;ath second) appears in
agreement with the theory.

It may be objected that the author’s method cannot be
applied as rapidly as, for instance, the Wellington formula ;
but days may be spent in obtaining results by a static Ioading
test.  The few minutes extra which may be requived to apply
the author’s method to piles is well spent when it is remembered
that many variables are allowed for, and any of these separately
may largely influence the final result,

The new method cannot yet be taken as definitely
giving all that is desired. Many of the points demonstrated
give food for thought, and much investigation is still re-
quired. Particularly is this so in regard to the relationship
between driving resistance and bearing resistance for various
classes of ground, and the correfation of load tests with
pile formulae. Tests of long piles in various classes of
ground will do much towards defining the losses due to
propagation and clinging earth; and an endeavour should
be made to determine whether there is any factor which
reduces the tensile stress in driving below the values already
calculated. Further research may indicate an empirical
solution. Present knowledge, however, if intelligently
applied can be very useful, and in certain classes of ground
may serve nearly as well as a static load test.

The author wishes to thank Mr. W. D. Chapman,
M.C.E., M.LE.Aust., for information which led him to
make the investigations given above, and also for most
willingly reading through the manuscript of the paper.




Discussions & Communications.
HIGH EARTHEN DAMS.

With Particular Relationship to the Silvan Dam
_for Melbourne Water Supply.

By E, G. RitcHin.*

Reply by the Author to discussion.—Interesting contributions
by way of discussion of the above paper having been received and
published in THE JourNaL,T the author desires to answer questions
and Crificisms.

Mr. W. A, Robertson has made a valuable contribution by
way of discussion. The author agrees with him that an arriculated
concrete slab paving may in many cases be used with advantage on
the upstream siope of an embankment.

If the embankment be composed entirely of clean hard rocky

material not readily disturbed or disintegrated by water percolations,
a pzlivement on slope would be distinctly preferabie to a central core
wall.

Mr. Robertson has, however, voiced one great objection 1o this
form of construction, viz., insufficient fexibility to insure against
cracking under settlement conditions. In the author’s judgment,
this objection has strong applications where the embankment is of clay
or earth formation, as at Silvan. The paving is liable to be cracked
not only by settlement, but by thermal movements. Caving is likely
to occur partly as a result of subsidences beneath the concrete layer,
and also as & result of wave action.  If such a paving were not per-
fectly watertight, or if it became dislodged, the consequences would
not be serious in the case of a properly designed rock fill dam of hard
material, owing 10 the free draining nature of the material supporting
the paving.

The author would not care to rely on such a paving for water-
tightness, however carefully articulated. Where watertightness
is important, he considers the central core wall has marked superiority
for use in an embankment of earth or clay. Not only is the core wall
removed from the influences referred to, but it has the advantage of
dense material on the waterside to impede any flow of water which
may penetrate cracks or other imperfections in the concrete wall.

No matter how carefully and thoroughly an embankment is
consolidated, there is always vertical settlement. This is much
larger than horizontal movement in any weli-designed work. The
inclined paving would be subjected to all this vertical movement,
while the conventional core wall if founded, as it ought to be, on an
unyielding foundation would be subject only to horizonrtal move-
ment.

The dangers of slipping of upstream embankment, as referred
to by Mr. Robertson, are not often found in the case of properly
consoiidated earthen cmbankments, where suitable materials and
conservative slopes are used on = reasonably zood foundation. The
lowering of water level in a large reservoir, such as that at Silvan, is a
very gradual process, not amounting to more than an inch or two a
day and there is ample time for the saturated mazerial to drain out
ander these conditions.

One most necessary objective in the use of a central concrete
core wall is dense consolidation of the downstream filling to support
the pressure from the upstream side. This is where loose rock fill
fails in comparison with earth. ' Not only is it incapable of proper
compaction, particularly in the upper parts of the embankment, but,
on account of voids, its average weight is only some 709, of that of
consolidated earth. The liability of rock fill to yield by sliding on
the base is therefore greater than that of earth, where dimensions
are similar.

