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1. INTRODUCTION 

1.1 The  context of this work 

The use of foundation piles to support srmctures over water or soil with inadeguate bearing capacity dates from 
pre-historical times. Although the use of cast in-situ piles has become popular in recent years, piles are 
commonly driven into the ground with some type of hammer. 

Until the nineteenth century, the size and number of piles required to support a particular structure, and the 
hammer required to install those piles, were determined by rules of thumb and experience. As scientific 
engineering expanded, formulae for pile capacity and drivability were developed. Pile drivability formulae 
initially represented a correlation of empirical data, and later formulae were based on a combination of basic 
mechanics and empirical data. 

driving wave equation was not developed until the advent of digital computers. The method A ~ then. developed 
.. ~. employed an empirical model of the soil surrounding the driven pile. The one-dimensional wave equation is still 

the primary means of analysing pile drivability today. The last thirty years have seen various improvements 
made to the original method. Much additional data has been collected, allowing the emvirical soil Darameters to 
be refined, andthe computational techniques have been improved. Because of &e wealth of experience and data, 
the current techniques provide satisfactory solutions for most practical pile drivability problems today. 

However, there are some cases, particularly in the offshore engineering field, in which piles of unusual size must 
be driven into soils which are uncommon on land. Since a large empirical database is not available, the 
parameters required for the standard wave equation analysis can be difficult to determine. This has motivated 
attempts to formulate a numerical model relying only on fundamental soil properties, which can be measured by 
standard geotechnical investigation methods. The finite element method has been used to analyse pile drivability 
occasionally, but the highly transient dynamics of the stress wave propagation and the non-linear behaviour of 
the soil cause such a solution to he computationally expensive. 

Several models based on the one-dimensional wave equation and measurable soil parameters have been proposed 
The finite element method has been used previously in attempts to verify these models, but the lack of a 
conclusive comparison in the literature suggests that these attempts have been less than successful. The 
coarseness of the finite element meshes used in these studies has led to some concern. 

This thesis is a con!sibution to the process of finding a suitable one-dimensional model, based on measurable 
soil parameters, which adequately represents the pile driving process. The finite element method is used to 
accurately analyse the response of an ideal von Mises soil during a hammer blow on a full displacement pile. A 
one-dimensional model is developed which gives excellent agreement with the finite element results. In the 
process, doubt is cast on the accuracy of some of the finite element work previously reported in the literature, 
but the ability of one-dimensional wave equation models to represent pile driving hehaviour is veritled. 

1.2 An outline of this thesis 

A historical review follows this introduction, tracing the development of the analysis of pile driving dynamics 
through the literature. The thesis then follows the same route as the stress waves in a hammer/pile/s6il system, 
commencing with the hammer system at the pile head, progressing to the propagation of axial waves in the 
shaft, then tracing the radiation of waves f~om the pile shaft, and finally considering the radiation of waves from 
the pile toe. 

In Chapter 3 the hammer blow used to drive piles is examined. Analytical solutions are developed for a number 
of simple pile hammer models. These analytical solutions are shown to provide a convenient way of performing 
parametric studies of hammer perConnance. Studies of hammer separation and energy transmitted to the pile are 
included. 

Chapter 4 formulates the equations governing the pile response. The finite element method and numerical time 
integration methods required to solve these equations are introduced. Soil plasticity is discussed, together with 
numerical methods for calculating non-linear response. 

Chapter 5 examines the propagation of impact waves in a free-standing pile in detail. The effect of integration 
method, element size and type, and impulse shape on the accuracy of the solutions are investigated. 



Chapter 6 considers the radiation of stress waves from the shaft of a pile embedded in an elastic soil. Plane 
strain shear waves emanating from a rigid pile are investigated f i s t  A fransmitting boundary for shear waves is 
derived. The effect of a finite pile stiffness is determined, and a one-dimensional model based on the transmitting 
boundary is developed. The radiation of dilation waves from the shaft is also investigated, and an appropriate 
transmitting boundary found. 

The propagation of dilation waves from the pile toe is investigated in Chapter 7. Three-dimensional surface 
plots showing the propagating stress waves are presented. Existing one-dimensional base models are 
investigated, and a modified model developed. The complete elastic response of an embedded pile is computed 
and compared with results obtained by combining the new base and shaft models. 

Chapter 8 deals with inelastic soil behaviour. Again, the transmission of shear waves from the shaft is 
investigated fist. A variety of techniques for incorporating slip at the pile-soil interface into the finite element 
method and a one-dimensional model are considered. A one-dimensional model is again found to model the 
situation very well. The finite element method is used to model the inelastic penefration of the pile toe into the 
soil. Existing base models are compared to the finite element results. A new base model is developed. The 
response of the entire system is computed using finite elements, old one-dimensional models, and the new one- ' 
dimensional model. 

Some examples of finite element analysis of pile driving available in the literature are analysed using the 
methods developed in this work, and the results are compared with the published results. 

Conclusions, references, and figures follow. 



2. PILE DRIVING ANALYSIS - A REVIEW 

This chapter traces the development of rational pile dnving analysis through the literature, identifying the major 
achievements. Although a mass of literature about pile driving formulae has formed over the years, only a few 
review articles will be identified. Similarly, much has been written about wave equation analysis in recent 
rimes, but only some key papers will be referred to in this chapter. Many other articles are referenced elsewhere 
in the thesis. The aims of the present study are stated at the end of this chapter. 

2.1 The use of foundation piles 

Foundation piles have been used to support smctures over weak soils and water since prehistoric times. Early 
piles were made of wood. They were driven into the ground with various types of hammers. The city of Venice 
was built almost entirely on driven wooden piles (Legget, 1973). At that time, the hammer required to drive a 
particular pile was determined by experience, trial and error, and rules of thumb. 

Piled foundations are still used extensively today, and, although cast in situ piles are now available, driven piles 
are still widely w d  

2.2 Pile driving formulae 

Pile driving formulae date back to the 1800's. The first formulae were purely empirical, and were valid over very 
limited ranges of soil and pile types. Dynamic formulae were later derived by treating the pile as a rigid body, 
equating the hammer energy (less various losses) to the energy required to push the pile through the ground, 
Reviews of the historical development of these formulae and comparisons between them have been performed 
regularly. Some examples are Terzagh (1929). Dean (1935), and Chellis (1961). 

2.3 Early progress in wave equation analysis 

Although the differential equation for axial waves in a longitudinal bar was formulated and solved by St Venant 
in the 1850's (Timoshenko and Goodier, 1951), the presence of axial compression waves in piles during driving 
was first postulated by Issacs (1931). The existence of these waves was confirmed experimentally by Fox 
(1932). A method of analysis based on the wave equation was presented by Glanville et al (1938). but the 
simplifications required to permit manual solution did not allow satisfactory accuracy to be attained. 
Consequently, the approach did not fmd widespread acceptance, and pile formulae remained in common use. 

However, the advent of the digital computer opened up new avenues for the solution of the wave equation. 
Smith (1960) published a numerical method for analysing pile driving ptoblems using the wave equation. The 
pile and hammer are broken into a system of discrete springs and masses, and the surrounding soil is represented 
by dynamic reaction forces dependent on the pile displacement and velocity (Figure 2.1). The equations of 
motion of the discrete system are solved using the finite difference method. 

In the original implementations of Smith's method, the dynamic resistance of the soil at the pile toe is modelled 
by a point force at the last pile node, the value of which is 

for u l<  Qt 

Rt = R ~ ~ ( ~ + J U ~ )  for ut z Qt  (2.1) 

where RtU is the ultimate static toe resistance, Qt is the quake (which is the elastic ground compression before 
plastic behaviour commences), J is a damping constant, ut is the toe displacement, and cil is the toe velocity. 
The resistance of the soil along the pile shaft is represented by a discrete force at each pile node point, the 
magnitude of which is related to the nodal displacement and velocity by 

R U  
Rs = & u s  ( l + J ' i c s )  

2s 
for us 5 Qs 

Rs = R s " ( l + J ' u s )  for us > Q, 



where Rsu is the ultimate static soil resistance summed over the shaft segment, Qs is the quake required to 
utilise plastic deformation, J ' is  a damping constant, us is the pile node displacement, and tis is the pile node 
velocity. Smith (1960) tentatively proposed quake and damping values for use in all soils (Table 2.1). 

The viscous dashpots used in the original Smith model are non-linear, as indicated by equations (2.1) and (2.2). 
Smith introduced the damping factor J into the soil resistance because "obviously, the ground will offer more 
resistance to rapid motion than to slow motion" (Smith, 1960). He was, of course, correct. However, the 
damping was treated as an augmentation of the static response simply for convenience, with no theoretical 
justification. Goble et al (1975) modified the model by using a linear dashpot in place of the non-linear 
damping term. The equation for dynamic resistance along the shaft became 

for us > Q, (2.3). 

The equation for base resistance was mod~ficd in the %me way. Computer progm.ms.inplemenling the Smith 
modcl i n  both tlic original form and the modified fotm are rril! uscd-in ngincering pra@:ice. Cone and Lepen 
(1986) have shown that the two forms give similar resulls 

In the twenty years following the publication of Smith's model, many computer programs were written 
incorporating the method, and the computational techniques were improved as computer capacity and speed 
increased. The development of these techniques has been reviewed by Goble et a1 (1980). The choice of quake 
and damping parameters was also the subject of much research. Coyle et a1 (1977) reviewed some of this work, 
and recommended parameter values slightly different from those of Smith (Table 2.1). 

2.4 Recent advances 

Although the method proposed by Smith has been used successfully for many years, the approach has some 
shortcomings. The empirical nature of the soil influence on the pile (equations (2.1) and (2.2)) is a major 
problem. The relationships between the pile motion and the soil reactions are not based on rigorous analysis of 
dynamic soil behaviour. Consequently, the quake and damping parameters cannot be associated with 
fundamental soil properties, and cannot he measured by standard geotechnical investigation techniques. 
Experience with the Smith method over the years has led to quake and damping parameten which can be used in 
normal pile driving situations with reasonable confidence. However, unusual situations can be encountered, 
especially in the offshore environment, in which reliable Smith parameters are difficult to estimate prior to 
driving. 

The limitations discussed above, together with a general movement towards a more rigorous approach to 
geomechanics, have stimulated interest in alternative methods of analysis based on a rational understanding of 
soil behaviour. 

The damping parameter J was originally associated with soil viscosity. However, laboratory studies into the 
strain rate and penetration velocity dependency of soil viscosity (Gibson and Coyle, 1968; Dayal and Allen, 
1975; Litkouhi and Poskitt, 1980) consistently showed non-linear velocity dependence. Indeed, Randolph and 
Simons (1986) have examined the available data and found little evidence of velocity dependency once shait 
velocity exceeds 0.1 m/s. 

Following the analytical work of Novak (1977) and Novak et a1 (1978). Meynard and Corte (1984) conducted a 
laboratory investigation which led them to conclude that most wave attenuation in piles can be explained by 
radiation damping along the pile shaft, rather than soil viscosity. They used the work of Novak et a1 (1978) to 
show that radiation damping could be modelled by a viscous dashpot, and that the dynamic shear stiffness of the 
soil could be modelled by a spring. The spring and damping parameters are dependent mainly on the shear 
modulus and density of the soil. 

2.4.1 Shaft  model 

The work of Meynard and Cone (1984) allowed the dynamic soil reaction along a pile shaft to be determined 
from basic soil properties. The association of the damping constant with radiation damping also led to a 
reconsideration of the structure of the soil model. In the original Smith model, a plastic slider was used in series 
with the spring, but not with the dashpot, as shown in Figure 2.2(a). Considering an elastic-perfectly plastic 
material, Simons and Randolph (1985) concluded that, since slip only occurs at the pilelsoil interface, tadlation 
damping cannot increase the shear stress above the yield stress, and so the plastic slider should be placed in series 



with both the spring and the radiation dashpot (Flgure 2.2@)). Corte and Lepert (1986) reached the same 
conclusion after studying the multiple degree of freedom models of shear wave radiation presented by Holeyman 
(1984). 

Randolph and Simons (1986) added an extra dashpot in series with the plastic slider to represent the rate 
dependency of the soil yield stress (Figure 2.2(c)). They stated that the darnping constant of theextra dashpot is 
usually an order of magnitude less than the radiation damping constant. Cone and Lepen (1986) also considered 
the addition of such a dashpot, but dismissed it as unnecessary. 

Nguyen et al (1988) modified the soil model shown in Figure 2.2(c) by varying the soil shear modulus with 
shear strain amplitude, using a relationship derived by Hardin and Dmevich (1972). They presented results 
which agreed well with field data, by did not show how significantly the variation of shear modulus affected their 
analysis. 

Mitwally and Novak (1988) used the model shown in Figure 2.2@), but varied the spring and damping 
coefficients to account for the effect of a weakened soil zone adjacent to the pile. They produced results which 
indicated that the computed shaft response could be significantly affected by a small zone of soil with reduced 
shear stiffness. 

Warrington (1988) also implemented the model shown in Figure 2.2@) in his ZWAVE program. He presented 
estimates of pile capacity from pile driving data which were of similar accuracy to CAPWAP. 

2.4.2 Base model 

Following the association of the viscous dashpots in the Smith model with radiation damping, Simons and 
Randolph (1985) used Lysmer's analogue to provide stiffness and damping values for the soil at the pile base 
which were dependent only on the shear modulus and density of the soil. The Lysmer analogue (Lysmer and 
Richan, 1966) allows approximation of the vertical vibration of a rigid footing on a semi-infinite half-space by 
replacing the half-space with a spring and a viscous dashpot in series. 

Simons and Randolph did not alter the structure of the original Smith base model (Figure 2.2(a)). This base 
model was used by Novak and Mitwally (1988) in their demonstration of the effect of a weakened shear zone. 

In their work discussed above, Nguyen et al(1988) used a base model with the plastic slider in series with both 
the spring and the dashpot, reasoning that the soil at the base behaves in a similar way to the soil along the 
shaft (Figure 2.2(b)). Warrington (1988) used the same model in his ZWAVE program. 

Holeyman (1988) introduced a multiple degree of freedom model to represent the base response (Figure 2.3). His 
model uses a one-dimensional eouivalent solid cone to simulate radiation damnine. Plastic behaviour is included ~~~- ~ ~-~~~ 

~ ~ L -  ~ ~ . .. 
by specification of a power law stressistrain relationship for the discrete springs representing the soil cone. 
Holeyman presented analyses which showed reasonable agreement with field data. 

2.7 Finite element studies 

The first full finite element analysis of the pile driving problem was performed by Chow (1981). Smith and 
Chow (1982) compared a one-dimensional model based on the Smith (1960) method with an axisymmehic fmite 
element model. The finite element mesh used by Chow is shown in Figure 2.4, and an example of the variation 
between the two models is shown in Figure 2.5. They neglected soil viscosity, and equated J to zero in the one- 
dimensional model. Consequently, the results obtained from the finite element model showed considerably less 
oscillation than the one-dimensional model, as the finite element model permitted radiation damping. 

Simons (1985) performed similar axisymmetric finite element analyses, but compared the results with the 
improved one-dimensional model described by Simons and Randolph (1985). The mesh used by Simons is 
shown in Figure 2.6, and the pile head displacements computed with the finite element and one-dimensional 
models are shown in Figure 2.7. Since the improved one-dimensional model included the effect of radiation 
damping, the one-dimensional response is much smoother than that computed by Smith and Chow (1982). 
However, the finite element response shows significant oscillation. 

Smith et a1 (1986) published further finite element results obtained with a refined mesh, which they claimed 
verified the accuracy of Chow's results. However, Figures 2.8 and 2.9 show significant differences in the 
displacement and forceresponses, although the permanent deformations and maximum forces are similar. At a 
time of approximately 18 milliseconds, the force calculated with the finer mesh is 180" out of phase with the 
coarse mesh. The calculated displacement responses during rebound are entirely different. 



Coutinho et al (1988) reported the results of an axisymmetric finite element analysis of the driving of a cone- 
ended offshore pile. The mesh used is shown in Figure 2.10, and the results of the analysis presented in Figure 
2.11. The simulation was stopped soon after the maximum toe displacement had been attained. No results were 
presented for the pile head displacement, and, with so little time integration, assessment of the accuracy of the 
model is difficult. 

Mitwally and Novak (1988) also reported using axisymmetric finite elements to model pile driving. However, 
they concluded that, since finite element results depend mainly on the modelling of the pile soil interface, and in 
view of the computational cost of the method, shart models are preferable. 

2.8 The necessity for this study 

Although some progress has been made in formulating a one-dimensional wave equation model of pile driving 
based on fundamental soil properties, much work is still to be done. 

New models for the dynamic response of soil along the pile shaft have been formulated by a number of .,- 
researchers. All of these models are based on the Novak's (1977) solution for harmonic oscillation of an 
axisymmemc soil disk under plain strain conditions,whi~h was originally used to evaluate the response of a 
vibrating rigid pile. Verification of the applicability of such models to pile driving situations is required. 

Three new base models were described above. There has been no significant comparison of these three models, 
and no conclusive demonstrations of the ability of any of them to accurately model the inelastic soil behaviour 
at the base of a pile. 

The finite element method provides a way of finding approximate solutions to the equations of motion 
governing pile driving in idealised soils. One feature of the finite element method is that reasonable 
approximations of displacements can he produced long before the higher order derivatives have converged. 
However. the finite element method is Drone to discretisation errors. ~articularlv in dvnamic and non-linear 
cases. ~ i e a t  care must be taken if accu&te solutions to a problem as coAplex as p i e  dri&ng dynamics are to be 
obtained. The published results of the finite element work reviewed above show some discretisation problems. 
The accuracy of these analyses is questionable. 

2.9 The aims of this study 

This study aims to use the finite element method to investigate pile driving in an ideal elasticfpurely plastic 
(Von Mises) soil, producing solutions which are converged and accurate. The discretisation problems which are 
obvious in previous published work will be resolved. The accurate solutions will be used to find a one- 
dimensional model which adequately reproduces the behaviour of the ideal system. The one-dimensional model 
will be established from a purely analytical point of view, permitting the influence of real soil behaviour to be 
examined by other investigators. 



3. HAMMER IMPACT 

3.1 Introduction 

Numerical analysis of the response of a pile during driving requires a model for the hammer system driving the 
pile. In the original Smith (1960) method, the hammer was modelled as lumped masses and springs. To 
simulate impact, the mass representing the hammer ram was given an initial velocity. More complex models 
have since been developed, especially for the modelling of diesel hammers (Goble and Rausche (1986), Rausche 
et a1 (1988)). However, Middendorp and van Weele (1986) have shown that relatively simple hammer models 
can provide adequate agreement with field dam 

When examining the propagation of stress waves in a plte and in the surrounding soil, representing the influence 
of the hammer by a time-varying force at the pile head is advantageous, as a stress wave of known shape can be 
'injected' into the pile. The changes in the stress wave during propagation can then be examined. However, the 
impact function should closely approximate the force created by the real hammer,-otherwise the calculated 
behaviour may not accurately reflect the true behaviour. 

The forces exerted on piles by simple hammer models can be computed analytically. The force caused by a 
hammer impacting diiectly on the top of a pile (Figure 3.l(a)) is well known (eg. Johnson, 1982). Randolph 
(1991) has presented an analytical solution for a model consisting of a ram impacting on a linearly elastic 
cushion seated directly on a pile (Figure 3.l(b)). As well as providing driving forces for pile drivability 
analyses, these analytical solutions also allow parametric studies of hammer performance to be performed 
rapidly. 

This chapter presents solutions for some simple hammer models in new dimensionless quantities, including new 
analytical solutions for the models shown in Figure 3.l(c) and 3.l(d). The new solutions are shown to match 
field data extremely well. The potential of the analytical solutions to allow parametric analysis of hammer 
performance is illustrated by studies of ram separation, transmitted energy, and maximum impact force. 

