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DVNAMIC BEHAVIOR OF BATTERED PILES
By Mohammed M. Ettouney,l M. ASCE
Jeffrey S. Janover2

2 |
INTRODUCTION 2 o

There are many different methods for the dynamic analysis‘of

‘vertical piles. These methods include lumped parameter-methods

(7), continuum methods (5), and finite element methods (1). How-
ever, none of these methods are applicable to the dynamic analysis

of battered piles. Poulos (8) discussed several different methods

)for the static analysis of battered piles, He concluded that the

axial and normal displacements of a ﬁile head are nearly independent
from the pile batter.

Poulo's results of reference (8) gives rise to the qﬁestion
of whether or not the dynamic behavior of batteréd piles is similar
to that of its static behavior in that its axial and normal dynamic
responses are independent from the pile batter. 1In order to answer
this question in an accurate, economical, and simple manner it
was decided to generalize the method of dynamic analyéis of vertical
piles introduced by Novak (5) such that it could handle the battered
piles case, | .

v The effects of pile battering on horizontal and vertical com-
pliances are studied for several cases. It is concluded that these
effects are more important in the dynamic case than that reported
for the static case. These large dynamic effects of pile battering

tend to decrease in the higher frequency range.
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THEORETICAL BACKXROUND ) , _ TN

The formulation of ‘the problem is siﬁilar to that of reference e
(5) in that it is based on evaluating the dynamic soil reactions on
the pile using the plane strain assumotion of reference (6). The
pile is simulafed as a set of beam elements. This approach makes
it possible to analyze any desired batter angle of the single pile

in a simple and economical way,

Dynamic Soil Reactions

It is assumed that the soil medium is linear isétropic with a
hysteretic type damping (4). The soil is extended to infinity in
the horizontal direction and is supvorted by either rigid or elastic
rock. The dynamic motion is assumed to be harmonic with a forcing
frequency .

Thé dynamic soil reactions on the pile may be easily determined
using the method of reference (5) and is based on the assumption
- that the soil layer is subdivided into several layers and that each
sublayer is vibrating in a plane strain fashion. This assumption =
was investigated in reference (5) for the case of single vertical ﬁg’h”
piles and later in reference (3) for the case of vertical pile | .
groups. Both references concluded that this is an accurate assump-
tion for dimensionless forcing frequencies higher than 0.3. Refer-
ence (5) suggested a corrective approach for lower frequencies and,
again, refefence (3) found later that this corrective approach is
fairly accurate for the case of vertical pile groups. Based on
these findingé, the plane strain assumption will be extended to
evaluate the dynamic soil reactions on battered piles. The dynamic
soil reactions may be evaluated for cylindrical, plane.strain,
horizontal soil.sﬁblaye;s, and the resulting expressions for vertical,
horizontal, rotational,vand.tbrsional séil springs; (Kv, Kh’ Kr’
Kt’ respectively), were obtained using reference (6).

The battered pile is assumed to have a circular cross section,
the diameter of which may be varied but is cOnstantIélong the
1'pile length.. The material of the pile is assumed to be linear an&
'isotropig~and the pile damping is assumed to be hystéretic} The

pile is assumed to be bonded completely to the soil around'it and is LE ’5
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simulated by a set of finite elements (2). These elements are based
on thé Engineering Theofy.of beams and can account for the shear
deformations of the pile. The nodal points are located at the same _
elevations as the interfaces ofbthe soil sublayers. The total dynamié
stiffness matrix is assembled first in the local coordinate system
of the pile (;i, ;é, gé). It is then transformed into the global

coordinate system of the soil layer (x Xy x3) figure (1). The

l’
dynamic soil reactions (springs), (KV, Kh’ Kr’ Kt), are then added
to the dynamic global stiffness matrix. The pile tio reactions

are taken into account using the formulae of the half space soil

-springs of reference (9). A simple substructuring process may be

used to condense all degrees of freedom except those of the pile
head, reference (1). The resulting condensed stiffness matrix of
the pile head represents the stiffness (impedance) of the pile
head in the global coordinate system of figuré (1). The pile head
flexibility (compliance) will be used in the case studies of this

paper and may be obtained by numerically inverting the condensed

'stiffness matrix of the pile head.