Information being asked re foundation conditions and difficulties,
it may be stated that the core wall for its whole length was founded
on solid stone into which excavations were carried at least 5 feet in
depth and in places degper.  Where the bottom of the trench showed
seamy rock, which it was thought advisable to grout, holes were drilled
in the foundations and piped, Afterwards cement grout was pumped
inn to refusat at 100 lb. per sq. inch,

Water was usually met with and dealt with as follows (-

A 4 ft. % 3 ft. sump was excavated on the downstream side of
the core wall about 4 feet below bottom level, Leaks from the rock
were piped into the sump and water pumped from the sump during
concreting, the water level in the sump being kept below concrete
level until the concrete had ser.

*See THE JOURNAL, Vol. z, No. 12, December, 1930, p. 455, for text of papet,

18ee THE JoUuRNAL, Vol. 3, No. 4, April, 1931, p. 133, and Vol. 3, No. 7, July,
1831, p. 245, for discussion,
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This sump was brought up together with the concrete pourings
until the level of pround water was reached. As the level of the
concrete was brought up, the sump was filled with packed stone.
Leak pipes were carried up through sump and concrete wall to surface
level for purposes of grouting. The packed stone was finally grouted,

In reply to Mr, East’s question regarding the regulator vaive, a
recent examination has disclosed that, after three years of continuons
use, there was not the slightest sign of wear or cavitation on either
bedy of valve or sector gate. During the whole of the three year
period, the gate was operated at partial cpening, discharging freely
nto air and under 9o to 98 feet head.

Mr. Sanders has advocated the use of dams without core walls,
The author does not desire to add to the chservations in his paper
dealing with this form of construction and points out that conven-
tionzl practice is, except perhaps in India, overwhelmingly on the
side of using a core wall.

The author desires to acknowledge the valuable contribution
to the discussion by Mr. A. E. Kelso, who has shown the importance
of consolidation and the desirability of regular tests to determine
the density and percentage of moisture of compacted filling. He has
also emphasised the great variability of borrow pit materials. This
was one of the considerations mentioned by the author in his paper,
when expressing some opposition to the practice of dispensing with
a core wall.

Mr, B. D. Shaw has, like Mr. Robertzon, espoused the use of
concrete paving on the upstream slope in preference to the use of
a core wall. The author’s reply to Mr. Robertsen covers the points
raised. He desires to emphasise the fact that the conventional
central core wall is protected from variations in temperature, whereas
concrete paving on rhe upstream face would be subject to the full
range of temperature between freezing and hot sunshine. The fact
of being alternately wet and drv would assist the various other
causes bringing about movement, with liability 10 cracking and
displacement of paving. On low dams, such as those quoted by
Mr. Shaw, there would be less danger than in the case of a high
dam, such as Silvan. .

Mr. Shaw states that very extensive tests have been carried out
at Hume Dam with the object of measuring the yield of a concrete
core wall supported on the points of a layer of stone, and that no yield
took place under full working load.

If no yield took place, the simplest explanation is probably that
the horizontal pressure did not act on the core wall. It is difficult
10 see how it could, since the dam has so far had only a miner depth
of impounded water opposed to it. It would add to the value of
Mr. Shaw’s statement if he would supply details of how the “ full
working Ioad > on the core wall was measured.

The concrete drainage slabs now being employed at Humes
details of which are given by Mr. Shaw, are in the author’s judgment
distinctly superior to the stone and gravel drainage layer formerly
used. They are really an application of the cellular form of con-
struction as used at Silvan.

The author, in conclusion, again thanks all those who have con-
tributed to the discussion.

CONTRIBUTED ARTICLES.

Members are reminded that the section of THE JOURNAL
headed Other Matters of Technical Interest is included with
the object of providing facilities for the publication of articles
of general engineering interest, i.., other than those ac-
tivities described in the papers which may be presented
before the, Institution.

Subjects suitable for publication might include general
descriptions of engineering works or details of novel or
improved methods of design or comstruction; the pre-
sentation of new formulae or original charts; the results
of research and special investigations ; photographic views
of matters of unusual or special interest; particulars of
special problems with the object of creating discussions ;
and so on.

Contributed articles of the nature referred to above
may be forwarded direct to Headguarters, or transmitted
through Division Secretaries or Division Correspondents
for submission to the Editor.