3.2 Ramlpile model 

The simplest model of a pile hammer is that of a falling mass impacting directly on the top of a pile. The 
response of the pile to the impacting mass can be modelled by replacing the pile with a dashpot of equal 
impedance to the pile (Randolph, 1991). This impedance is given by 

where Ep is the Young's modulus of the pile, Ap is the cross-section area of the pile, and cp is the axial wave 
velocity in the pile. 

The force exerted by the hammer on the pile can he obtained by analysing the system shown in Figure 3.l(a), 
where mr is the mass of the ram, ur is the displacement of the ram dter  it strikes the top of the pile, and v, is 
the velocity of the ram when it strikes the pile. Dot notation will be used to represent differentiation with 
respect to time. The equation of motion for the ram is 

Defining a dimensionless time as 

and a dimensionless velocity as 

the dimensionless displacement and accelerdtion are 



Substituting these equalities into equation (3.2), a dimensionless equation of motion can be formed. 

At a dimensionless time of zero (the instant the hammer strikes the pile), the dimensionless velocity of the ram 
is unlty, and the displacement is zero. Applying these initial conditions, the solution to equation (3.7) can be 
found. 

* . * -t 
ur = e (3.8) 

The force exerted on the pile is given by multiplying the pile impedance by the ram velocity. 

fp = z I2, 

Since the appropriate non-dimensionalisation of force is 

the dimensionless force exerted on the pile is simply 

The dimensionless impulse function exerted on the pile by this pile hammer model is shown in Figure 3.2, 
denoted by an infinite cushion stiffness. At time zero the dimensionless force rises instantaneously to unity, and 
then decays exponentially with a non-dimensional time constant of unity. 

3.3 Ramlcushionlpile model 

The accuracy of the model described above can be increased by using a linear spring to model the effect of a 
cushion between the ram and the pile. The system then has two degrees of freedom, since the motion of the pile 
head can be different from that of the ram. The displacement of the pile head will be denoted by u,, and the 
stiffness of the cushion spring by kc. The model is illustrated in Figure 3.1(b). 

The two equations of motion for this model are 

Using the dimensionless variables given in equations (3.3) to (3.6), these equations can be re-written as 

* * * * 
~r + kc (ur - u, ) = o 

* * * *  
&a + kc (u, - ur ) = 0 

where 



Applying the Laplace transformation to equations (3.13) and (3.14) and solving simultaneously, the Laplace 
transform of the velocity at the pile head can be found. 

. * 

Factorising the quadratic denominator 

L ,ia* = k,* 
kc* kc* 

( s +  y + p ) ( s +  y - p )  

where 

P = - kc 

The inverse transform of equation (3.17) depends on the value of k c *  1f kc* is greater than 4, equation (3.17) 
becomes 

1 1 

kc* kc * 
S f  - + p  2 

and performing the inverse transform yields 

~f kc* is equal to 4, 

and 

Finally, if kc* is less than 4, p i s  imaginary. Let 

Equation (3.17) becomes 

and 

L an* = 1 

* ( kc* 
1 

2p '  i kc* 
s +  - - p ' i  s +  - + p ' i  2 2 



The force in the cushion spring is equal to the force exerted on the pile. If kc* is less than 4, equation (3.25) 
indicates that the force will become negative after time ts*, where 

Since the cushion is not attached to the pile or the ram, negative stresses cannot develop in the cushion spring, 
so gaps will form and the ram will become separated from the pile. The force exerted on the pile after time 
ts*will he zero. Equation (3.25) is only valid for times less than or equal to rc 
The dimensionless response of the ram/cushion/pile model is dependent solely on the dimensionless stiffness of 
the cushion, kc* The effect of this stiffness on the response is shown in Figure 3.2. Finite stiffness of the 
cushion causes the force on the pile to have a finite rise time. A soft cushion causes a large rise time. As the 
cushion stiffness becomes large, the rise time decreases, and the solution approaches that for the ram/pile model. 

3.4 Ram/cushion/auvil model 

The hammer model can be further improved by introducing a finite anvil mass (Figure 3.l(c)). This does not 
change the number of degrees of freedom, but increases the complexity of the solution. 

The two equations of motion governing the system are as follows, where ma is the anvil mass. 

mr iir + kc (ur - u,) = 0 (3.27) 

mu iia + Z i a  + kc (u, - u,) = 0 (3.28) 

Again using the dimensionless variables given in equations (3.3) to (3.6), these equations can be re-written as 

* * * 
iir + kc (u, - u,*) = 0 (3.29) 

where kc* is given by equation (3.15). and the dimensionless anvil mass ma* is given by 

Applying the Laplace transformation to equations (3.29) and (3.30) and solving simultaneously, the Laplace 
transform of the velocity of the anvil and the pile head can be found. 

The anvil velocity and the force on the pile head can be found by factorising the cubic denominator and 
performing the inverse Laplace transform, as detailed in Appendix A. An expression of the following form is 
obtained. Expressions for the parameters Fp, cl, c2, w, and $J are presented in the appendix. 

* 
* 

fp* = 
; Fp e-~l'*(I - e - ~ 2 t  cos ( ~ t *  - e) 

cos $J 1 (3.33). 

The dimensionless force in the spring is given by 

Differentiating equation (3.33), substituting into equation (3.34). and simplifying, the spring force can be 
expressed as 



fs* = FS (e 
~ 2 ~ -  cos ( o t *  - 8) 

cos 6 

where Fs and Bare also specified in Appendix A. 

The ram will separate from the top of the cushion when the spring force is zero, which occurs at time I,*, where 

* 
c2ts cos (ofs* - 8) 

e - - 
cos 8 

An analytical solution for ts* cannot be found. For a certain range of anvil mass and cushion stiffness, ram 
separation does not occur. (This range is discussed in a subsequent section.) For those cases where separation 
does occur, equation (3.36) must be solved numerically to identify ts*. 

For most combinations of dimensionless anvil mass and cushion stiffness, the cubic denominator in equaiion 
(3.32) has one real root and two imaginary roo6s; and the solution presented above applies. For a small range of 
combinations, the cubic denominator has three red  roots, and different solutions must be used. In this case, 
equation (3.32) can be written in the following way. 

* 
Lli, = ag 

(s + b i )  (s + b2) (s + b3) 

When bl,  b2, and 63 are distinct, the solution is given by 

The force in the spring is 

( t *  -b2t* - -b3t*) 
fs* = FS AS e BS e (3.39). 

These solutions are developed in full in Appendix A, together with expressions for all the parameters. 

However, if two of the real roots are the same, the solution is different again. When b3 is equal to b2, the 
solution becomes 

as detailed in Appendix A. 

For cases where b l  is equal to b3 or b2, the above solution can be adjusted by interchanging subscripts. 
However, in a practical computer implementation of these analytical solutions, equations (3.40) and (3.41) are 
probably not needed, since a very small change in ma* or kc* will allow one of the solutions discussed 
previously to be used. Equations (3.40) and (3.41) are presented here for completeness. 

When ram separation occurs, the equation of motion of the anvil is 

ma iia + Zua = 0 

or 

* .. * 
ma u, + lia* = 0 

The dimensionless velocity of the anvil at the time the ram separates will be denoted by vs*. The velocity of 
the anvil after separation is then given by 



The effect of the anvil mass on the force exerted on the pile head is shown in Figure 3.3 for a dimensionless 
cushion stiffness of 4. As the anvil mass increases, the time taken for the force to peak increases. The peak * force also increases for a range of m a  values, but decreases after ma* exceeds a certain value. The anvil mass 
which leads to maximum peak force on the pile head is discussed in a later section. 

3.5 Damped cushion model 

The model above assumes that the cushion behaves as an elastic spring. However, in practice the cushion 
absorbs energy. This energy absorption is particularly significant for wooden and plastic cushions. To account 
for this energy loss, the cushion can be modelled as a linear spring in parallel with a dashpot (Figure 3.l(d)). 
This again increases the complexity of the solution, but does not introduce any extra degrees of freedom. Using 
cc to represent the damping in the cushion, the equations of motion of the system are 

ma iia + Z i(a + cc (Sea - fir) + kc (ua - ur) = 0 (3.46) 

Again using the dimensionless variables specified in equations (3.3) to (3.6), these equations can be re-written as 

* * . *  * * * * 
ii, + cc (u, - tea) + k c  (u, - ua ) =  0 (3.47) 

where the dimensionless cushion damping cc* is given by 

Applying the Laplace transformation to equations (3.47) and (3.48) and solving simultaneously, the Laplace 
transform of the anvil velocity can be found. 

Performing the inverse Laplace transform, the pile force and anvil velocity can be expressed in the same form as 
equation (3.33). 

* 
* * 

fp = ua = Fp e 
-C2f cos (all* - @, 

cos fJ 

'l'hc inrcrn~ediatc steps and expressions for thc parameters are przscntcd in App:ndix B. 'lh: spring for:: can k 
iound by npplying cclwtion (3.34). and is of the form 

* 
f~ = FS e - A s  cos 6 (3.521, 

where the coefficients are also detailed in Appendix B. 

The ram will separate from the top of the cushion when the spring force is zero, which occurs at time I,', where 



c2ts" COS (cotS* - 0) 
e 

= As cos e 
Again, this equation cannot be solved analytically. For those cases in which hammer separation occurs, the 
time for separation must be established numerically. The subsequent force response is then given by equation 
(3.44). 

The above solution applies when the denominator has one real and two imaginary roots. If it has three distinct 
real roots, Appendix B shows that the solution can be expressed as 

The force in the spring is 

* * 
fs* = Fs (e-blt - A ,  e-b2f + B, e 

-b3t*) 

When two of the roots are identical, the solution below applies (Appendix B). 

When the three roots are real, ram separation never occurs. 

Figure 3.4 shows the effect of the dimensionless cushion damping on the solution for the case when kc* is 4 
* .  

and ma is 0.2. As expected, increased damping in the cushion decreases any oscillauon of the force. 

* Figure 3.5 shows which of the above solutions must be used for different combinations of kc* and ma . When 
there is no cushion damping, equation (3.33) must he used in the region with two imaginary roots. In the 
region with three distinct real roots, equation (3.38) applies, and along the dividing line between the two 
regions, equation (3.40) canbe used. For non-zero values of cc*, equation (3.51) applies in the region with two 
imaginary roots, equation (3.54) applies when there are three distinct real roots, and equation (3.56) should be 
used along the dividing line. 

3.6 Matching field data 

The ability of the analytical model to represent real pile driving hammers will be demonsvated by comparing 
two sets of field data to the analytical solutions. 

In the f i s t  case, a BSP 357 hammer was used to drive a 762 mm diameter by 18.5 mm waU thickness pile with 
an impedance of 1750 kNsIm. The cushion was steel with a stiffness of 1 . 6 ~ 1 0 ~  W m .  The recorded variation 
of the pile head force with time is shown in dimensionless terms in Figure 3.6. 

The specified ram and anvil masses for this hammer are 6860 kg and 850 kg respectively, yielding a 
dimensionless anvil mass of 0.124 and a dimensionless cushion stiffness of 3.653. Using these values in 
equation (3.33), which applies for zero cushion damping, yields the solution also plotted in Figure 3.6. The 
agreement between the analytical solution and the field data is excellent, suggesting that there is little damping 
in the cushion. 

The second data set was obtained from a BSP HA40 hammer, driving a 762 mm diameter by 44 mm wall 
thickness pile with an impedance of 4000 kNs1m. In this case the cushion was Bongassi with a stiffness of 
7 . 5 ~ 1 0 ~  kN/m. The force measured at the pile head is shown in Figure 3.7. 

The specified cushion stiffness, together with a ram mass of 39 300 kg and an anvil mass of 6000 kg, give a 
dimensionless cushion stiffness of 18.8, and a dimensionless anvil mass of 0.153. Equation (3.51) was found to 
best match the field data when a dimensionless cushion damping of 0.6 was used with a kc* of 25. The 



4. PROBLEM FORMULATION AND SOLUTION TECHNIQUES 

4.1 Introduction 

This chapter presents the differential equations whlch govern the response of a pile embedded in a semi-infinite 
half-space to impact loading. Since these equations are too complex for general analytical solution, the 
equations are reformulated in a weak form to allow the solution to he approximated by a linear combination of a 
set of base functions. The finite element method is presented as a means of obtaining base functions sets which 
lead to banded symmetric matrices, and hence efficient numerical solution. Numerical integration of the finite 
element equations in time is discussed. Von Mise? plasticity is introduced, together with numerical methods of 
solving the resulting non-linear equations. 

4.2 Governing equations 

A pile of circular cross-section embedded in a half-space, the properties of which vary only with depth, presents -- an axisymmetric problem. For simphcity, a plle of constant radius and a half-space wittrcmSafit material 
properties will be considered. This idealised model is shown in Figure 4.1. 

Assuming that both the pile and the half-space are elastic, the constitutive equations for the entire half-space 
(including the pile) in cylindrical cwrdinates are 

where E ~ ,  cr and &e are the axisymmetric normal strains, yr, is the shear strain, o,, a,. and og are the 
axisymmemc normal stresses and z,, is the shear stress. E is Young's modulus and v is Poisson's ratio. The 
variation of these two parameters in axisymmetric space may be expressed as 

P for  -L < z  5 0 and r < R 

Es for  z  5 0 and r > R or z < -L (4.2) 

LO for  z > o 

and 

for  -L S z  5 0 and r 5 R 

( 0  for z > o 

where Ep is the elastic modulus of the pile, vp is the Poisson's ratio of the pile, Es is the elastic modulus of the 
soil, vp is the Poisson's ratio of the soil, and R is the radius of the pile. 

The constitutive relationships stated in equation (4.1) can be expressed in matrix form as 

ci = D E  (4.4) 

where 



(5 = { a6 3 E = k} , m d  

Trz Yrz 

The local strains can be related to the displacemenrs in me z and r Lxztions (designated by uz and ur) with the 
following compatibility equations. Tensile strains and s m s e s  aretxen as positive in this chapter. 

These equations can be expressed in ma& form as 

E = L U  

where 

= { and L =  

1: 
The half-space will contain a initial stress fizld balanccg the force a v i t y  of gravity, and possibly ccnraining 
locked in stresses. Since this stress field is self-equilihzting, and tx system is assumed to be elastic. only the 
changes in stresses, strains, and displacements from h initial fieli will be investigated. All stresses. strains 
and displacements in the following equations are taken w be cbages kom the initial state. 

The dynamic equilibrium equations can be found by considerins the. r b g i n g  vertical and radial forces zaing on 
an infinitesimal element in the pile or the half-space Figurz 4.2 . Since the only changing e x t e ~ d  force 
present is the vertical force exerted by the hammer 5yste.a. the equilirnum equations are 

and 

The external dishibuted stress (fz) caused by the hammfi impt 101.d can be modelled as a time-varyhg stress 
uniformly dishibuted over the pile head. The external &nibur?d S E ~ S  in equation (4.10) can then relaEd to the 
force impact functions ( f p )  derived in Chapier 3 by the shple i.juati:~> 

l o  otherwise 



Prior to the ram striking the cushion, the velocities, and accelerations are zero at aU points in the 
pile and half-space. The response of a pile to hammer impact can therefore be found if the system of second 
order linear differential equations represented by equations (4.9) and (4.10) together with equations (4.4) and (4.7) 
is solved, subject to the boundary condition represented by equation (4.11) and the initial conditions of zero 
displacement, velocity, and acceleration at aU points. 

Unfortunately, this equation set is too complex to be solved by analytical methods for the general case. The 
equations can be solved if certain simplifications are inuoduced, such as setting the soil stiffness to zero, leaving 
a floating pile, or making the pile infinitely long and infinitely stiff. However, for most realistic cases, only 
approximate solution is possible. Such approximate solutions are most conveniently obtained by numerical 
methods. 

4.3 Weighted residual approximation 

The weighted residual method allows an approximate solution for a set of differential equations to be found as a 
linear combination of a pre-defined set of basis functions. The method dates back to the last century, and is 
described fully by Finlayson (1972). The application of the weighted residual method to the differential 
equations governing pile driving will bedescribed in this sectlon. 

The solution domain, which consists of the pile and the half-space, will be denoted by 0. If the differential 
equations presented above are satisfied at every point in this solution domain, then for any function w, where 

the following equation must also hold. 

Since satisfaction of this equation is necessary but not sufficient for equilibrium, equation (4.12) is a weak form 
of the equilibrium conditions. Expanding and integrating by parts, and recognising that the stress changes from 
initial equilibrium at the domain boundaries are zero, equation (4.12) becomes 

The linear operators applied to the functions w are identical to those applied to the displacements to obtain the 
strains (equation (4.6)). Equation (4.13) can therefore be wrinen in matrix notation as 

Substituting equations (4.4) and (4.7), and applying the definition off ,  (equation (4.11)), equation (4.14) 
becomes 

Now, if an approximation G is used in place of the exact solution u, the equation above will not hold for every 
function w. For any particular w, the integrals in equation (4.15) will add to give a residual, which is a sum of 
the equilibrium errors caused by the approximation, weighted by the function w. 



In the method of weighted residuals, an approximation ii is sought as a linear combination of n base functions, 
Ni(z,r). This approximation can be written as 

where a is an column vector of n unknown time dependant coefficients, and N is a column vector of n h o w n  , 

base or shape functions. Since there are n unknown time dependant variables, n differential equations are required 
if a solution is to be obtained. A solvable system of equations can be formed by selecting n distinct weighting 
functions. 

In general, each different set of weighting functions will lead to a different approximate solution. There are a 
variety of methods available for selecting weighting functions, including the Galerkin method, which uses the 
base functions as the weighting functions; point collocation, which satisfies the equilibrium equations exactly at 
n discrete points in the solution domain; and subdomain collocation, in which the integral of the error over each 
of n subdomains is equated to zero. The Galerkin method is particularly useful, as it often leads to symmetric 
matrices. 

To apply the Galerkin method, each weighting function is equated to a shape function. 

Equation (4.15) becomes a set of n equabons, which, after substituuon of equations (4.16: and (4.17), may be 
written as 

Since the coefficient matrix a is a function of time only, and the shape functions N are functions of position 
only, equation (4.18) can be rewritten as 

where 

or alternatively as 

with 

and 

1.4 The finite element method 

The fmite element method is a type of weighted residual method. In the finite element mzthod, the domain of 
interest is broken up into a number of discrete regions, or elements. Each element contaim a number of nodes. 
Shape functions are formed by specifying a unit value at each node in turn, and holding h e  value at all other 
nodes at zero. The variation of the shape function between nodes is usually polynomial or linear, but other 
forms can be used. Nodes can be contained totally within one element, or shared by m.0 or more adjacent 





elements. An example of a small domain broken into mangular elements is shown in Figure 4.3, together with 
the associated linear shape functions. 

The advantages of the finite element method are due to the way that the matrices in equation (4.15) can be 
assembled on an element by element basis. Because each shape function is only non-zero in a small region of 
the domain, many of the shape functions have no non-zero values in common, and this leads to sparsely 
populated matrices. I€ the equations are ordered carefully, considerable banding of the matrices can be achieved, 
leading to substantial economies in calculation time and computer memory requirements. 

The finite element method for axisymmenic stress elements is usually formulated from virtual work principles 
(eg. Zienkiewicz (1977), Smith (1982)). The virtual work formulation leads to identical equations to those 
obtained above with the Galerkin weighted residual method. 

4.5 Time integration 

Finite element discretisation of the spatial solution d o m  leads to a set of n second order linear differential 
equations in time, with n time dependant variables (equauon (4.20)). In general, this set of equations cannot be 
solved analytically, and must be numerically integrated forward in time from the instant the hammer ram suikes 
the cushion assembly. There are numerous numerical schemes through which this can be accomplished. 
Zienkiewicz (1977) has shown how most of these schema can be derived using the weighted residual method. 
Some commonly employed schemes have been reviewed m detail by Bathe and Wilson (1976). Thls section 
bnefly introduces three of the most widely used numerical m e  integration schemes. 