CASE STUDIES

Problem. Description

The analytical method described in the previous section will
be used to study the behavior of some battered viles. The‘geometry
of the pile in figgre (2) will be considered. The pile diameter )
(do) is 2.0 ft. Two pile lengths (L) are studied; 50 ft, and iOO
ft., The pile is assumed to be of concrete with a modolus of
elésticity (E) of 2.78 x 106 nsi, mass deunsity of 2.25 x 10_4
1b secz/ina, Poisson's ratio (V) of 0.16, and ratio of critical
damping of 0.02. The pile is assumed to be embedded in one soil
layer with a shear wave velocity (CS).of 194.5 ft/sec, dilatazional
wave velocity (C_) of 479.3 ft/sec, mass density of 1.8 x 10
1b secz/iﬁa, andpratio of critical damping of 0.05. The soil layer
is resting on rigid rock. The depth of the soil layer depends unéﬁ
the angle of batter (Y) in order to maintain a constant pile true

length. Three angles of batter are considered: O.OO, 15.00, and



30.00. The equivalent soil depth‘(d) is given by:
d =L cos ¥

These pile and soil properties define the pile flexibility factor

(KR) as given by réference.(S):

"KR % 1,272 x lO--4 for L

R

50.0 ft., and

-7.947 x 10—6 for L

]
]

100.0 ft,

Results .

‘Three directions of motion of the pile head are of inferest,
namely the axial pile compliance (V), the normal pile compliénce
in the direction of batter (HB), figure (2), and the'normal pile
compliance in the diréction normal to the batter plane (HN). The
coupling compliance (CVH) between thg axial and normal compliances
is also of interest. There is no coupling between the axial and
normal compliances in the plane normal to the batter plane.

The four compliances of interest: V, H HN’ and CVH will

B,
further be nondimensionalized. The new dimensionless. compliances

may be defined as:

<
1]
<<

Cyr® ¥

where Vo’ HBo’ and HVO are the vertical and horizontal compliances

of the pile head with y = 0.0o. In-a similar manner, a dimension-
less frequency'(ao) will be used in the study, where:

o 2C
s

(1))



Figures {3a -~ d) show the dimensionless compliances V} HB’ HN

and E& for y = 15.00 and 30.0° as a function of the dimensionless

H =/
frequency (ao), for the case KR = 1.272 x 10" ' and L/dO = 25.0.

The battering of the pile has a large effect on the axial compliance
(V). The effects of battering are smaller on the normal compliance

(ﬁB). Both dimensionless compliances increase with the increase

of the angle of batter (Y¥), which is in agreement with the results

of reference (8). The effec;s of pile battering were calculated

to be insignificant in that reférenée; it was shown that the maxi-
mum difference in the static compliance between the vertical and

the battered pile was 47%. The results depicted in figure (3),
however, show that this difference may be_as high as 70% for ﬁé and
14% for V. The dimensionless compliances are also frequency depen=-
dent as they tend to increase slightly with an increase of frequency
until the maximum battering effects are reached at a dimensionless
freduency (ao)'of approximately 0.15. The battering effects decrease
rapidly for higher freqﬁencies. The effect of battering increases,
1s expected, with an increase of the battering angle (Y). Figure
(3c) shows the dimensionless compliance ﬁ& as a function of dimen-
sionless frequency. The batte;inq effecté for this case are
different from the casés of V and ﬁé as the dimensionless compliance

HN actually increases at higher dimensionless frequencies. Figure
(3d) depicts the cqupled compliance (CVH) and shows that the
coupled compliance changes ranidly with a change in frequency.
Figures (4a - d) depict similar dimensionless compliances for the
case of KR = 7.947 x 10—6 and L/d.o = 50.0., The general behavior
of the compliances are similar to that of the L/dO = 25.0 case.

The battering effects, however, are somewhat smaller.

CONCLUSTONS AND RECOMMENDATIONS

A simple and economical method is presented to analyze single,
battered piles which are subjected to harmonic motioné. It is found
that the battering effects are somewhat higher in the battering
plane than those reported in other references concerning static
cases. These effects,‘however; decrease at higher frequencies.

It is found that the battering effects increase the pile stiffness



(lower compliance) in the plane normal to the battering vlane,

™

These-observétions seem to be independent of the ratio L/do.
The frequency dependence of the pile compliances seem to be of
“importance in all cases studied. _

-Based on the~above, it is réecommended that additional case
studies be performed in order to gain more understanding of the
dynamic effects of pile battering. It is also recommended that a
proper dynamic analysis using either the method described herein
or another method.be performed when the piles are subjected to
'dynamic ioads, since the importance of the frequency dependence

of the pile battering effects were established.
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