In the central difference scheme, the displacement at time r+At is related to the displacements at t and t-At by 

Since the displacement at time I+& is calculated from the equilibrium at time 1 ,  this scheme is called an explicit 
method. Solution of equation (4.23) requires inversion of the mass matrix (M). If the only non-zero terms in 
the mass matrix are on the diagonal, this is a trivial exercise. A mass matrix with only non-zero diagonal terms 
is a lumped mass matrix, since the physical interpretation is a model with mass concentrated only at the nodes. 
Such a mass matrix can be formed by judicious selection of the shape functions, which can be different from 
those used to form the stiffness matrix, and can be discontinuous, as derivatives of these functions are not 
required. 

An explicit integration scheme such as that described above can save much computer time when used in 
conjunction with a lumped mass matrix. However, the scheme is only conditionally stable (Bathe and Wilson, 
1976). Unconditional stability is only guaranteed when the time-step At is less than Atcrit, where 

Tn is the smallest natural period of the finite element sysEm. 

In the constant-average-acceleration scheme (Newmark $ = the displacement at time t+At is found by 
considering the equilibrium at time t+At. Such methods are termed implicit. The new displacements are 
calculated at each time-step using the following equation. 

This scheme is unconditionally stable and exhibits no numsrical damping, but requires reduction of an effective 
stiffness matrix. Since this mamx is a linear combination of the stiffness and mass matrices, it always contains 
non-zero off-diagonal terms. 

The Wilson 0 scheme calculates the displacements at time r+0At, and then the displacements, velocities and 
accelerations at time t+At. The equilibrium conditiox are satisfied at time r+0At, and so the method is 
implicit. L i e  the consrant-average-acceleration method. reduction of an effective stiffness matrix is required. 
However, the scheme is only unconditionally stable u hen 0 is greater than 1.37 (Bathe and Wilson), and 
exhibits numerical damping at high frequencies. 

These time integration schemes will be compared in the nsxt chapter 



4.6 Plasticity 

The equations of motion formulated in the first section of this chapter were based on an elastic soil mass. 
However, pile driving involves inelastic deformation of the soil. There is a large variety of models of soil 
inelasticity available (eg. Chen and Baladi, 1985). hut only the simplest will be used in the present work. 

In the theory of plasticity, a yield surface in three-dimensional stress space defines the limit of elastic behaviour. 
The stress state cannot pass through the yield surface, and when it is on the yield surface, irrecoverable plastic 
strains can occur. IF the direction of the plastic strain is always normal to the yield surface at the state of stress, 
the plastic flow is said to be associated. 

The equation for the von Mises (1928) yield surface is 

three coordinate axes, and oy is the von Mises yield stress. When combined with the associated flow rule, the 
von Mises model represents the behaviour of an undrained soil (Smith, 1982). There is no volume change 
during plastic flow, and the undrained shear strength is related to the von Mises yield stress by 

Equation (4.4) defines the relationship between stress and strain during elastic deformation. After yield, the 
relationship between stress increment and strain increment can be represented by 

When the von Mises yield law is used with associated flow in axisymmetric coordinates (Yamanda et al, 1968), 
the matrix Dp is defined by 

The deviatoric stresses, represented by the dash, are 

2o, - or- og 20, - o, - 06 209-0,-or 
oz' = 

3 , or' = 3 , and og'- 
3 

(4.30) 

Since the matrix Dp is a function of stress, the set of differential equations represented by equation (4.20) 
becomes non-linear. Writing equation (4.18) in incremental form and substituting the plastic stress-strain 
relationship given by equation (4.28), 

where M and K are defined in equation (4.21), 

and 



fb = JJ, L%lbpL%rdrdz 6a 

The non-linear behaviour is now contained in the term fb, which represents the difference between the plastic 
response and the elastic response. Equation (4.32) is usually solved at a particular time t by using the Newton- 
Rhapson method (Zienkiewicz, 1977). This method commences by solving equation (4.32) without fb to 
obtain an initial estimation of &. fb is calculated using equation (4.34). and equation (4.32) is solved with this 
fb to find a refmed estimate of 6a. These two steps are repeated until 6a  and fb do not change significantly. 
The process is illustrated graphically in Figure 4.5(a). The modified Newton-Rhapson method (Figure 4.5(b)) 
can be used to increase the rate of convergence of the iterative scheme. However, this method requires periodic 
recomputation and reduction of the tangential stiffness matrix, which offsets savings in iteration time. 
Consequently, the Newton-Rhapson method will be used in the work presented in this thesis. 

To solve the pile driving equations, the iterative method described above must be used in conjunction with one 
of the numerical time integration methods described previously. When implicit integration is used, iteration 
must be carried out within each time step until the displacement changes converge. 

4.7 Conclusions 

This chapter derived the differential equations governing the response of a pile embedded in an elastic soil mass 
to hammer impact. Since these equations could not be solved analytically, the weighted residual method was 
introduced as a technique for obtaining an approximate solution. The finite element method was found to be a 
convenient way to obtain numerical solutions, and will be used in all the work which follows. 

Techniques of numerical time integration were briefly described. These techniques will be investigated f h e r  in 
the next chapter. 

The modifications to the governing equations caused by the assumption of von Mises plasticity were discussed, 
and the Newton-Rhapson methods were introduced as a method of solving the non-linear differential equation 
system. The standard Newton-Rhapson method was selected for use in the work which follows, since the 
modified Newton-Rhapson method requires repeated reduction of the structure stiffness matrix. 



5. FINITE ELEMENT ANALYSIS OF THE PILE 

5.1 Introduction 

This chapter examines the propagation of impact waves in an elastic pile using the finite element method. The 
surrounding soil is ignored. The effect of impact wave shape, integration method, element type and node 
spacing on the convergence of the pile stresses is investigated. The level of discretisation required to produce 
accurate results is determined. The effect of radial inertia is examined, and the differences between the responses 
of solid and hollow piles are investigated. 

5.2 The one-dimensional wave equation 

An analytical solution to the equations of motion presented in Chapter 4 

can be obtained when the following simplifications are made. 

1. The soil surrounding the pile shaft has zero stiffness (E, = 0). 

2. The radial inertia term in equation (4.10) is ignored. 

3. The axial stress and strain are taken as uniform across each cross-section 

4. The soil at the pile base has infinite or zero stiffness. 

When these simplifications are applied to equations (4.1) to (4.10), the equation of motion in the vertical 
direction becomes 

where u, and fi are functions of z and t only. Since fz is only non-zero at z = 0, equation (5.1) is a one- 
dimensional wave equation over the rest of the pile. The equation can he rewritten as 

where cP is the axial wave velocity in the pile, defined by 

Solution of this equation is trivial. A stress wave applied at z = 0 will propagate down the pile with velocity 
c p  In this chapter, compressive stresses and strains are defined as positive. Since the wave travels in the 
negative z direction, the solution can he represented as 

If the pile is of length L and the soil at the base of the pile is infinitely stiff, the stress wave will be reflected 
back up the pile after reaching z = -L. On returning to the top of the pile, the wave will be reflected back down 
the pile with a change in sign. Since no energy is radiated from the pile, this process will continue indefinitely. 
At any particular time, the axial stress in the pile can be obtained from the following equation, provided that the 
function fz(t) is taken as zero for negative t. 

This equation is valid in the time interval 



If the soil at the base of the pile has zero stiffness, there will also be a change in sign after the wave is reflected 
from the base. For this case equation (5.5) becomes 

In the following sections, these exact solutions will be used to compare the abilities of several finite element 
schemes to accurately analyse the propagation of impact waves in a pile. 

5.3 Rod elements 

.*. .-- at each node can be used. The ability of three different elements to represent the behaviour of the-pikwill be 
investigated. 

The first element contains two nodes. Linear shape functions are used to represent the variation in uz between 
the nodes for the derivation of the stiffness manix, and step functions are used to derive a lumped mass matrix. 
These functions are shown in Figure 5.l(a). This element leads to the formulation of Smith (1960), since it is 
equivalent to a spring of stiffness EAIAz between the nodes, and a mass of pAAz at each node. (A is the cross- 
sectional area of the pile, and Az is the vertical distance between the nodes.) 

The second element is also two-noded, but limear shape functions are used to derive both the mass and stiffness 
mahices (Figure 5.1@)). A consistent mass mahix with off-diagonal terms is formed by this formulation. The 
stiffness matrix is the same as the element described above. 

The third element has three nodes, and quadratic shape functions are used to derive the stiffness and mass 
matrices. These shape functions are shown in Figure 5.l(c). 

Quadratic shape functions can represent a linear stress variation across an element exactly, whereas linear shape 
functions only allow constant stress within each element. However, this chapter will show that there is little 
difference between the accuracy of solutions obtained with linear elements and quadratic elements, providing the 
node spacing is not too large. For this reason, higher order polynomial shape functions will not be investigated 
The increased complexity of these elements, especially when used in two-dimensional form, was anticipated to 
outweigh any slight numerical advantages. All previous finite element analysis of pile driving used quadratic 
shape functions. 

5.4 The trial problem 

All of the analyses presented in this chapter employed a pile with properties typical of offshore piles. The pile 
was taken to be 20 m long, and the base was rigidly supported. Typical hammer properties were also selected. 
The properties of the pile and the hammer system are shown in Figure 5.2. Similar pile and hammer properties 
were used by Simons (1985) and Smith and Chow (1982). 

5.5 Hammerlpile impact 

The first series of analyses was performed with the impact function caused by the hammer directly striking the 
top of the pile. This function was used by Simons (1985) in all his analyses. Each of the three elements 
described above was used with node spacings of 0.5.0.25, and 0.125 m. Time integration was performed using 
the constant-average-acceleration method with a time-step of 0.1 Azlcp. Preliminary calculation had shown this 
scheme ensured any numerical errors due to the time discretisation were small when compared with those due to 
the spatial discretisation. 

The two-noded lumped mass element was used first. Figure 5.3 shows the variation in axial force (ozA) along 
the pile 3 milliseconds after hammer impact. At this time the wave is three quarters of the way down the pile 
for the first time. The figure shows the axial force oscillating with a frequency which is dependent on the node 
spacing. The maximum stress exceeds the theoretical stress for all node spacings, with the finest mesh recording 
the highest stress. Figure 5.4 shows the variation in axial force when the stress wave is three quarters of the 
way down the pile for the third time. The accuracy of the solutions has clearly deteriorated. Figure 5.5 shows 
the variation of the force at the toe of the pile with time over the course of the analysis. The oscillations 



observed in the spatial variation of axial stress are evident in the time variation of the toe force, and the peak 
force is overestimated on both the occasions that the wave front strikes the base. The variation of head 
displacement with time is shown in Figure 5.6. Despite the large oscillations occurring in the stresses and the 
toe force, the calculated head displacements are in close agreement with the theoretical solution, with some small 
erroneous oscillation evident at later times for the coarsest mesh. 

This is a characteristic of the finite element method. Displacements may be estimated quite accurately with 
coarse meshes and shape functions which do not model thebariation of internal force well .~owever,  yantities 
which are related to derivatives of displacement, such as stress, are much harder to model accurately. 

When the analyses were repeated with the two-noded consistent mass element, the results shown in Figures 5.7 
to 5.10 were obtained. Figure 5.7 shows the axial stress 3 ms after impact. Compared with the results from the 
lumped mass analysis (Figure 5.3), the oscillation in the decaying portion of the wave is considerably reduced, 
and the maximum stress is underestimated rather than overestimated. The ageement between the exact solution 
and the finite element solution improves as the node spacing is reduced. However, whereas the lumped mass 
element showed little erroneous stress preceding the wave front, even after 19 ms, the consistent mass solution 
exhibits considerable leading stress oscillation, the period of which is a function of node spacing. Figure 5.8 
shows that after 19 ms the solution has deteriorated considerably, with oscillation evident over the entire wave. 
The toe force (Figure 5.9) also shows much better agreement over the decaying portion of the wave with the 
exact solution than does the lumped mass solution, but considerable oscillation precedes the wavefront. This 
oscillation is of such magnitude that the head displacement is affected (Figure 5.10). 

Smith and Chow (1982) refer to disagreement in the literature regarding the superiority or otherwise of lumped 
mass elements, but claim that consistent mass elements are clearly superior. The analyses presented here show 
that when a discontinuous impact force is applied, neither type of element is clearly superior. The consistent 
mass element represents the stress wave more accurately, but causes erroneous oscillating stress to precede the 
wavefront, to the extent that the resulting head displacement solution is actually worse than that predicted when 
lumped mass elements are used. 

Figures 5.11 to 5.14 show the results obtained with the three-noded consistent mass element. These results 
only vary slightly from those obtained with the two-noded consistent mass element. There is a slight 
improvement in the representation of the peak stress, and the deterioration between 3 ms and 19 ms is less 
marked. The oscillation in front of the wave is slightly reduced, and consequently the head displacement is 
improved. However, the displacements are still not quite as good as those computed with the lumped mass 
element 

These analyses have shown that, of the three elements tested, the three-noded consistent mass element provided 
the best approximation of the stress distribution in the pile, together with reasonably good displacements. The 
analyses which follow will be performed mainly with this element, although one more set of analyses will be 
performed with a different impact function.and the two-ncded consistent mass element to confirm the superiority 
of the three-noded element. 

Despite the use of very fine meshes and three diiferent types of element, the pile stresses obtained in the above 
analyses are poor approximations of the correct stresses. The problem lies not with the finite element 
approximation, but with the impact function. The accuracy of the finite element method depends on the ability 
of the elements to assume a shape which is a good approximation of the exact solution. The hammerlpile 
impact function contains a discontinuity in suess at the wavefront. The exact solution requires this 
discontinuity to propagate through every p d c l e  in the pile. In a finite element solution, the discontinuity 
should propagate through the elements. However, since the shape functions have C1 continuity through the 
elements, the finite element mesh cannot accurately represent this propagation. There are specific finite 
elements available (Oden and Wellford, 1975) which accommodate travelling discontinuities, but such elements 
are only one-dimensional. Since the objective of the current project is to accurately model the complete pile 
driving process, adoption of such elements for the pile was not considered appropriate, as the problem of 
propagating the discontinuity would then be transferred to the soil. 

An alternative approach is to use a hammer model which does not cause a stress discontinuity. The impulse 
functions for both the hammerlcushion and hammer/cushion/anvil models described in Chapter 3 are continuous. 
The effect of employing these impact functions is investigated in the following two sections. 

5.6 Hammerlcushion impact 

The shape of the hammerlcushion impulse function is indicated in Figure 3.2 (kc* = 6.25). The second series of 
analyses was performed using this impulse function and three-noded quadratic elements. The variation of axial 
force along the pile 3 ms after impact is shown in Figure 5.15. A significant improvement in accuracy over the 



results shown in Figure 5.11 is evident With the exception of the coarsest mesh, the only observable errors 
occur immediately in front of the wave. The axial forces 19 ms after impact are shown in Figure 5.16. Some 
deterioration in accuracy is evident, but the improvement over the results shown in Figure 5.12 is immense. 

The improvement in accuracy carries over to the toe force and the head displacement (Figures 5.17 and 5.18). 
Again, the only significant errors occur immediately in front of the wave. 

5.7 Hammer/cushiou/anvil impact 

Although the hammer/cushion impulse function is continuous, there is a discontinuity in slope at the kont of 
the wave. The slope of the hammer/cusbion/anvil impulse function is continuous at all times. This suggests 
that the hammer/cushion/anvil impact could improve the accuracy of the analysis even further. 

The third series of analyses was performed with the hammer/cushion/anvil impulse function and three-node 
quadratic elements. The variation of axial force along the pile 3 ms after impact is shown in Figure 5.19. Only 
the coarsest mesh causes visible errors, and these errors are very small. The erroneous stress oscillation in front 
of the wave is almost eliminated. After 19 ms (Figure 5.20) there is minimal deterioration in accuracy, even 
wlth 0.5 m node spacing. 

These observations can also be made of the variation of toe force and head displacement with time. For node 
spacings of 0.25 m and 0.125 m, the finite element solutions are virtually indistinguishable from the exact 
solutions. 

After the investigation of hammerbile impact solutions, threenode quadratic elements were selected over two- 
node linear elements. However. the results vresented in that section did not conclusivelv show that the auadratic ~~ ~~ ~ 

elements were superior. ~d establish-this superiority, a set of analyses was performed using the 
hammer/cushion anvil impulse function with twenoded linear elements. The axial force after 3 ms is shown in 
Figure 5.23. A marginal decrease in accuracy over the results shown in Figure 5.19 is distinguishable. This 
loss of accuracy becomes more evident after 19 ms (Figure 5.24), and is also visible in the toe force and head 
displacement graphs (Figures 5.25 and 5.26). 

The numerical experiments described above show that spatial discretisation errors are minimised when a 
continuous force impulse function, such as that resulting rrom a hammer/cushion/anvil impact, is used. If 
three-noded quadratic elements are used with 12 or more nodes in the rising portion of the wave, very accurate 
approximate solutions can be obtained. 

5.8 Time integration methods 

The analyses described above were performed with the Newmark P = method (the constant-average- 
acceleration method) and a very small time step (O.lAzlcp) to ensure that the time discretisation errors were 
much smaller than the spatial discretisation errors. This section turns attention to the different methods of time 
integration described in Chapter 4, and the effect of time-step size on the solution. The Newmark $ = 
method will be referred to as the average acceleration method, the Wilson 8 = 1.4 method will be called the 
Wilson method. 

To highlight the differences between the three selected methods of time integration, the hammer/impnlse 
function was used with the coarsest element mesh (Az = 0.5 m). Using a time step of 0.lAzlc the responses 

P' . presented in Figures 5.27 and 5.28 were obtained. There is little difference between the results obtamed with the 
average acceleration and the central difference methods, while the Wilson method (due io i s  numerical damping) 
smooths some of the force oscillation. By 19 ms, the Wilson method has rounded off the wave shape 
significantly. 

When the time step is reduced to 0.5Azlcp, the oscillation in the central difference solution increases, while that 
in the average acceleration solution decreases (Figure 5.29). The numerical damping provided by the Wilson 
method increases, further attenuating the solution. After 19 ms, the peak pile force predicted by the Wilson 
method is less than 50% of the exact solution (Figure 5.30). This reduction is also evident in the toe force 
(Figure 5.31) and, to a lesser extent, in the head displacement (Figure 5.32). 

In the preceding section, a hammer/cushion/anvil impulse applied to a pile model of three-noded quadratic 
elements with a node spacing of 0.25 m was shown to produce negligible discretisation errors. A set of analyses 
was performed with this model using a time step of 0.5Azlcp for each of the integration methods. Figure 5.33 
shows that by 3 ms the Wilson method has caused a slight reduction in the maximum pile force, while the 
other two methods are in close agreement. After 19 ms the Wilson solution shows a maximum axial force 25% 



less than the exact solution, while the central difference method shows increased oscillation in front of the wave 
(Figure 5.34). The force reduction due to the Wilson method is also evident in the toe force (Figure 5.35). 

The analyses described show that the numerical damping in the Wilson method tends to smooth out higher 
frequency oscillations, but can cause significant attenuation of the stress wave. Although this may be acceptable 
in the analysis of real world problems, the aim of the present study is to obtain accurate solutions to the 
theoretical equations associated with pile driving. Consequently, a method containing such &cia1 numerical 
damping is not acceptable. The Wilson method was used by Smith and Chow (1982). 

The explicit cennal difference method shows a tendency to ampliify time discretisation errors when the problem 
contains frequencies which are close to the critical frequency. This method was used by Simons (1985), which 
partly explains the highly oscillatory results he obtained. 

The average acceleration method shows no numerical damping, and is stable even for large time steps. For all 
the time-steps tested, the average acceleration results were as good as or better than the results of the central 
difference method. The explicit central difference method only possesses a computational advantage when 
lumped mass elements are used. However, when this is the case, smaller time-steps and node spacings are 
required to achieve aceuracy equivalent to the average acceleration method. 

For the reasons discussed above, the constant-average-acceleration method was selected for use in all the 
analyses which follow. The effect of time step on this method was examined using the accurate spatial 
discretisation presented previously and the hammer/cushion/anvil impact. Time steps of Azlcp, 0.5Azlcp and 
O.lAzlcp were used. 

Figure 5.37 shows little difference after 3 ms between the axial forces calculated using the different time steps. 
However, after 19 ms the largest time step shows noticeable errors (Figure 5.38). The error caused by the large 
time step is clearly visible in the graph of pile toe force (Figure 5.39), where the maximum force is 'missed'. 
However, there is little difference between the response predicted by time steps of 0.5Azlcp and O.lAzlcp in any 
of the graphs, so a time step of 0.5Azlcp can be considered adequate for this problem. 

5.9 The effect of radial inertia 

In the first section of this chapter, assumptions were made that the radial inertia in the pile was negligible, and 
that the stress and strain were uniform across each cross-section. These assumptions allowed the one- 
dimensional wave equation to be obtained from the general equations presented in Chapter 4. This section will 
examine the validity of the assumptions. 

Firstly, a solid circular pile will be considered. To include the vertical motion of the pile, each node is given 
two degrees of freedom. Three different elements are used to evaluate the effect of radial inertia on the response 
oirhc solid pile. The tirst two x c  ihrcc-noded clc~nenls with quarlratic sh3pc functions in the vertical dircctior~ 
and l i n w  shane funaions in the radial direction (Fieure 5.41(a)). Plane sections arc assumed to remain nlanc. . - . ,, 
The first element uses a consistent mass matrix for the vertical direction, but ignores the mass for the radial 
direction. The second element uses a consistent mass matrix for both directions. The third element is an eight- 
noded quadrilateral, which uses quadratic shape functions for all directions (Figure 5.41(b)). The stiffness and 
consistent mass matrices are found by integrating numerically, using four Gauss points (Zienkiwicz, 1977). 

The first element closely approximates the radial displacement which accompanies the one-dimensional axial 
wave analvsed in the ~revious sections. The second element is a first order an~roxirnation to the effect of ladial 
inertia. ~ i e  third elekent does not require plane sections to remain plane, 6; requires the hammer force to be 
distributed uniformly between the nodes at the top of the pile. Since plane sections are not required to remain 
plane, the third element IS expected to most closely model the Due effect of radial inertia. 

A node spacing of 0.125 m was used for all meshes, with a time step of 0.5Azicp. 

The results plotted in Figure 5.42 show that the addition of radial inertia slightly decreases the rise time of the 
axial force and fractionally delays the peak. The results obtained with the second three-node element are in 
reasonable agreement with those obtained with the eight-node element, but the eight-node element results show 
some additional oscillation in the decaying portion of the wave. Figure 5.43 shows that this force oscillation is 
associated with an oscillating radial displacement. The addition of radial inertia increases the maximum radial 
displacement by approximately 15%. 

The above analyses modelled a solid pile. However, the effect of radial inertia may be more pronounced in a 
hollow pile, since the mass is concentrated at the edge of the pile. To model a tubular pile, three elements 



analogous to those used above were selected (Figure 5.44). The first three-noded element allows radial 
movement, but neglects radial inertia. The second three-noded element includes radial inenia, but assumes plane 
sections remain plane, ignoring bending effects. The thud element is eight-noded and uses quadratic shape 
functions for both directions. Bending and inertia in both directions are accounted for. 

The properties of the elements were specified so that, for a wall thickness of 0.05 m, the pile impedance, 
stiffness, and axial wave velocity remained the same as those specified in Figure 5.1. Figure 5.45 shows the 
variation of axial force along the pile 3 ms after impact. Radial inenia is seen to have a much greater effect on 
the response of a hollow pile than on the response of a solid pile. The agreement between the three-noded and 
eight-noded radial inertia elements is not particularly good, suggesting that much of the difference is due to 
bending effects in the pile walls. The r ad i i  displacement of the eight-noded element model shows considerable 
oscillation (Figure 5.46). The toe force and head displacement graphs also show some variation between the two 
models, although the basic features are the same (Figures 5.47 and 5.48). 

These two sets of analyses show that radial inertia affects the response of the pile, particularly when the pile is 
hollow. However, ignoring the radlal inertia does not lead to gross errors, and reduces the amount of oscillation 
present in the travelling waves. In the case of hollow piles, the exact response of a particular pile is dependent 
on the wall thickness and the Poisson's ratio of the material, rather than just the pile impedance and wave - 

velocity. In a study such as this, introduction of too many additional parameters is undesirable. Consequently, 
in the work which follows, the response of the pile will be modelled by three-noded elements which ignore the 
effect of axial inertia T h ~ s  model will represent solid piles well, and hollow piles quite well. 

5.10 Conclusions 

A ]age  number of numerical experiments have been performed to determine the appropriate element type, node 
spacing, integration type, and time-step size needed to accurately model the propagation of an impulse wave in a 
pile, The following conclusions have been drawn. 

1. To obtain accurate results, a continuous impulse function with no slope discontinuity should be used, such 
as the hammer/cushion/anvil impulse presented in Chapter 3. 

2. Three-noded quadratic rod elements with consistent mass matrices yield the most accurate results (of the 
three elements considered). 

3. Very accurate results were obtained with 12 nodes in the rising portion of the wave, and 6 nodes gave 
adequate representation. 

4.  The constant-average-acceleration scheme is the most accurate and stable integration method of the three 
examined. 

5. A time step of 0.5bicp is sufficient to give accurate answers. 

6.  Errors innoduced by ignoring the effects of radial inertia are quite small, and an adequate representation of 
overall pile behaviour can be obtained by ignoring radial inertia and assuming plane sections remain plane. 
However, radial inenia and bending in thin-walled piles could significantly affect the shape of the reflected force 
often measured at the pile head during driving. This is an avenue for further research which will not be pursued 
in this thesis. 

The analyses performed in this chapter assumed that the soil surrounding the pile had no stiffness and no mass. 
The next chapter examines the effect of finite stiffness and mass in the soil surrounding the soil shaft. 



6. ELASTIC WAVE RADIATION FROM THE PILE SHAFT 

6.1 Introduction 

This chapter examines the propagation of elastic waves from the pile shaft into the surrounding soil. The plane 
strain shear and dilation waves are investigated first. A detailed investigation of fmite element mesh truncation 
follows. Simplified models for plane strain shear and dilation wave transmission are developed in the course of 
this investigation. A finite element model is used to examine the effect of pile flexibility on the response, and 
the significance of dilation wave transmission investigated. Finally, the influence of soil under the pile toe on 
the shaft response is examined. 

6.2 Shear wave transmission 

Since the stiffness of apile is usually far greater than the soil stiffness, as a first approximation the pile can be . - 

considered rigid (Novak, 1977). The soil surrounding the shaft will then be in a plane strain situation (Figure 
6.1). Equation (4.9) can be combined with equations (4.4) and (4.6) to form an equation of motion for vertical 
displacement of the soil. 

The vertical displacement (u2) is a function of r and t only. The external load (f,) is only non-zero at the pile 
radius. When r is greater than R,  equation (6.1) is a one-dimensional cylindrical wave equation, which can be 
rewritten as 

where cs is the shear wave velocity in the soil, 

This equation can be solved analytically for harmonic motion (Novak, 1977), or numerically for any exciting 
force. In the work which follows, three-node axisymmetric line elements with quadratic shape functions will be 
used to solve equation (6.2). 

The propagation of axisymmetric shear waves from the pile was examined using a soil disk of unit thickness. 
Typical soil properties of Gs = 45 MPa and ps = 2000 kg/m3 were used. These properties are similar to those 
used by Simons (1985) and Smith and Chow (1982). The shear wave velocity in this soil is 150 m/s, which is 
much slower than the axial wave velocity in the pile analysed in the previous chapter. 

The shear force applied to the soil disk by the pile was taken to have the same shape as the axial wave travelling 
in the pile. The ram/cushion/anvil impact of the hammer shown in Figure 5.2 was used to provide this shape. 
The distance between soil nodes reauired to ensure 12 nodes in the rising oortion of the shear wave was 
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considerably smaller than the pile node spacing, since the wave velocity was much slower. A node spacing of 
0.0075 m was used. The axisymmetric disk and the corresponding finite element mesh are shown in Figure 6.2. 
The finite element mesh was extended to 3.25 m, and the analysis was stopped after 12 milliseconds to ensure 
that no erroneous boundary reflections interfered with the results. 

Figure 6.3 illustrates the computed propagation of the shear wave away from the pile in terms of stress, and 
Figure 6.4 shows the propagation of the same wave in terms of total force. The total force was computed by 
integrating the stress over the cylindrical area at each radius. As the wave travelled away from the pile, the wave 
shape sharpened, and the peak force increased. 

Researchers using finite elements to investigate pile driving (eg. Smith and Chow, 1982; Simons, 1985) have 
assumed that, since the stresses decrease as the wave travels away from the pile, satisfactory results can be 
obtained by increasing the radial node spacing in rough proportion to the radial coordinate, r. A typical mesh of 
this type is shown in Figure 6.2(c). The radial sizes of these elements are taken from Simons (1985). 



The use of meshes with elements of varying radial size implies that dynamic analysis of piles can be 
accomplished with similar meshes to those used for static analysis. However, this is not the case. Although 
the stress wave decreases in magnitude in approximate proportion to 1/G while travelling outwards, any 
reflected portion of the wave increases in magnitude when travelling back towards the pile, also in approximate 
proportion to 1 s .  

If the size of the outer elements is increased, these elements may not be able to represent the travelling wave 
adequately. In this case, high frequency components of the wave will be reflected. As the reflected portion 
travels back towards the pile, the stress magnitude will grow, and significant distortion of the solution could 
occur. 

As an example of this, the displacement of at the inner radius of the model shown in Figure 6.2(c) was 
calculated, and the response is plotted in Figure 6.5. The solution obtained previously from the accurate finite 
element analysis showed that the pile displacement should increase rapidly to a maximum, and then decrease 
relatively slowly. However, the response of the mesh wilh increasing radial element sizes shows considerable 
oscillation. 

This investigation has shown that accurate analysis of a propagating shear wave can~only be obtained with a 
mesh f i e  enough to reuresent the travelling stress wave correctly. Since the shear wave sharpens slightly as it 
travels away fr& the pile, the clcmenl si~csliould be d?crcn$ct<as the ndlus incrc3ses. rather than Ace verid. 
IIowcvcr, the slilupcning is only slight, and results of sufficlrnt accuracy can he obtained with a uniform mesh 
fine enough to give an adequate representation of the wave leaving the pile. 

6.3 Dilation wave transmission 

The expansion or contraction of a cylindrical cavity causes a wave of compression or tension to be transmitted 
radiallv. This wave mav be termed an axisvmmetric dilation wave. As the wave travels through the soil, 
stress& are generated boih tangent and norm2 to the wave front. A pile subjected to a compressive-axial wave 
will deflect in the radial direction, as discussed in the previous chapter. This causes an axisymmetric dilation 
wave to be transmitted into the soil. 

Assuming plain strain, equation (4.10) can be combined with equations (4.4) and (4.9) to yield an equation of 
motion for the radial soil displacement. 

Since fr is only non-zero at the pile radius, elsewhere equation (6.4a) becomes 

Lame's constant for the soil (As) is related to Young's modulus (E,) and Poisson's ratio (vS) by 

If a displacement potential (@) is defined by 

then equation (6.5) can be rewritten as 

Integrating both sides with respect to r, a cylindrical wave equation in f~ is obtained. 



The dilational wave velocity in the soil is 

To investigate the propagating dilation wave, the soil disc and finite element mesh shown in Figure 6.2 were 
used. The hammer impulse function used to examine the shear wave propagation was applied again, but this 
time in the horizontal direction. Since the dilation wave velocity in the soil is 497 m/s, the node spacing was 
increased to 0.025 m, and the mesh was extended to 7.5 m to prevent any houndaq reflection influencing the 
solution. 

The calculated radial pile displacement is shown in Figure 6.6. Figure 6.7 shows the propagation of the dilation 
wave from the pile in terms of stress, and Figure 6.8 shows the same wave in terms of total force. Like the 
shear wave, the dllation wave sharpens as its distance from the pile increases, and the peak total forceincreases. - 
However, unllke the shear wave, a region of tensile stress develops behind the wave as it travels away from the 
pile. 

The displacements calculated with the mesh shown in Figure 6.2(c) (extended to 7.5 m) are also shown in Figure 
6.6. Again, reflections caused by increasing the node spacings distort the solution. 

Like the analysis of propagating shear waves, accurate analysis of propagating dilation waves requires a 
reasonably uniform mesh of sufficient fineness to model the shape of the wave transmitted from the pile. 

6.4 Time-domain transmitting boundaries 

In the two analyses described above, the mesh was extended far enough to ensure that the waves did not reach the 
boundary within the time domain of interest, preventing erroneous reflections. However, such a procedure is 
very limiting. Figure 6.5 indicates that the pile does not return to rest for some time, and so a much larger 
mesh would be required to correctly model the complete response. (In this case, the pile will never return to 
rest, but the analysis could he carried out until the pile was virtually at rest.) In static analyses, fixing the 
boundary at some point suitably distant from the region of interest allows calculation of accurate results. 
However, in dynamic analyses waves reflecting from a distant houndary can return with a significant amount of 
energy. Consequently, the finite element mesh must be truncated with a boundary which will not cause 
unrealistic reflection of impinging waves. There are many such boundaries available in the frequency domain, 
but problems involving non-linear hehaviour of the solid are most readily solved in the time domain. Time- 
domain transmitting boundaries are therefore required for this study. 

The various boundaries of this type which are in common use have been reviewed and compared by Wolf (1986). 
Most of these boundaries are formulated on the orinciole of no enerev reflection from the houndarv. However. 
such boundaries give inaccurate results when s;hjected to stress w&es with non-zero time averages. In their 
paper introducing the viscous boundary (the most popular time-domain transmitting boundary), Lysmer and 
Kuhlemeyer (1969) warned that the boundary should only he used with loads having a vanishing time average. 
Loads which do not satisfy this requirement cause the finite element mesh to undergo rigid body motion. This 
restriction theoreticallv Drevents the aoulication of these boundaries to the oile driving oroblem. The inabilitv 
of t l x  boundary 10 suP6rt sntic 10dd ,;nb Uie resl~l~ing rigid body niolion pr&cnt accurik calcul3tion of rcsidui 
stresses and ah,olote displ,iccmcnts. Nevc~theless, ollrer workers (Simons, 1985: Smith and Chow, 1982) have 
used houndaries which reflect no energy in the finite element analysis of pile driving, ignoring the rigid body 
motion, 

More rigourous and generally applicable houndaries are available (see for example Engquist and Majda, 1979), 
but simplicity and ease of implementation has meant that the classical viscous boundary and related methods are 
still widely used. Frequency dependent transmitting boundaries for shear and dilation proposed by Novak (1977) 
and Novak and Mitwally (1988) will he discussed later. 

6.4.1 A review of time-domain transmitting houndaries 

Most of the transmitting boundaries reviewed by Wolf (1986) are derived on the assumption that no energy 
should be reflected by the boundary (ie. the boundary is a perfect absorber of energy). This is equivalent to 



saying that the boundary transmits all Ule aniving energy into the far field, permitting no rcflcction from thc far 
fieltl. In dlc discussion which follows, sucl~ boundaries will bc termed zero reflection bocndariec. 

The supe~position boundary (Smith, 1974) is based on the principle that a free boundary reflects a wave of 
opposite sign to that reflected by a fixed boundary. The problem is duplicated, with a free boundary applied to 
one mesh and a fixed boundary applied to the other. Half of the exciting force is applied to each mesh, and the 
solutions are combined. The waves reflected from the boundary are of opposite signs and so cancel out Since 
the reflected waves do not travel back into the mesh, usually only the part of the mesh adjacent to the boundary 
need be duplicated. As no energy is reflected, the superposition boundary is a zero reflection boundary. 

The viscous boundary (Lysmer and Kuhlemeyer, 1969) is the simplest and the most widely used truncating 
boundary. The far field is replaced by disnibuted damping on the boundary, whlch absorbs almost all the energy 
in the impinging waves. The viscous boundary is discussed in detail in the next section. It is a zero reflection 
boundary in one dimension, and almost a zero reflection boundary in two dimensions. 

The doubly asymptotic boundary (Underwood and Geers, 1981) converges to the correct solution as the frequency 
tends to zero, and also as the frequency becomes very large. A spring of appropriate stiffness is used so that, as 
the frequetl~y tends to zero, the solution approaches the static solution. At high frequenctes the effect of the 
spring is small in comparison w~th  the effect of a dashpot, and so the second part of the solution consists of a 
viscous dashpot. The damping constant is identical to that used in the viscous boundary. The spring and the 
dashpot are combined in parallel. Since the boundary contains a spring, some energy is reflected back into the 
mesh. 

In the paraxial method (eg. Cohen and Jennings, 1983) the boundary condit~on is expressed as a differential 
equation which only allows the propagation of waves outwards, preventing any reflecnon. Consequently, it is a 
zero reflection boundary. 

The extrapolation method (Liao and Wong, 1984) prescribes the displacement of the boundary nodes by 
extrapolating from the displacements of adjacent nodes at preceding time steps. The waves are effectively 
allowed to travel through the boundary with minimal disruption. Consequently, the extrapolation method 
approximates a zero reflection boundary. 

Several workers have compared two or more of the methods described above. Cohen and Jennings (1983) 
compared the paraxial method with the viscous method, and concluded that the paraxial method offered a slight 
increase in accuracy for a significant increase in complexity. Simons (1985) compared the superposition method 
with the viscous method, and found the two methods were in close agreement Wolf (1986) used all the methods 
mentioned above to calculate the response of a semi-infinite bar on an elastic foundation subject to one cycle of 
sinusoidal loading, and compared the resulting approximations with an analytical solution. He found that, with 
the exception of the doubly asymptotic method, the different methods gave similar results. The doubly 
asymptotic method was found to cause significant reflection. 

With the exception of the doubly asymptotic method, researehers have generally found the other methods are in 
close agreement. This should be expected, since they are all good approximations to a zero reflection boundary. 
Differences between them are an indication of their numerical efficiency, rather than their theoretical accuracy. 
The viscous boundary will now be examined in detail, since it will show characteristics common to all 
boundaries which model a zero reflection boundary. 

6.4.2 Derivation of the viscous boundary 

Consider a semi-infinite rod. The equation of motion for axial deformation of the rod may be derived by 
considering the dynamic equilibrium of an infinitesimal element. The x axis is Eken to run along the axis of 
the bar, and the displacement at any point will be denoted by ulx). Using E to denote Young's modulus and p to 
denote the density of the bar, the equation of motion may be written as 

This is simply a one-dimensional wave equation in which the axial wave velocity cp is given by 



The viscous boundary is usually derived by considering the propagation of a harmonic wave (Lysmer and 
Kuhlemeyer, 1969). but an alternative derivation for a transient wave of arbitrary shape can be obtained with a 
method similar w that used by Booker (1985) to derive a transmitting boundary for a spherical dilation wave. A 
wave of arbitrary shape propagating along the bar in the positive x direction may be represented by 

in which t represents the elapsed time. 

Denoting the derivative off  with respect to the tern in brackets by f, and treating compressive strains and 
stresses as positive, the strain (E) and the stress (0) at any point x may be expressed as 

and 

At any particular x coordinate xb, the derivative f is identical in magnitude and opposite in sign to the time 
derivative $/a. The velocity at this point may therefore be expressed as 

Comparing equations (6.14) and (6.151, the stress at the boundary point can be related to the velocity at the 
boundary point as follows: 

This is identical to the boundary restraint provided by truncating the bar and applying a viscous damper with 
damping constant c = p cp. 

A viscous boundary for shear wave propagation may he derived in a similar way. In the following equations z 
represenB the shear stress, G the shear modulus, and cs the propagation velocity of the shear wave. The shear 
displacement at point x is represented by v(x) .  The shear stress is 

where 

The viscous boundary can provide an exact model of wave transmission to the far field in any situation 
satisfying the one-dimensional wave equation. 

6.4.3 Reflection from the far  field 

Misymmetric situations involve geometrically attenuating waves. The wave equation for cylindrical shear 
waves is the same as the wave equation for axial waves in a wedge with linearly varying cross-sectional area, 
indicating that the waves attenuate at the same rate in both situations. Consequently, a simple one-dimensional 
bar of varying cross-sectional area can be used to illustrate the effect of a zero reflection boundary on 
geometrically attenuating waves. 

Consider the application of an axial step load of stress intensity o to the end of an infinitely long bar with 
constant cross-section. An axial stress wave will propagate down the bar at velocity cp. The displacement of 
the end of the bar (uo) may be calculated by integrating the strain over the length of the bar. At time t l  the 
wave has only propagated to x = cp 11, so the integration need only be performed to this point. 



This equation shows that, after the step load is applied to the end of the bar, the end moves with constant 
velocity. The progress of the wave in the far field has no effect on the near field. 

Now consider a bar consisting of two uniform cross-sections. When the wave reaches the point at which the 
cross-section changes, partial reflection will occur. Clearly, if this change in impedance occurs in the far field, 
trnncating the problem to the near field with a zero reflection boundary will cause errors. 

Suppose the cross-sectional area of the bar increases in small steps along the bar. Each time a wave reaches a 
change in impedance, part of the wave is reflected and part is transmitted. As the wave propagates into the far 
field, reflecuons from the cross-sectional changes will be transmitted hack into the near field. 

Now, if the cross-section of the bar varies in proportion to the distance from the end, and the steps between the 
impedance changes are reduced, in the limit the rod becomes a wedge with a coi~lifuous change in impedance 
(Figure 6.9(a)). 

The equation of motion for axial waves in such a wedge is 

This equation can be solved numerically for a step excitation by Laplace transform or finite element methods. 
The propagation of the wave in a stepped bar (Figure 6.9@)) can be solved by the method of characteristics. 

Each length of constant cross-section is taken as an element. Each element has a unique impedance of Z = 
EAlcp. Consequently, when a wave front passes through the interface between two elements, the magnitude of 
the transmitted wave will change, and a reflected wave will be generated. The magnitudes of the transmitted and 
reflected waves generated by a wave travelling from an element with impedance Z1 to an element with impedance 
22 may be computed by the following two formulae, in which v denotes the wave particle velocity (Randolph, 
1989). 

221 
Vtrammirted = - z1+z2 Vincident 

z1-z2 
vreflecred = Z1+ZZ Vincident 

All elements are the same length, so the time step is chosen so that the wave travels the length of an element in 
one time step. Whenever a wave front reaches the interface between two elements, an upwards travelling wave 
(up wave) and a downwards travelling wave (down wave) are generated. At any time, the up and down waves at a 
particular interface are dependant only on the values at the previous time of the down wave at the element 
interface immediately above, and the up wave at the interface immediately below. Using the subscripts u and d 
to represent up and down respectively, and numbering the interfaces as shown in Figure 6.9(c), the magnitudes 
of the up and down wavefronts at interface i can be computed with the following equations. 

The variables in the scheme are the magnitudes of the up and down waves at each interface. The process can be 
initiated by introducing a step wave at the top of the wedge. The above equations can then be used for each 
interface at each time step. The velocity at the end of the bar can by found by summing the contribution of each 
wave front, and the displacement by integrating this velocity with time. 

The result. of several such analyses are shown in Figure 6.10. As the size of the elements is decreased, the 
solution approaches the exact solution for a wedge. 



The above analyses show that a C O ~ ~ ~ ~ U O U S  variation of impedance can be modelled by a discrete series of 
impedance changes. Discrete changes in impedance in the far field cause a discrete series of reflections into the 
near field, so evidently a continuous variation in impedance results in continuous reflection from a wave front in 
the far field. If a zero reflection boundary is used to mncate the problem, preventing the reflection from the far 
field, the velocity of the end of the bar tends to a constant value. The results from an analysis with a mncated 
mesh are shown in Figure 6.11. 

This study has shown that the rigid body motion of an axisymmetric finite element meshes truncated with zero 
reflection boundaries is caused by the prevention of far field reflection, Zero reflection boundaries are clearly 
inappropriate in such situations. 

6.5 A transmitting boundary for axisymmetric shear waves 

6.5.1 Derivation of a shear boundary 

The viscous boundary condition is based on an expression which relates the internal stress at a particular point in 
a one dimensional mediumJ~&e velocity at that point (equation 6.16). This expression does not hold for the 
propagation of cylindrical waves. However, a similar expression can be found by considering the form of a 
travelling cylindrical wave. 

A cylindrical shear wave travelling radially decreases in magnitude. An exact expression for the form of a 
cylindrical wave cannot be found, but (for intermediate values of wave front position) the form of a cylindrical 
wave may be closely approximated (Whitham, 1974) by 

where v is used to represent the horizontal displacement 

The validity of this approximation is demonstrated in Figure 6.3, where the shear wave is shown to decrease in 
proportion to I/&. 

Denoting the derivative off with respect to the term in brackets by f ,  the shear strain and the swess at any radius 
r may be found: 

At any particular radius rb, the derivative f is identic& in magnitude and opposite in sign to the time derivative 
$lJt . The velocity at this point may therefore be expressed as 

Comparing equations (6.25), (6.27), and (6.28), the stress at the boundary point can be related to the boundary 
velocity and displacement as follows. 

This is equivalent to a viscous dashpot with a distributed damping constant of pc, (identical to a viscous 
boundary) and a disuibuted spring constant of G/2rb. This boundary equation is only approximate, relying on 
the accuracy of equation (6.25). When subjected to a static load, the new boundary predicts a limiting 
displacement as time tends to infinity. In contrast, the exact solution indicates no limiting displacement. 



6.5.2 Response of the boundaries to hammer impact 

The abilities of the viscous boundary and the new boundary to transmit plain strain shear waves were compared 
by analysing the problem shown in Figure 6.2(a). The hammer impulse function detailed previously was 
applied at the pile radius of 1 m. A mesh of the fineness shown in Figure 6.2(b) was used. A solution without 
truncation effects was calculated by extending the mesh to 7 m, preventing any boundary reflection before 40 
ms. 

The mesh was then huncated at a radius of 2 m with a viscous boundary. The effect of this truncation on the 
displacement at the pile is shown in Figure 6.12. Comparing the truncated solution with the solution resulting 
from the extended fmite element mesh, the displacement of the truncated mesh is accurate until the wave reflected 
from the boundary returns to the pile at approximately 13 ms. The displacement subsequently tends to a 
constant value, instead of falling slowly to zero. This indicates that the entire mesh has undergone rigid body 
displacement. 

When the mesh was truncated at 2 m with the new boundary, rigid body displacement was no longer observed. 
The displacement of the pile calculated with this truncation is also shown in Figure 6.12. After the wave 
reflected from the boundary reaches the pile, the displacement is slightly less than the correct solution. This is 
caused by the non-zero static stiffness of the new boundary. However, the new boundary approximates the 
correct behaviour much more closely than the viscous boundary. 

A more severe test was performed by applying the boundaries directly to the side of the pile, eliminating the 
finite element mesh entirely. The displacements calculated in this way are shown in Figure 6.13. The viscous 
boundary caused a large rigid body displacement, but the new boundary estimated the maximum displacement 
extremely well. At larger times the new boundary slightly underestimated the displacement. 

6.5.3 Exact solution fur harmonic shear waves 

An exact frequency dependent solution for harmonic axisymme!xic shear waves has been presented by Novak 
(1977). When a long rigid pile is undergoing complex harmonic oscillation, the displacement and the shear 
stress at the pile radius (R) are related by a complex stiffness coefficient, which is a function of the angular 
frequency, w. 

The complex stiffness can be conveniently expressed in real and imaginary components as 

and SZ2 are functions of the dimensionless frequency, 

and can be expressed in terms of Bessel functions of the first and secondkind. 

Dimensionlcss frcquencics associated with thc rising portion of the hammer impulse used in t l i i i  chapter range 
up lo approximately 20. Pararnctcrs .$,I and .S,2 :ire plotted against dimensionlc;~ t'requ?n:y in  F i ~ u r i ~ s  6.14 
and 6.15. 

6.5.4 Comparison of the new boundary with the harmonic solution. 

The stiffness and damping terms of the new boundary can be combined to form a complex stiffness 

G G k - - + i p c , w  = - (1+i2as)  - 2R 2R 



The real and imaginary stiffness parameters can then be identified. 

These parameters are plotted against dimensionless i~equency in Figures 6.14 and 6.15. The SZ1 parameter of 
the new boundary is constant with frequency, and represents the limit approached by the Novak's S,I as the 
frequency tends to infinity. Above a dimensionless frequency of 4, there is very little difference between the new 
boundary and the exact solution. 

The difference between equation (6.35) and the S,2 of the new boundary is very small, especially at high 
dimensionless frequencies. 

This comparison ofthe new boundary with the exact solution of Novak (1977) has shown that the new boundary 
accurately models the far field when the applied load contains high dimensionless frequencies. However, at lower 
f 

6.5.5 Previous use of the harmonic solution 

Meynard and Coae (1984) and Simons (1985) used the harmanic solution of Novak (1977) to obtain spring and 
dam~ing constants for modelling radiation from a ~ i l e  shaft bu t  not as a truncating houndarv for finite element 
anal$si$. The constants were gbtained by drawing a line of best fit through the Gats of s,; and S,2 provided 
by Novak (1977). The equivalent values obtained by Simons were 

SZr = 0.9 and Sz2 = 2 as (6.38). 

Simon's S,I was lower than the new boundary, because the plot of S,l presented by Novak was for the range as 
= 0 to 3. Meynard and Coae obtained parameters identical to the new boundary. 

6.5.6 Summary 

A new shear boundary has been derived by considering the propagation of a wave of arbitrary shape and duration. 
Unlike the viscous boundary, the new boundary reflects some energy back into the near field, modelling the 
reflection from the far field occurring in the axisymmetric situation. Numerical experiments have shown that 
the new boundary out-performs the viscous boundary when subjected to transient waves. The effective dynamic 
stiffness of the new boundary under harmonic loading was compared with the exact solution, and the new 
boundary was found to provide an excellent model, particularly at high dimensionless frequencies. Even when 
the force was applied directly to the boundary, the computed response was close to the correct solution. The 
boundary can therefore be used to model shear wave transmission from piles without resorting to finite elements. 

6.6 A transmitting boundary for axisymmetric dilation waves 

6.6.1 Derivation of a dilation boundary 

In equations (6.4) to (6.9), the equation of motion for axisymmetric dilation waves was shown to reduce to a 
cylindrical wave equation in a potential function @,where 

As discussed in the section about cylindrical shear waves, an exact expression for the form of a cylindrical wave 
cannot be found, but can be approximated by 

The algebra which follows is based on Booker's (1985) solution for spherical dilation waves. Denoting the 
derivative off with respect to the term in brackets by f, the displacement, strain and stress may be related to f at 
any radius r. 
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1 & - - - - 
c 2  at2 (6.43) 

U 1 &g = - - =  - 1 
7 2 , 5 1 2 ~  - p f  (6.44) 

1 a 3  1 1 d = ( 2 ~ + 3 ( - ~ ~ ~ ~ ) - 2 ~ ( ~ f - * f ' )  (6.45) 

At any particular radius rb, the derivatives off with respect to time are the negative of derivatives with respect to 
its argument. The displacement, velocity, and acceleration at rb may be expresed as 

-1 1 
u(rbS) = 3 / 2 f f r b r t )  + --f(rb.1) 

2rb c& (6.46), 

au 1 1 
Zfrb.1) = 3 / 2 f f r b . f )  - -- 

2rb (6.47), 

- -1 1 
at2(rb.t) = 3 / 2 y f r b , f )  + f " ( r b . 1 )  

2rb C& (6.48). 

The second time derivative of the potential at rb is 

a 1 frb,l) = f "frb,t) 6 (6.49). 

The stress at the boundary can be found in terms off(rb,t) by substituting equation (6.49) into equation (6.45). 

-1 
N r b J )  = (2G + 4 (7f'' ) - 2G (&f - 

vd2< 

Differentiating this equation with respect to time, 

Combining these two equations, all reference to the unknown function f can be removed. All quantities are 
evaluated at rb. 

Equation (6.52) is independent of the form of the wave. L i e  the shear boundary derived above, this boundary 
condition approximates the effect of the far field. 



6.6.2 Equivalent spring/dashpot/mass model 

Unlike the boundaries discussed previously, equation (6.52) contains a time derivative of the boundary stress. 
The boundary can be used in a finite element analysis by integrating the boundary equations numerically in time. 
However, the boundary can be implemented more conveniently if it is represented by a spring/dashpot/mass 
model. The terms can then be assembled into the finite element matrices, as can the other boundaries. Wolf 
(1988) presents a spring/dashpot/mass model for spherical dilation waves. The model is shown in Figure 6.16. 
The axisymmetric dilation boundary can be modelled in the same way, but with different values for the mass, 
spring and dashpot. 

The equations of motion for the model shown in Figure 6.16 are 

m u2 + c (1i2 - 01) = 0 

From equation (6.53) 

Differentiating with respect to time, 

Substituting equations (6.55) and (6.56) into (6.54), a single equation of motion can be formed. 

Equating equations (6.52) and (6.57), expressions can be found for the equivalent distributed stiffness, damping 
and mass. 

The values of the constants for spherical dilation waves presented by Wolf (1988) are 

Inspecting equation (6.52). as time tends to infinity, all the time derivatives will tend to zero, leaving 

The spring constant derived in equation (6.58) can therefore be idenaed as the static spring stiffness. 

Since the axisymmetric dilation problem has a static solution, a doubly asymptotic boundary can also be 
formulated. This boundary consists of the spring and dashpot in equation (6.58) placed in parallel. In the 
following section, the accuracy of the new boundary will be compared with the accuracy of the viscous boundary 
and the doubly asymptotic boundary. 

6.6.3 Response of the boundaries to hammer impact 

To compare the effectiveness of the boundaries, the plain strain axisymmeuic disk shown in Figure 6.2(a) was 
used again. This time the hammer impulse was applied in the radial direction. Initially a Poisson's ratio of 
0.45 was used, with a node spacing of 0.025 m. A solution with no truncation effects was computed by 
extending the mesh to 25 m, ensuring that no boundary reflection occurred before 40 ms. 

Placing the mncating boundaries at a radius of 2 m, the displacements shown in Figure 6.17 were obtained. 
The viscous boundary gave better results than the doubly asymptotic boundary, but the new boundary 
approximated the effect of the far field far better than either of the other boundaries. As the dilation wave 



propagated into the far field, the pile displacement became negative. This effect was only modelled co~~ectly by 
the new boundary. 

When the truncating boundaries were placed at the pile radius, the displacements plotted in Figure 6.18 were 
calculated. The viscous boundary caused non-zero terminal displacement of the pile, and the response of the 
asymptotic boundary was much too stiff. The new boundary gave a reasonable approximation of the response of 
the extended mesh, although the estimated maximum and minimum displacements were slightly high. 

The response of an axisymmetric disc to radial impact is dependent of the Poisson's ratio of the soil. The 
analyses described above were performed with a Poisson's ratio of 0.45, which is common in pile driving 
situations. For completeness, the behaviour of the boundaries with a Poisson's ratio of 0.25 was also 
investigated. The disdacements caused bv truncating the mesh at a radius of 2 m are shown in Fieure 6.19. 
Since &e velocity of ihe dilation wave wasreduced, the boundary reflections took longer to reach thepile, and 
the perEormance of all the boundaries was improved. The new boundary still provided the best approximation of 
the far field response. 

The hammer impact was also applied directly to the boundary models at a rad~us of 1 m with a Poisson's ratio of 
0.25. The displacements presented in Figure 6.20 were calculated. The new boundary modelled the response of 
the extended mesh extremely well. The response of the other two boundaries was still unsatisfactory. 

6.6.4 Exact boundary for harmonic dilation waves 

A transmitting boundary for harmonic axisymmetric plane strain dilation waves has been presented by Novak 
and Mitwally (1988). 

The Novak boundary is specified in terms of a frequency dependent complex spring constant kr. This complex 
stiffness can be written in terms of two parameters, Sr l  and S n ,  which are functions of the dimensionless 
frequency of the load and the Poisson's ratio of the soil. 

The parameters Srl  and Sr2 can be expressed in terms of Bessel functions of the first and second kind, orders 0 
and 1. 

The variation of Srl with dimensionless frequency for various Poisson's ratios is shown in Figure 6.21, and the 
variation of Sr2 is shown in Figure 6.22. 

6.6.5 Comparison of the new boundary with the harmonic boundary 

To compare the new boundary with the exact solution for hannonic waves, the complex stiffness of the 
boundary model shown in Figure 6.16 must be obtained. Expressing the complex stiffness in terms of two 
unknown real functions of the applied frequency and the model parameters, the system response can be expressed 
as 

f(ti = (A(w.m.c,k) + iB(w.m,c,k)) u ~ ( t )  (6.66) 



A - i B  
u r f t )  =- ~ 2 + ~ 2  f f t )  (6.67). 

In the algebra which follows, the dependence of A and B on the model parameters and the excitation frequency is 
implied. 

Although the second degree of freedom of the model does not enter into equation (6.66). the complex stiffness 
relating the second degree of freedom to the exciting force must be introduced to permit the functions A andB to 
be found. The complex stiffness of the second degree of freedom will be expressed in terms of real functions C 
andD, again dependent on the excitation frequency and the model parameters. 

f f t )  = (Cfw.m,c,k) + i D(w.m.c,k)) uz f t )  (6.68) 

or 

The complex harmonic force applied to the system can be represented by 

f(t) = f ei"f 

The time derivatives of the two degrees of freedom can then be found. 

Substituting these equations into the equations of motion for the model (equations (6.53) and (6.54)), 

Dividing by fit), separating real and imaginary parts, and dividing the imaginary equations by i, four real 
equations in A, B, C and D result. 



Solving these equations simultaneously yields the functions A, B, C and D. 

From equation (6.58), the spring stiffness of the dilation boundary model is equal to the static stiffness 2Gslrb, 
SO 

A B 
Srl  = - and Sr2 = - 

k k 
(6.86). 

Expressing the mass and damping coefficients as 

m = a p r b  and c = p p c d  

where, from equation (6.58). a = 2 and P = 1, Srl  and Sr2 can be found in terms of as and v. The terms 7 and 
ad are related to v and as by equations (6.64) and equations (6.65). 

These functions are plotted against as for various Poisson's ratios in Figures 6.21 and 6.22. Comparing these 
functions with the exact solutions obtained by Novak, the limits as as tends to zero and tends to infinity are 
identical. In between these limits, the new boundary provides a reasonable approximation of Sr l .  The 
approximation is better for lower Poisson's ratios, and is always less than the exact solution. This corresponds 
with the observations made previously when the response of the boundary to impact loading was calculated. The 
approximation of Sr2 is extremely good, especially at high dimensionless frequencies. 

The new boundary provides a good approximation of the response of the far field to harmonic loads, although the 
displacement at low to mid-range dimensionless frequencies is slightly overestimated. 

6.6.6 Matching the new boundary to the harmonic boundary 

If the new boundary is subjected to harmonic loads of known frequency content, the accuracy of the 
approximation can be improved by adjusting the values of the stiffness and mass parameters. The values of Sr1 
and Sr2 for the boundary can be matched to the exact quantities given by equations (6.62) and (6.63) for the 



maximum excitation frequency. The boundary then provides better approximation over the lower frequencies 
than the unmatched boundary. 

The matching can be performed by evaluating Srl and Sr2 at the desired dimensionless frequency, as'. The mass 
and damping coefficients required to match the new boundary at this frequency can then be found by solving 
equations (6.88) and (6.89) simultaneously, yielding 

The stiffness parameters resulting from matching the boundary at as = 5 and v= 0.45 are shown in Figures 6.23 
and 6.24,. The error at frequencies lower than 5 is reduced, but the error at higher frequencies is increased. 

6.6.7 Summary 

An approximate truncating boundary for plane strain axisymmetric dilation waves has been derived, and an 
equivalent dishibnted mass/spring/dashpot model obtained. When subjected to hammer impact loading, the new 
boundary was found to out perform the viscous boundary and the doubly asymptotic boundary. The new 
boundary performed well even when applied directly to the pile shaft, and could be used to represent dilation 
wave transmission from piles without resorting to finite elements. 

The complex stiffness of the new boundary to harmonic excitation was derived, and was compared with the exact 
complex stiffness derived by Novak and Mitwally (1988). Although the boundary was found to represent the 
exact complex stiffness reasonably weU, a method of improving the boundary for excitation of known harmonic 
content was also presented. 

6.7 Shear interaction between layers 

The analyses described so far in this chapter have treated each infinitesimal layer of soil independently, assuming 
no interaction occurred between the layers. When the pile is rigid, and there is no soil beneath the depth of the 
pile, this assumption is valid. However, since real piles have a finite stiffness, there will be some interaction 
between the soil layers. To determine the significance of this interaction, the propagation of a stress wave in a 
semi-infinite pile passing through a 5 m soil layer was considered. 

Radial shear waves are caused by the axial wave moving down the pile. Each infinitesimal soil layer is excited 
before the underlying layer. Consequently, the underlying layer offers some vertical support. This causes 
vertical stress waves to propagate in the soil. The wave speed of axial waves in the soil is slightly greater than 
that of shear waves, and so the vertical size of the finite elements used to model the vertical wave propagation 
can be larger than the radial size. In the analysis which follows, eight-noded quadratic elements with four Gauss 
points were used. To allow approximately 6 nodes in the rising portion of the shear and axial stress waves, the 
radial size of the soil elements was 0.03 m, and the vertical size was 0.05 m. 

Earlier in this chapter, a shear wave truncating boundary was shown to closely approximate the effect of an 
independent axisymmetric soil disc. Applying this boundary along the length of the pile shaft creates a one- 
dimensional model which closely approximates the effect of independent soil layers. 

The finite element mesh and the one-dimensional approximation are shown in Figure 6.25. Analysis was carried 
out for 8 ms, and the pile displacement and force at the pile head and 5 m below the head were recorded. The 
displacements are presented in Figure 6.26, and the forces in Figure 6.27. The one-dimensional model yielded 
results which were extremely close to those resulting from the full finite element analysis, indicating that there 
was very little interaction between the soil layers. The minimal interaction between the soil layers was 
expected, as in all practical situations the axial stiffness of the pile is much greater than that of the soil. 

6.8 Dilation wave transmission 

The significance of dilation wave transmission from the pile was investigated using the finite element model of 
the surrounding soil described above. Rod elements with radial degrees of freedom but no radial inertia (Figure 
5.41(a)) were used to model the pile. This model allowed interaction between the dilation and shear waves in the 
soil. However, the results of the analysis (Figures 6.26 and 6.27) showed no significant difference from those 



obtained when the dilation wave transmission was ignored. The minimal influence of dilation wave 
transmission was expected, since the vertical soil displacement is much larger than the radial displacement. 

6.9 Interaction with base 

Near the pile base, the shear wave from the pile shaft interacts with the stress wave emanating from the pile 
base. The extent of this interaction above the pile toe was examined by analysing a 5 m pile embedded by 
varying amounts in a finite element mesh. The soil along the pile shaft above the mesh was modelled with the 
truncating shear boundary. Three of these models are shown in Figure 6.28. The truncating boundary closely 
approximates the situation of no interaction between the soil layers, so any difference between the complete 
finite element model and the partial model indicates substantial interaction between the shear wave and the base 
stress wave over the height of the mesh. 

The analyses were performed for 6 ms. For each analysis, the displacement was recorded at the pile head and the 
force at the pile toe. The results are presented in Figures 6.29 and 6.30. These figures show that there was little 
change in the results when the truncating boundary was replaced by varying amounts of finite element mesh 
above the toe. Consequently, little interaction between the soil at the pile toe and the soil along the pile shaft is 
evident. The response of the soil under the pile toe can therefore be examined independently. 

6.10 Conclusions 

The investigation of axisymmehc plane strain shear and dilation waves revealed that as a stress wave traveIs 
away from a pile, the shape of the wave sharpens. Although the magnitude of the stress decreases as the wave 
travels, any reflections increase in magnitude as they approach the pile. Consequently, increasing the node 
spacing in proportion to the distance from the pile (in the manner often used for static pile analysis) is 
inappropriate, and was shown to lead to significant errors. 

Since it is impractical in most cases to extend the finite element mesh to the maximum extent of stress wave 
travel, appropriate transmitting boundaries must be used to truncate the mesh. Most previous finite element 
work concerning pile driving used the standard viscous boundary to truncate the mesh. However, this boundary 
was shown to be unsuitable for use in axisymmetric situations. Alternative boundaries were presented for shear 
and dilation wave transmission. These boundaries were shown to accurately represent the behaviour of an 
extended finite element mesh, even when applied at the pile shaft with no finite element mesh. 

The possibility of significant interaction between the shear layers along the length of the pile was investigated, 
but the interaction was found to be negligible. The effect of dilation wave transmission from the pile shaft was 
also found to be very small. Interaction between the shaft shear wave and the stress wave emanating from the 
pile toe was examined, but no significant influence was found. 

This chapter showed that a truncating shear boundary applied along the length of a pile shaft is an excellent 
model of the elastic shear wave transmission, and that the dilation wave transmitted from the shaft can safely be 
ignored. In the next chapter, the elastic stress wave emanating from the pile toe will be examined in detail. 



7. ELASTIC WAVE RADIATION FROM THE PILE TOE 

7.1 Introduction 

This chapter examines the propagation of elastic waves from the pile toe. The previous chapter showed little 
interaction between the shear waves radiating from the pile shaft and the stress wave generated at the pile toe. In 
simplified methods of pile analysis, the response of the soil at the pile toe is usually treated independently to the 
soil along the pile shaft (Figure 7.1). The pile toe is often modelled as a rigid circular footing on an elastic half- 
space (e.g. Simons and Randolph, 1986). This chapter commences with a finite element analysis of a rigid 
footing subjected to a typical hammer impact. Three-dimensional stress plots are produced to illustrate the 
propagation of stress waves in the soil mass, and the significant features are examined. 

Analytical solutions for the response of a rigid circular footing to harmonic loads are then examined. These 
analytical solutions allow calculation of a frequency dependent complex compliance for the footing. Calculation 
of complex compliance and stiffness from a finite element mesh is considered, and a new method of obtaining 
the complex compliance from the response of a mesh to a transient load is introduced. 

The effects of different truncating boundaries on the footing response and the compliance are examined, together 
with an investigation of the effect of Poisson's latio of the soil. The effect of friction on the base of the footing 
is calculated. 

Existing one-dimensional models of footing response are evaluated in terms of their complex stiffness. A new 
model is proposed which agrees well with the complex compliance and stiffness computed using finite elements 
over a wide range of dimensionless hquencies. 

The effect of pile embedment is evaluated. The interaction of the soil reaction with the pile impedance is 
examined, and fmaUy the elastic response of the entire pile/soil system is investigated. 

7.2 Footing response to hammer impact 

To examine the propagation of stress waves from a circular rigid footing, the impact force of the hammer shown 
in Figure 7.2(a) was applied to a massless rigid footing with a radius of 0.9 m bonded to a uniform elastic half- 
space with Gs = 45 MPa, vs = 0.45, and a density of 2000 kg/m3. The finite element mesh shown in Figure 
7.2@) was used, truncated with standard viscous boundaries. As discussed above, such boundaries lead to rigid 
body motion of the mesh. However, the object of this analysis was to examine the stress waves in the soil, and 
so the long term response of the mesh was not important. 

The propagation of stress waves in an axisymmetric half-space can be visualised when the stresses are plotted as 
surface graphs at regular time intervals. Figure 7.3 shows the relationship between the three-dimensional surface 
plots (presented subsequently) and the finite element mesh. Stresses were computed and plotted at the element 
Gauss points. The edge of the footing can usually be identified on the surface graphs by a stress spike. 

Figures 7.4 to 7.7 present surface plots of the vertical, shear, radial, and Von Mises generalised shear stresses at 
times of 2 ,4 ,6  and 8 miuiseconds. The Von Mises generalised shear stress (a) is related to the other stresses 
by 

Figures 7.4 to 7.7 clearly show the propagation of two distinct waves with different velocities, identifiable as 
the dilation wave (or P-wave) and the shear wave (or S-wave). Although a surface (or Rayleigh) wave must be 
present, distinguishing this wave from the shear wave is difficult, as the two wave velocities are approximately 
the same (Lysmer and Kuhlmeyer, 1969). 

The dilation wave has two notable features. Firstly, the wave travels downwards from the footing, and only 
shows a small amount of radial dispersion. The stresses at the side boundary caused by the dilation wave are 
small. This is indicated by both the vertical and generalised stress plots. Consequently, reflections from the 
side boundaries of the mesh are determined by the shear wave travel time, rather than the dilation wave travel 
time. The concentration of the dilation wave beneath the footing is also evident in Figures 7.8 and 7.9, which 
show the variation of vertical stress with depth at radii of 0 m and 0.9 m respectively. There is little attenuation 
of the peak stress as the wave travels, but the magnitude of the stress under the edge of the footing is 
approximately one third of the stress under the centre of the footing. 



Secondly, as the dilation wave travels, a region of tensile stress forms behind the wave. This is consistent with 
the propagation of the cylindrical dilation wave presented in Figure 6.8. The tensile stress can be seen most 
easily in Figure 7.8, but is also evident as a hollow behind the dilation peak in Figure 7.4. The similarity of 
these diation waves suggests that, at least to some extent, the base response will be similar to the response of 
the diation boundary discussed in the previous chapter. 

The dilation wave hits the edge of the mesh at 4 ms, and is subsequently absorbed. Conceptually, the wave 
propagates into the far field. 

Unlike the dilation wave, the shear wave shows a more uniform distribution in all duections. A large stress 
concentration occurs at the edge of the footing when the impact force is large, and the shear wave appears to 
radiate from this area. The distance taken for the shear wave to rise to a maximum determines the minimum 
node spacing. Figure 7.5 graphically illustrates the steep gradient of the shear wave. The magnitude and 
gradient of the shear wave travelling vertically are similar to the shear wave travelling radially, suggesting that 
the node spacing in both duections should be similar. Figures 7.10 and 7.11 show that gradient of the wave 
does not decrease with distance from the footing, but, like the cylindrical shear wave, appears to increase 
slightly. This supports the earlier observation that the size of the finite elements should not decrease with 
distance from the footing. 

Figure 7.6 shows that most of the radial stress is associated with the dilation wave, and is highest in the soil 
underneath the footing. A small amount of radial and vertical stress is associated with the shear wave. 

The propagation of the waves viewed in terms of the Von Mises generalised shear stress is significant, as this 
stress is limited by the Von-Mises yield criteria. Figure 7.7 shows that the the shear wave causes significant 
generalised stress over a much larger area than the dilation wave. At a radius of 0 m, the generalised stress 
associated with the shear wave is slightly larger and of longer duration than that associated with the dilation 
wave (Figure 7.12(a)), and, at a radius of 0.9 m, most of the generalised stress is associated with the shear wave 
(Figure 7.12@)). These facts will become significant in the next chapter, when a new model for inelastic base 
response is constructed. 

The pile and hammer properties used for all examples presented above have been based on those used by Simons 
(1985) and Smith and Chow (1982). However, the combination of a large diameter pile with a sharp impact 
wave requires a large finite element mesh, as illustrated by the analysis above. While the sharp wave leads to 
the excellent visual separation of the shear and dilation waves evident in Figures 7.4 to 7.7, the time taken to 
perform the computations is large. The time taken to analyse such a problem can become impracticably long 
when inelastic soil behaviour is taken into account. To alleviate this problem, a different combination of pile 
and hammer properties will be used in some of the analyses which follow. These properties are shown in Figure 
7.13, and the impact force created by this hammerlpile combination is plotted later in Figure 7.17(b). The rise 
time of 3 ms allows a much coarser mesh than the previous rise time of 1 ms. 

7.3 Analytical solutions for harmonic footing response 

The response of a circular rigid footing to a complex harmonic loading has been tackled analytically by several 
researchers. Bycroft (1954) obtained an approximate solution by assuming that the stress distribution under a 
dynamic footing was the same as that under a static footing. Such an approximation is valid at low 
dimensionless frequencies, but breaks down at high frequencies. The vertical stresses on the footing analysed in 
the first part of this chapter are plotted at 2 , 4 , 6  and 8 milliseconds in Figure 7.14, along with the static stress 
distribution for the impact force at 2 milliseconds. The impact load gives rise to significant tensile stresses over 
some sections of the footing which are not present in the static stress distribution. 

Lysmer (1965) obtained another approximate solution by modelling the footing as a series of concentric rings 
carrying uniform stress, and equating the displacement of each ring to the footing displacement. Robertson 
(1966) presented an expression for the solution involving the Fredholm integral equation, and evaluated the 
functions at low dimensionless frequencies using a power series expansion. Shah (1968) solved the integral 
equation of Robertson numerically, evaluating the compliance of a rigid footing over a large range of 
dimensionless frequencies. Similar evaluation was performed by Luco and Westmann (1971). who presented 
plots of vertical compliance for several values of Poisson's ratio. 

The analytical solutions referenced above only relate to a smooth rigid circular footing on a uniform half-space. 
The complex compliance cannot be expressed in terms of elementary functions, and numerical evaluation of the 
complex Friedholm equation must be performed. Such a procedure is cumbersome, and the use of approximate 
polynomial expressions is common (eg. Novak, 1977). 



7.4 Fourier analysis of transient response 

'l'llc stcady swtc response of a circular rigid footing to a harmonic lo3d c3n hc determined with the solutions 
rcicrcnced above. 1-vsmcr and Richan (1966) sliowcd how Fourier serics analvsis c3n hc used to determine ----.- - ~ - - ~ -  .. 
response t o ~ ~ s i e n t l o a d s .  This procedure kill be reviewed briefly, as it will be used as the basis of a new 
method of determining the compliance of a finite element mesh. 

Lysmer and Richan (1966) reason that, since the footing system is strongly damped, the transient force can be 
represented by a continuous series of alternating force pulses, as shown in Figure 7.15(a). Provided that the 
distance between each pulse is large enough that the response of the footing to one pulse dies out before the next 
occurs, the response is a series of alternating displacement pulses, as shown in Figure 7.15(b). Since there is no 
interaction between consecutive pulses, the displacement pulse corresponding to a particular force pulse is the 
same as the h-ansient response of the footing to that pulse alone. If a transient force pulse of F(t) ,  which dies 
out to zero before time T, is specified, a Fourier series can be found for the corresponding pulse train. 

As ,V rpproachcs infini~y, the scrics bccomes exact, but if N i suiiicicntly large, a good approximation can bc 
achicvcd. Lysmcr and Rivlilui (1 966) provide a guide for chooiing N and ?'. The cocfficienlq cfn and vfn can be 
obtained from the following equations. If the force function is known at a number of discr6te in time, 
numerical evaluation of the integrals is trivial. 

yfn = tan- I -& 
af n 

The dimensionless frequency corresponding to each term in the Fourier series is simply 

Since the system is linear, the footing response to each term in the Fourier series can be computed 
independently, and the results combined. If the system flexibility is available as a frequency dependent complex 
compliance, the response for each frequency component can be determined. The series representing the 
displacement is presented in equation (7.7), where F1 and F2 are the coefficients of real and imaginary flexibility 
respectively, and kstatic is the static footing stiffness. 

n+l n 
uzfti = & ( F I ~ Q ~ )  ( Y I + . n )  - F2(an) sin ( V t + . . ) )  

n=O 

7.5 Footing compliance from finite elements 

The complex compliance of a rigid footing can be approximated using a finite element model of the footing and 
the half-space. When the footing is subjected to a complex harmonic force of Fo eim, each degree of freedom 



oscillates at the same frequency, but with different amplitudes and phase angles. The displacement, velocity, and 
acceleration of the jth degee offreedom can be expressed as 

and 

The matrix equation of motion is 

(7.10) and dividing by Fo eiat, a complex equation in the frequency dependent vectors a(w) and b(w) is formed. 

K (a+ib) + w C (ia-b) - w2 M (a+ib) = f (7.12) 

Breaking this equation into real and imaginary parts, two real equations are formed. 

These equations can be combined to form one matrix equation. If equation (7.14) is multiplied by -1 before 
combining, the harmonic stiffness matrix which results retains symmetry. 

The coefficients a and b can be found by solving this system of equations. To optimise the numerical solution 
of these equations, a and b coefficients should be ordered alternately, minimising the profile of the matrix. 
Denoting the degree of freedom associated with the vertical displacement of the footing by m, the complex 
flexibility coefficients are simply 

a m ( d  and F1(w) = - bm(o) 
F2(w) = - 

kstatic kstatic 

This method of calculating complex compliance from a finite element mesh is essentially the same as that 
proposed by Lysmer and Kuhlmeyer (1969) and used by others (eg. Chow (1985)). However, the method has a 
number of drawbacks. Firstly, equation (7.15) contains twice as many unknowns as the corresponding finite 
element formulation, and the band of the matrix in equation (7.15) is twice as wide as the band of the stiffness 
matrix, so a large amount of computer time and memory may be required. Secondly, equation (7.15) must he 
solved for each frequency at which the coefficients F1 and F2 are required. 

Another serious drawback is the large influence that the truncating boundary has on the solution. Inspection of 
equauon (7.15) reveals that the interaction between the a and b coefficients is caused solely by the system 
damping matrix. If the material damping of the soil mass is neglected, the only damping is provided by the 
transmitting boundary. If there is no damping on the boundary, the coefficients b become zero, and the response 
is always in phase with the oscillating load. This eflect is independent of the extent of the finite element mesh. 

If the method is used to evaluate the steady state effectiveness of transmitting boundaries, the inordinate 
influence of the boundaries could be justified. However, solutions obtained in this manner must be viewed with 
suspicion, as the steady state nature of the solutions can hide significant behaviour traits. The inability of the 
standard viscous boundary to correctly model response to transient loads is not immediately evident when this 
type of analysis is used. More significantly, proponents of the above method often use different meshes for each 
frequency at which the analysis is undertaken, specifying the element size and boundary distances in terns of the 
wavelength of the shear waves. This means that the phase difference between the boundary reflections and the 
footing force is maintained at a constant value, which may hide the true extent of the boundary errors. Both 
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Lysmer and Kuhlmeyer (1969) and Chow (1985) calculate three points on the footing compliance curves with 
three different meshes, and draw smooth lines through these points. 

The mesh shown in Figure 7.16(a) was used to compute the footing compliance over the standard dimensionless 
frequency range of 0 to 2 at intervals of 0.02. The calculated compliance curves are presented in Figure 7.16(b). 
The performance of the viscous boundary is worse than Chow's (1985) results indicate. When doubly 
asymptotic boundaries were used in place of the viscous boundaries, the computed compliance showed resonant 
peaks at several frequencies (Figure 7.16(b)). Later in this chapter, the doubly asymptotic boundary will be 
shown to out-perform the viscous boundary when the footing is subjected to a transient load. Consequently, 
this method of computing complex compliance does not reflect the ability of a finite element model to represent 
transient response. 

7.6 An alternative method 

'Yo overcome the shortcomings of the procedure describcd ibove, an alternative method of computing footing 
cornpli3ncc from a finite element analysis is proposed. This technique uses the responsc of a finite element 
mesh to transient loading to derive complex compliance, inverting the Lysmer and Richart procedure for 
computing transient response using FowierSWes A transient force is applied to the finite element model of - ' - - 
the footing and soil, and the footing displacem6t is calculated by numerical time integration of the finite 
element equations. T i e  integration is carried out until all significant dynamic bebaviour has ceased. The time 
period required for this to occur becomes T in Figure 7.15. A Fourier series is then formed for the force using 
equations (7.1) to (7.5). and for the footing displacement (u,) using the equations below. Since numerical time 
integration yields the displacement at regular time intervals, numerical integration of equations (7.20) and (7.21) 
is trivial. 

N 

~ ~ ( 1 )  = C cu, cos ( Y t +  W u n )  

1 -Pun Wun = tan- - sun 

Once Fourier series have been obtained for both &he force and the displacement, the magnitude (bn) and phase 
shift (On) of the complex compliance can be obtained at each frequency represented in the series. The 
dimensionless frequencies can be computed with equation (7.6), and the magnitudes and phase shifts are given by 
equations (7.22) and (7.23). 

& = Wun - Wfn (7.23) 

The real and imaginary flexibility coefficients can then be calculated, and the stiffness coefficients can be 
obtained from equations (7.26) and (7.27) if required. 

F1 = bn cos 8, (7.24) 

F2  = bn sin On (7.25) 



At higher dimensionless frequencies, the calculated approximations of bn and 8, have been observed to contain 
erroneous oscillation with dimensionless frequency. These functions can be smoothed using a point-averaging 
algorithm over sufficient points to cover the period of the oscillation. The smoothing should be applied before 
the flexibility and stiffness coefficients are calculated, othenvise significant oscillation of these parameters can 
occur. 

The accuracy of the new method will be demonstrated using the simple two degree of freedom mechanical system 
shown in Figure 7.17(a). The complex compliance of this system can be obtained analytically. (This complex 
compliance is derived later in equations (7.30) to (7.34).) The complex compliance can also be calculated using 
the new method. Comparing the two solutions gives an indication of the accuracy of the new method. 

.,The hammer impulse shown in Figure 7.17(b) was applied to a numerical model of the system, and therqmliise 
war computed by integrating the equations of motion using the constant-average:accelefation method. T h i  
response is shown in Figure 7.17(c). A time step of 0.05 ms was used, and the response was computed for 30 
ms. To obtain sufficient resolution of low frequency response, T was taken as 324 ms and N as 270. The 
resulting Fourier series approximations for force and time are also shown in Figures 7.17@) and 7.17(c). There 
is no significant difference between the Fourier approximations and the original functions. 

The computed magnitude and phase shift of the compliance are shown in Figure 7.18, together with the 
smoothed functions obtained by using an 11-point smoothing algorithm. The compliance computed from the 
smoothed magnitude and phase shift shows no appreciable difference from the analytical compliance (Figure 
7.19). 

To further verify the accuracy of the new method, the method was used to compute the complex compliance of a 
smooth circular rigid footing on a semi-infinite half-space, and the results compared with a published solution. 
The finite element mesh shown in Figure 7.20 was used to compute the response of the footing to the hammer 
impulse plottedpreviously in Figure 7.17@). The boundaries were located sufficiently far away to prevent any 
boundary influence before the footing returned to rest. The flexibility coefficients obtained for aPoisson's ratio 
of 113 are plotted in Figure 7.21, together with those obtained by Luco and Westmann (1971). The calculated 
compliance agrees well with the published compliance. 

The new method requires the frequency content of the force pulse applied to the footing to be well distributed 
over the frequency range of interest. Higher frequencies must be given higher weighting to maintain accuracy. 
When these requirements are satisfied, the new method can produce superior results to the method described in 
the previous section. The new technique is substantially cheaper in computer time, as the number of equations 
is smaller and the compliance for a large number of frequencies is obtained from one analysis. In addition, the 
finite element analysis can be performed with a standard dynamic finite element analysis program without 
customisation. The Fourier analysis can then be performed on the output displacement function and input force 
function to obtain the compliance. This analysis is trivial enough to be programmed in a spreadsheet macro 
language, or BASIC, by someone with a ~dimenta1y knowledge of programming. 

In the work presented here, the complex flexibility and stiffness obtained by the new method will be used to 
compare the effects of different boundaries, to examine the effect of friction on the base of the footing, and to 
compare different mechanical footing models. The potential of the method extends beyond this, permitting 
calculation of the compliance of footings of arbitrary shape on soils with varying elastic properties. However, 
more work must be done to establish the optimum input pulse, and to determine the source of the oscillating 
error. This error is possibly due to the slight frequency shift caused by the time integration procedure. 

7.7 Finite element boundaries 

Using the mesh shown in Figure 7.20 for inelastic computations is not practical, as too much computer time is 
required. The mesh must therefore be terminated with transmitting boundaries. Previous finite element analyses 
of pile driving problems have usually used a two-dimensional version of the slandard viscous boundary. 

Generalising from the one-dimensional viscous boundaries discussed in Chapter 6, Lysmer and Kuhlemeyer 
(1969) proposed a viscous boundary for two dimensions expressed by the following two equations. 



oand u are normal to the boundary, while rand v are tangential. 

These boundary conditions only approximate the effect of the far field. The constants a and b may be selected by 
attempting to optimise the energy absorption of the boundary. Proceeding on a trial and error basis, Lysmer and 
Kuhlemeyer (1969) found that setting the constants to a = b = 1 gave good energy absorption, providing the 
incident angle of the wave approaching the boundary was not t w  small. 

White et a1 (1977) presented a rational procedure for maximising energy transmission, which allows 
computation of a and b for any Poisson's ratio. (The values of the constants were found to vary slightly with 
Poisson's ratio.) They termed the resulting boundary conditions a unified boundary. However, the increase in 
efficiency over using unit values for a and b was shown to he less than one percent. 

Although derived for propagation of plane waves in two dimensions, the two-dimension&viscou~boundary has 
often been demonstrated using the axisymmetric problem of a vibrating rigid circular footing on a semi-infinite 
half-space (eg. Lysmer and Kuhlemeyer, 1969; Chow, 1985). However, White et a1 (1977) calculated optimum 
values of a and b for the absorption of cylindrical waves. They found that a and b are dependant on the ratio of 
the boundary radius to the wave length, and are therefore frequency dependent For large boundary ratios, a and b 
approach the values obtained for twodimensions. The difference between the axisymmehic unified boundary and 
the viscous boundary is generally very small. 

The referenced literature has demonstrated that the viscous boundary may be used in two-dimensional and 
axisymmetric problems with zero time-average loads. The paraxial and superposition methods are theoretically 
superior to the viscous boundary in two dimensions, but have been shown to yield little improvement in 
practice (Cohen and Jennings, 1983: Simons, 1985). 

In Chapter 6 the geometric attenuation of axisymmetric waves was shown to cause reflection from the far field. 
Consequently, application of perfect transmitting boundaries to meshes such as that shown in Figure 7.16(a) 
cause rigid body motion when the applied load has a non-zero time average. Such rigid body motions have been 
identified by Mitwally and Novak (1988). 

The impulse force caused by the hammer shown in Figure 7.13 was applied to the mesh in Figure 7.16(a) 
truncated with viscous boundaries. The computed displacement is compared with that calculated using the 
extended mesh of Figure 7.20 in Figure 7.22. The permanent displacement at the end of the time integration is 
due to the rigid motion of the mesh. The new method of computing complex compliance cannot be used with a 
mesh which undergoes rigid body motion. 

In the previous chapter, transmitting boundaries were derived for plain strain axisymmetric shear and dilation 
waves. The derivations depended on explicit expressions for the travelling waves. The surface plots presented in 
the first section of this chapter show that the attenuation of the travelling waves under a rigid footing is 
complex, and equivalent expressions cannot be found. However, the transmission of shear and dilation waves 
from the side of the mesh can be modelled with the boundaries for plane strain cylindrical waves derived in 
Chapter 6. 

The base of the mesh is more difficult. Figure 7.4 showed that the vertical stress wave travelling downwards 
from the rigid footing shows little attenuation and dispersion, and is practically a one-dimensional axial wave. 
Consequently, the wave is effectively absorbed by a viscous boundary. To test these boundaries, the hammer in 
Figure 7.13 was applied to the mesh in Figure 7.16(a), as before. This time the plane strain boundaries were 
applied to the sides of the mesh, and a viscous boundary was applied at the base. In Figure 7.22 the resulting 
displacement is compared with the displacement calculated with the extended mesh. The purely viscous base 
boundary allows too much vertical displacement, and evidently should have some in-phase stiffness. 

One way of providing finite stiffness on the base boundary is to use a doubly asymptotic boundary of the type 
described in Chapter 6. The static stiffness of a circular footing with a radius equal to that of the finite element 
mesh can be applied as a uniformly distributed spring across the base of the finite element mesh. The 
improvement obtained by adding this stiffness is shown in Figure 7.22. 

An alternative base boundary can be obtained by ueating the vertical dilation wave as spherical cavity expansion. 
The mechanical model shown in Figure 6.4 can be used with the parameters provided by Wolf (1988) for 



spherical cavity expansion. The stiffness of this boundary lies between the viscous and the doubly asymptotic 
boundaries. The results obtained using this base boundary are also presented in Figure 7.22. 

The spherical cavity expansion base boundary and the doubly asymptotic base boundary show only a slight 
improvement over the viscous base boundary. However, there is a distinct difference between the response of the 
truncated mesh and the extended mesh at Large times. Figure 7.22 shows the time taken for the dilation wave to 
reflect from the base boundary and return to the footing, and the time taken for the shear wave to reflect from the 
side boundary and return to the footing. In the time between the return of the dilation wave from the base and 
the return of the shear wave from the side, the response of the truncated and extended meshes are similar, 
indicating that all the base boundaries behave quite well. However, once the shear wave returns from the side 
boundary, the responses of the truncated and extended meshes become quite different. 

In Chapter 6, the plain strain boundaries were shown to perform very well. The apparent reflection of the shear 
wave from this boundary was explained by Lysmer and Kuhlmeyer (1969). who showed that a viscous boundary 
does not totally absorb the surface Rayleigh wave, which propagates at approximately the same velocity as the 
shear wave. They derived a boundary for the absorption of Rayleigh waves, but the boundary is highly 
dependent on excitation frequency. Like the viscous boundary, the plane strain boundaries are unable to totally 
absorb this wave. 

Fortunately, the Rayleigh wave travels relatively slowly, and so, for a mesh of reasonable size such as that in 
Figure 7.16(a), the significant dynamic response is complete before the errors caused by the reflected wave 
become evident. In pile driving, the permanent inelastic deformation occurs at small Ones when the base force 
is relatively high. Consequently, the reflected Rayleigh waves will not significantly affect the computed force 
response, or the predicted set. 

The new method for computing the complex compliance of a finite element mesh can be used to compare the 
effectiveness of hfferent truncating boundaries. The effect of the mncating boundaries on the compliance of the 
Figure 7.16(a) mesh is shown in Figure 7.23. Unlike the compliances computed by the old method (Figure 
7.16(b)), the compliances for boundaries with in-phase stiffness do not exhibit resonant peaks. The different 
base boundaries have little effect on the computed flexibility, as most of the error is due to the reflected Rayleigh 
wave. 

7.8 The effect of footing friction 

The rigid footing compliances referenced previously were calculated for a smooth rigid circular footing, which 
develops no shear stress on the base of the footing. A pile is usually embedded, which limits the vertical 
movement beneath the pile, and significant shear stresses can be developed between the pile base and the soil. 
Luco and Westmann (1972) show that the compliance of a rigid strip is slightly altered when bond between the 
footing and the half-space is taken into account. To determine the significance of this effect on a circular 
footing, the compliance of a rigid circular footing bonded to a half-space was calculated using the mesh of Figure 
7.20 and the new method of computing compliance. 

The effect of bonding on the complex compliance is shown in Figure 7.24. The difference between the bonded 
and un-bonded cases is so small that the degree of bonding beneath the pile toe can be ignored. In all subsequent 
analyses, the footing repraenting the pile base will be assumed to be fully bonded to the under-lying soil. 

7.9 The effect of Poisson's ratio 

The results of Luco and Westmann (1971) indicated that Poisson's ratio has a significant influence on the 
complex flexibility of a smooth circular rigid footing. To determine the effect of Poisson's ratio on the response 
of the pile base, complex compliances were computed out for a rough circular footing on soil with Poisson's 
ratios of 0.25,0.33,0.40, and 0.45. The results are presented in Figure 7.25. There is little difference between 
the complex compliances computed for Poisson's ratios of 0.25 and 0.33, but as Poisson's ratio is increased to 
0.45, the in-phase stiffness at high dimensionless frequencies becomes negative. 

During pile driving, the Poisson's ratio of the soil is typically in the range 0.45 to 0.5, as the soil response is 
predominantly undrained. 

7.10 Simplified modelling of footing response 

To simplify analysis of the dynamic response of rigid footings, Lysmer and Richart (1969) proposed a one- 
dimensional model consisting of a spring and slider in parallel. This model is shown in Figure 7.26(a). Lysmer 
and Richart used the complex compliance of a half-space model with a Poisson's ratio of to compute 



equivalent spring and damping constants. Although these parameters were dependent on dimensionless 
frequency, constant values were selected which gave reasonable agreement with the half-space model. Because 
the variation of complex compliance with Poisson's ratio is quite small, Lysmer and Richart suggested that the 
model be used for all values of Poisson's ratio. This suggestion has largely been followed, and all rational 
models of pile driving dynamics have employed base models derived from Lysmer's analog (eg. Simons and 
Randolph, 1986). 

Another mechanical model of dynamic footing response has been presented by Wolf (1988). This model is 
shown in Figure 7.26@), and contains an additional degree of freedom, an additional dashpot, and two lumped 
masses. With the exception of the added mass at the footing, this model is a combination of the models for 
axisymmehic shear and dilation wave transmission presented in the previous chapter. Wolf derived parameters 
for the model by matching the complex compliance of the model to the computed compliance of a half-space 
over a limited range of dimensionless frequencies. The parameters are presented in Figure 7.26@) as functions of 
Poisson's ratio. 

Figure 7.27 compares the complex compliance of these two models with that computed by the finite element 
method for a rough footing on a soil with a Poisson's ratio of 0.45. Although the general shape of the curves is 
similar, there is significant variation between the models at higher frequencies. 

The differences are more apparent in Figures 7.28 and 7.29, which plot the real and imaginary stiffness 
parameters. The real stiffness of the Wolf model is in close agreement with the finite element computation at 
low frequencies, but the high frequency response is very poor. The constant spring stiffness of the Lysmer 
model poorly approximates the variation of the in-phase stiffness with dimensionless frequency. Both models 
only approximate the out of phase stiffness component well at low frequencies. 

Since the impact waves caused by pile driving hammers have significant high frequency content, the simplified 
base models described above may perform poorly under pile driving conditions. This was confirmed by 
subjecting models of the base of the pile shown in Figure 6.25 to the impact of the hammer in Figure 5.2. The 
calculated footing displacements are compared with those calculated with finite elements in Figure 7.30. Both 
models yield footing displacements which are significantly different from the finite element results. 

A better base model can be formed by matching the complex stiffness of the model shown in Figure 7.26(b) to 
the complex stiffness obtained by finite element analysis. To accomplish this, the complex stiffness of the 
model must be calculated in terms of the model parameters. 

The equations of motion for the model are 

The parameters can be non-dimensionalised in the following way. 

The complex stiffness coefficients can then be found in terms of the dimensionless frequency, as, using the 
procedure detailed in equations (6.66) to (6.86). 



The complex stiffness was calculated using the new finite element method for Poisson's ratios of 0.25, 0.33, 
0.40, and 0.45. At each Poisson's ratio, the values of cy), a] ,  Do, and PI which best fitted equations (7.33) and 
(7.34) to the finite element stiffness over a wide range of dimensionless frequencies were found by trial and error. 
ag and were found to be independent of Poisson's ratio, with 

a0 = O  and Do = 0.8 (7.35). 

a 1  and were found to vary with Poisson's ratio. The computed values are plotted against Poisson's ratio in 
Figures 7.31 and 7.32. The parameters can be approximated by the following equations, which are also plotted 
in Figures 7.31 and 7.32. 

The difference between the parameters of new model and those of'wolf's (1988) model is caused by the matching 
of_the_new model over a larger range of dimensionless frequencies. An example of the improved fit to- thew-  
complex flexibility and stiffness parameters achieved by the new model is shown in-Figures 727, 7.28, and = 

7.29 for a Poisson's ratio of 0.45. 

When the new model is used to model the hase of the pile shown in Figure 6.25, the calculated displacement is 
much closer to the finite element results than the other models (Figure 7.30). 

7.11 The effect of embedment 

Some preliminary results detailed in Chapter 6 indicated that little interaction occmed between the soil at the 
pile base and the soil surrounding the shaft. To investigate the interaction in more detail and in more general 
terms, the complex compliances of a series of rigid piles with various embedments were computed using the 
new fmite element method. The finite element meshes are shown in Figure 7.33(a). The meshes were mncated 
with a doubly asymptotic hase boundary, and plane strain side boundaries. 

To determine the effect of the interaction, the compliances of the one-dimensional models shown in Figure 
7.33@) were also computed. Comparing the compliance of each model with the appropriate finite element 
compliance, the agreement between the two was found to be independent of the pile embedment (Figure 7.34). 
This supports the previous conclusion that little interaction occurs between the soil surrounding the shaft and 
the soil beneath the hase. The displacements of the piles are shown in Figure 7.35. The simplified models 
agree well with the finite element results. 

The shear wave travelling from the base along the surface of the half-space beneath the pile is in phase with the 
shear wave travelling from the pile shaft in the layer above the half-space. Consequently there is little stress on 
the adjoining surface, and little interaction. However, this conclusion is only valid for elastic analysis. When 
the inelastic response of the system is examined in the next chapter, the effect of embedment will have to be re- 
evaluated, since the plastic mechanism could be affected by the overlying soil. 

7.12 The effect of pile interaction 

In the examples presented above, a hammer impact force was applied directly to a weightless rigid footing, and 
the displacement was computed. In pile-driving applications, the impact force propagates down the pile as an 
axial stress wave, and reflects from the soil at the pile base. The amount of force generated in the soil and the 
magnitude of the stress wave reflected back up the pile depend not only on the dynamic properties of the soil at 
the base, hut also on the impedance of the pile. 

Randolph (1990) has shown that the velocity at the hase of the pile (vb) is related to the downward travelling 
wave (Fd), the base resistance (Qb) and the pile impedance (2) by the following equation. 

By simple algebra, the base force can be related to the downward travelling wave and the base velocity 



These equations show that the effect of the pile on the base response can be modelled by attaching a dashpot of 
impedance Z to the footing, and then applying twice the hammer force to the footing. Both the displacement at 
the pile base and the force exerted on the soil can then be computed. 

The response of the base of the pile shown in Figure 7.36 was computed with the effect of the pile impedance 
included in this way, using a fmite element model, the Lysmer base model, the Wolf base model, and the new 
base model. The resulting forcas and displacements are shown in Figures 7.37(a) and 7.37@). The agreement 
between the force predicted by the finite element solution and the force predicted by the new base model is 
extremely good, whereas the f o k s  predicted by the other models are considerably diiferknt. Correct modelling of 
this force response is extremely important, as it affects the reflected force wave, which is often recorded at the 
pile head during pile driving. 

7.13 Overall pile response 

The shaft and base response of the pile have been examined separately, and interaction between the two has been 
shown to be small. The effect of the improved base model on the overall elastic response of a pile is now 
demonsnated. The pile shown in 13gure 7.36 was analysed. Analyses were performed using the full finite 
element mesh shownin Figure 7.38(a), and using one dimensional models consisting of the shear transmitting 
boundary along the shaft and the three base models described above (Figure 7.380)). The displacements and base 
forces calculated when the the pile was subjected to a blow from the hammer of Figure 5.2 are shown in Figures 
7.39 and 7.40. The displacements and base force resulting from the improved one-dimensional model are 
practically the same as those calculated using finite elements, and are significantly better than the one- 
dimensional models incorporating the other base models. 

7.14 Conclusions 

The stress waves emanating from a rigid footing on an elastic half-space were examined in detail, and two 
distinct wave types were observed. The dilation wave was seen to propagate venically downwards from the 
footing, showing little geometric attenuation or horizontal dispersion. The shear wave was found to give rise to 
a reasonably uniform stress hemisphere propagating from the footing. 

Computation of the response of a circular rigid footing to harmonic loads was considered, and a new technique 
for computing complex stiffness and flexibility from a finite element analysis was developed. The new 
technique was shown to provide answers which agreed well with published solutions. 

Two-dimensional transmitting boundaries were investigated, and the standard viscous boundary was found to 
adequately absorb the dilation wave, although a doubly asymptotic boundary was found to provide more accurate 
displacement approximations. The shear boundary developed previously was found to cause erroneous reflections 
of the Rayleigh surface wave. Published boundaries for Rayleigh wave absorption were found to be frequency 
dependent, and so the side boundary of the mesh was located far enough from the footing to prevent erroneous 
reflections interfering with the short term response of the base. 

The effects of footing friction and Poisson's ratio of the soil on the complex compliance of a rigid footing were 
evaluated. Friction between the soil and the underside of the footing was found to alter the dynamic response 
only slightly, while Poisson's ratio was found to have more significant effect. 

Simplified mechanical models of dynamic footing response were examined. An improved model was constructed 
by matching the complex stiffness of the Wolf (1988) model to that obtained by finite element analyses for a 
variety of Poisson's ratio over a large range of dimensionless frequencies. The new model was found to provide 
better agreement with finite element results than existing models. 

The effect of embedment was examined, and the response of an embedded rigid pile was found to be modelled 
adequately by combining the new base model with an appropriate length of shaft transmitting boundary. This 
indicates that little interaction occurs between the soil surrounding the shaft and the soil at the base of the pile. 

Finally, a simplified model consisting of a one-dimensional pile, the shear transmitting boundary placed along 
the pile shaft, and the new base model was found to represent the elastic behaviour of a complete finite element 
model extremely well. 

The effect of soil inelasticity will be considered in the next chapter. 



8. SOIL INELASTICITY 

8.1 Introduction 

The preceding chapters of thi thesis have dealt with the elastic dynamics of pile driving. However, a key part of 
the pile driving process is the inelastic response of the soil, which leads to permanent set of the pile. This 
chapter examines the effect of soil inelasticity on pile driving dynamics, using the Von Mises model of soil 
inelasticity described in Chapter 4. 

Slip at the pile shaftlsoil interface is considered first. The effect of interface elements on the dynamic finite 
element response is investigated, and an improved interface element with internal damping is proposed. At the 
same time, the effect of a weakened soil layer adjacent to the pile is examined. Plastic sliders are implemented 
in the implicit time-stepping scheme. One-dimensional and finite element models of slip at the pilelsoil 
interface are compared. 

The inelastic penetration of a circular rigid footing into a half-space under hammer impact is examined. Three- 
dimensional surface plots of the stress waves propagating from the footing are presented. Existing ooe- 
dimensional models for the inelastic response of a rigid fooling are reviewed, and a new model is proposed. The 
models are compared with finite element results for a variety of hammer, pile, and sol1 combinations. 

The response of a complete finite element model of a pile and the surrounding soil is compared with the 
response of a simple model consisting of a one-dimensional pile, the shaft model, and the new base model. The 
effect of re-driving is also examined, and the residual stresses in the pile and the surrounding soil are computed. 

The methods developed in the current work are used to analyse two pile-driving examples presented in the 
literature. The new results are compared with the published results. 

8.2 Shaftisoil interface 

Chapter 6 established that the shear waves propagating from the shaft are substantially cylindrical, and that 
interaction between adjacent soil layers can be ignored. The magnitude of the stress in the shear waves 
propagating from the shaft decreases in rough proportion to I/&, so the maximum shear stress occurs in the 
soil adjacent to the pile shaft. Since the normal and radial stresses near the shaft are small in comparison with 
the shear stress, in an ideal Von Mises soil the shear strength of the bond between the pile and the surrounding 
soil can be related to the Von Mises yield stress and the undrained shear strength of the soil, s,, by the 
following equation. 

In the ideal model, slip between the shaft of the pile and the surrounding soil will occur when the shear stress 
reachesf, ,which will be referred to as the shaft friction. 

The inclusion of inelasticity in the finite element method was reviewed in Chapter 4. The integration of the 
body loads over the elements (equation (4.34)) is usually performed numerically using'Gauss-Legendre . The 
excess generalised shear stress is computed at each Gauss poinf and integrated over each element to find the 
contributions to the body loads at the nodes (fb). 

Yielding along the pile shaftlsoil interface is highly localised. If the inelastic soil behaviour is computed using 
standard eight-noded soil elements adjacent to the pile, the computed results may be inaccurate, as the Gauss 
points will not be on the pile/soil interface. In the limit, as the element size tends to zero, the solution 
converges to the theoretical solution, but extremely small elements are necessary to produce accurate results. 
Thin-layer interface elements and joint elements are commonly used in the static analysis of similar situations. 
These elements have been reviewed by Leong (1991). 

8.2.1 Interface elements 

Thin-layer interface elements are similar to standard inelastic elements. The delormation within the element is 
described by continuous shape functions. Zienkiewicz et al(1970) describe a six-noded thin-layer element, while 
Desai et a1 (1984) describe an eight-noded element. The suess-strain relationship within the element can be 



distinct from the surrounding soil, and can be highly non-linear. Newton-Rhapson iteration is often used to 
compute the inelastic hehaviour of interface elements. 

In a material with a Von Mises yield law, the accuracy of a finite element scheme using thin-layer elements 
depends on the thickness of the elements. Theoretically, all inelastic deformation occurs in an infinitesimal soil 
layer adjacent to the pile. As the soil elements tend to zero thickness, the computed solution becomes exact. 
However, as the interface elements become much thinner than the elements representing the surrounding soil, 
the relative stiffness of the interface elements becomes large. This can lead to ill-conditioning of the structure 
stiffness ma&, and can increase the number of Newton-Rhapson iterations necessary for convergence. Because 
the static solution is often insensitive to the elastic stiffness of the interface elements, this stiffness is often 
artificially reduced to promote convergence (Zienkiewicz et al, 1970). 

While thin-layer interface elements model a thin soil layer adjacent to the interface, joint elements attempt to 
model a joint between adjacent finite elements. The joint element is either given an arbitrary small thickness 
(Ghaboussi et al, 1973), or has zero thickness (Toki et al, 1981). In a Von Mises soil, the joint should be rigid 
until the shear stress across the joint reaches the undrained shear strength of the soil. The joint should then 
permit relative slip between the adjacent elements to limit the transmitted shear stress to the soil shear srrength. 
This type of rigid/plastic joint element can be implemented either by reconstructing the stiffness mahix each 
time a joint becomes plastic, or by assigning an arbi trw (large) stiffness to the joint and using an iterative 
scheme to account for the inelastic behaviour (Toki et al, 1981). 

The application of thin interface elements to dynamic soil-structure interaction has been considered by Zaman et 
al(1984). Such elements were also used by Chow (1981) and Smith et al (1985). To avoid the high natural 
frequencies present in elements with high stiffness and low mass, the interface element mass is usually 
neglected. Despite this, interaction between the high interface stiffness and adjacent elements possessing mass 
can create natural modes with high resonant frequencies in the finite element mesh. Partly to counter this effect, 
Chow (1981) and Smith et al (1985) added interface damping on the basis of the viscous soil damping of the 
Smith (1960) model. Such damping is inconsistent with elastic-perfectly plastic soil behaviour. 

Beltyschyko et al (1976) have implemented inter-nodal slip in an explicit time-integration scheme. The force 
between two adjacent nodes is assigned a limit. Once the force would exceed this limit, the two nodes are 
permitted to move independently, and the force between the nodes is set to the limiting value. In effect this is a 
two-node rigidlplastic joint element. The method can only be used in an explicit time-integration scheme. 

A similar scheme for inter-nodal slip was used by Simons (1985) in his finite element analysis of pile driving. 
Simons also adopted some interface damping to improve the appearance of his results, justifying such inclusion 
by reference to Chow's work. 

Toki et at (1981) implemented a joint element in an implicit time-integration scheme by providing the joint 
with high elastic stiffness and using load transfer iteration. 

8.2.2 Comparison between thin-layer and joint elements 

The shafvsoil interface in a \'on \li.;es soil should id:ally have 'ero thickness. and should cxhib~l riyid/perfr.c[ly 
nlxstic hchaviour. Thc scllcrne nror~oszl In, Bell~scl~ko et a1 11976) can ;~ccon~nlish this whcn .!n exnlicit time- 
integration algorithm is used. ' ~bwever:  when an implicit time-integratio' method is used, the structure 
stiffness matrix must be adjusted each time a rigidlplastic joint yields or closes. This adjustment can be 
performed efficiently using the method of Deeks et a1 (1984). The change in stiffness can then be found without 
reducing the entire stiffness matrix (Deeks and Clyde, 1992). 

The pile driving problem involves not only slip between the pile shaft and the surrounding soil, but also 
significant plastic soil flow around the pile toe. Unlike the shaftlsoil slip, the inelasticity of the soil at the pile 
toe is not contained within a narrow band, and cannot be modelled with joint or interface elements. The plastic 
flow is spread through the soil elements, and the response must he computed using the initial stress method and 
Newton-Rhapson iteration or a similar scheme. 

If the response of the soil at the pile toe is calculated with an iterative scheme, the computer ~rogramming can 
be minimised by computing the slip at the pilelsoil interface by the same scheme. This approach was used in 
the work which follows. However. in the calculations renorted later in this chanter. considerahlv more iterations . ~ ~ ~ ~ ~~-~ , ~ ~~ ~~~ -~ - 

were needed to account for the shaftlsoil inelasticity t h k  were needed to correctly compute the response of the 
soil at the pile toe. The reason for this was the high relative stiffness of the interface elements compared with 
the other components of the model. Implementation of a separate direct solution scheme for the pile/soil 
interface in future work could be advantageous. 



To allow the initial stress scheme to be implemented for the pile/soil interface, the joint elements must have 
finite elastic stiffness. There is no practical difference behveen a joint element with finite stiffness and a thin- 
layer interface element. The thickness of the thin-layer element is always small in relation to the dimensions of 
the problem, so the small distance between the nodes on either side of the interface will not affect the solution. 

The simulest form of interface element is a stiff suring connecting two adiacent nodes. The sirnolest 
rigid/pla&c interface element can be represented by a itiff spring in sezes with thplastic slider. The beha4our 
of higher order interface elements can be understood by studying this simple form. 

When the initial stress method is used to compute the response of an interface element, decreasing the element 
stiffness improves the convergence of the initial stress method, but reduces the accuracy of the solution. The 
static elastic response of a problem is usually used to determine a stiffness which achieves sufficient accuracy 
within a reasonable time. 

8.2.3 The effect of varying the interface stiffness 

The effect of Interface stiffness on the soil and structure dynamics was not considered in the work referenced 
ab_ove.Jhe researchers have assumed that when the interface elements are stiff enough to avoid excessive static 
deformation error, the elements will not significantly affect the dynamic response of the system. In Chapter 6, 
the dynamic stiffness of the soil surrounding the pile shaft was found to be significantly stiffer than the static 
suffness, parhcularly at h~gh  dimensionless frequencies. In order to quantify the effect of interface stiffness on 
dynamic response, an investigation was undertaken using the plane strain propagation of shear waves from a pile 
shaft, considered in Chapter 6. In this investigation, the soil was separated from the pile shaft by an elastic 
spring. The stiffness of this spring (ki) was non-dimensionalised with respect to the limiting dynamic shear 
stiffness of the soil disk, as indicated by equation (8.1). The model is shown in Figures 8.l(a) and 8.l(b). 

The complex stiffness of a soil disk subjected to plain strain shear harmonic oscillation was presented by Novak 
(1977), and was stated in equation (6.32). In the current model, the soil disc is connected to the pile shaft by a 
spring representing an interiace element. The flexibility of the combined system may be obtained by adding the 
complex flexibilities of the spring and the soil disc. Since the interface spring has no imaginary component, the 
dimensionless flexibility of the system is 

where F,1 and Fs2 represent the dimensionless flexibility of the system, and F z l  and F,2 represent the 
dimensionless flexibility of the soil disc. 

The dimensionless complex system stiffness can be found by inverting the flexibility. 

The interface spring stiffness effects both the real and imaginary components of the system stiffness. The 
variation of the real and imaginary stiffness parameters with the interface spring stiffness is shown in Figures 
8.2(a) and (b) for dimensionless frequencies from 0 to 10. Although having little effect at very low frequencies, 
the interface spring dramatically increases the real stiffness at high dimensionless frequencies, and reduces the 
coefficient of imaginary stiffness. This behaviour can be explained when the soil disc is replaced with the shear 
transmitting boundary (Figure 8.l(c)). At high frequencies the dashpot representing the radiation damping is 
exuemely stiff, and so the interface spring responds as if connected to a rigid boundary. A spring connected to a 
rigid boundary oscillates in phase with the applied force. This tendency is most evident when the interface 
spring stiffness is weak. When the dimensionless interface stiffness is 2 and 5, Figure 8.2(a) shows that, at 
high frequencies, the real spring stiffness tends towards the interface spring stiffness, while the imaginary (out of 
phase) stiffness tends towards zero. 

The dimensionless stiffness of a thin-layer interface element may be easily shown to be related to the thickness 
and stiffness of the soil layer by 



where t is the thickness of the layer, R is the radius of the pile, Gs is the shear modulus of the surrounding soil, 
and G ,  is the shear modulus of the interface layer surroundimg the pile. 

The variation of k* with tlR is shown in Figure 8.3 for Gm = G,. A thickness of as little as 0.02. (2 mm for 
a 500 mm diameter pile) results in a interface stiffness of approximately 100, which is enough to significantly 
dfect the response at high dimensionless frequencies. The effect of reducing Gm is shown in Figure 8.4, and 
will be considered later. 

8.2.4 Appropriate interface stiffness 

Although the addition of a sufficiently stiff interface element does not significantly affect sratic response, the 
study above~shc.w+that the effect on the dynamic response can be quite dramatic, unless the element is extremely --- 
stiff. An interface element capable of better performance under dynamic conditions can be constructed by 
considering the flexibility of the system. 

In the following discussion, the soil adjoining the interface will be referred to as the far field. Under static 
conditions, the interface element will not cause significant error if the combined real flexibility of the far field 
and the interface is similar to the real flexibility of the far field alone. In other words, when the ratio of the 
system flexibility and the far field flexibility is approximately unity. This will be the case when the ratio of the 
interface flexibility and the far field flexibiiity is small, and hence the interface stiffness is large. Using Fi l  to 
represent the flexibility of the interface, these requirements can be written as 

Under dynamic conditions, the ratio of the complex flexibilities of the system and the far field must also be 
approximately unity. This cannot be achieved unless the interface flexibility has an imaginary component (Fi2). 

Unless the ratio Fi2IFZ2 is the same as F i l l F , ~ ,  there will be a phase shift in the system flexibility at high 
frequencies. If the two ratios are equal, the error in the imaginary flexibility will be the same as the error in the 
real flexibility. This error will be small if 

Equation (8.8) will be satisfied if the ratio of the imaginary stiffness of the interface element and the imaginary 
stiffness of the far field is the same as the corresponding real stiffness ratio, and both ratios are large. The 
stiffness and flexibility of the far field can only be found precisely for simple problems, but since the interface 
flexibility is always far smaller than the far field flexibility, the flexibility ratios can vary slightly without 
effecting the results. 

The effect of adding this damping to the interface spring was investigated using the problem discussed above. 
To compute the interface damping, the complex stiffness of the far field was approximated by the truncating 
shear boundary presented in Chapter 6, and the corresponding dimensionless interface damping equated to the 
dimensionless interface stiffness. 



The real and imaginary components of the system stiffness are shown in Figure 8.5(a) and (b). The 
improvement over an interface element with only real stiffness is dramatic. Fork* greater than 20, there is no 
discernible error in the real stiffness, and little error in the imaginary stiffness. 

To examine the effect of interface damping on the response, the hammer impact used to examine the propagation 
of shear waves in Chapter 6 was applied to the finite element mesh shown in Figure 6.2@). However, this time 
an interface element with k* = 21 was placed between the pile and the soil. This is equivalent to a thin-layer 
element with tlR = 0.1. Analyses were performed with and without interface damping, and without an interface 
element. The calculated pile displacements are shown in Figure 8.6. The results obtained using the interface 
element with damping are indistinguishable from those obtained without any interface element, while those 
obtained by using the interface element without damping are completely different, especially at small times. 

This study leads to the conclusion that thin layer interface elements or joint elements with finite stiffness should 
only be used in dynamic analyses when accompanied by sufficient internal damping. The function of this 
damping is not to dissipate energy, but to prevent unrealistic reflection from the interface/mesh intersection at 
high dimensionless frequencies. 

The interface damping described here can be used with any of the joint ~ & ~ i - ~ c e  elements described in the 
literature which have finite elastic stiffness. A damping matrix can be formed by  factoring the terms of the 
elastic stiffness matrix appropriately. 

8.2.5 The effect of a weak interface layer 

The driving of a pile disturbs the surrounding soil. This disturbance can significantly reduce the soil stiffness in 
the immediate vicinity of the pile. Novak and Sheta (1980) have analysed the effect of a zone of soil with 
reduced shear stiffness on the dynamic response of the pile. They obtained a theoretical solution for the 
freuuency deuendent com~lex shear stiffness of this system, reuresentinrr the weakened soil laver bv a surina. . - 
~ h d m a s s  of the thin layerwas neglected to prevent reflkctions €;om the internal boundary between the regions ;;f 
different stiffness. The analytical solution suggested that the radiation damping of the pile could be substantially 
reduced by a surrounding zone of weak soil. 

Providing the zone of weakened soil is small in comparison to the pile, the Novak model is well represented by 
combining the far field solution for a pile radius of R with a spring of the stiffness shown in Figure 8.4. For 
the example presented by Novak and Sheta (1980), in which tlR = 0.1 and GmlGs = 0.1, a dunensionless spring 
stiffness of 2.1 provides results which are virtually identical to those published. This suggests that the reduced 
radiation damping indicated by this solution is partially due to the neglect of mass in the weakened zone, and the 
consequent phase shift in the response. 

To investigate this further, a finite element model including a weakened zone equivalent to the example of 
Novak and Sheta (1980) was constructed. Analyses were performed with the weakened zone represented by finite 
elements with the same density as the surrounding soil, with the weakened zone represented by a spring, and 
with the weakened zone represented by a spring and dashpot in parallel. The results are shown in Figure 8.7. 

The finite element solution shows the stress wave bouncing backwards and forwards inside the weakened zone, 
reducing in magnitude due to radiation damping. When the mass of the weakened zone is neglected (and the 
weakened zone modelled by a spring), the response at short times is quite different from the finite element 
response. When the weakened zone is represented by a spring and a dashpot, the initial slope is identical to the 
initial slope of the finite element response, hut the wave reflection in the weakened layer is eliminated. The 
response of the damped weakened zone appears to be a smoothed version of the Fmite element solution. 

Since the soil surrounding the pile must have mass, but the change in stiffness is unlikely to be sharp enough 
to cause the wave reflection computed with finite elements, the actual response of the soil is probably best 
represented by the damped weakened zone model. The reduction in radiation damping caused by a weakened zone 
is therefore more likely to be represented by Figure 8.5@) than 8.2(b), and is probably less dramatic than would 
be anticipated from the work of Novak and Sheta (1980). 

8.2.6 Soillpile interface modelling 

In a Von Mises soil, the soil and the pile shaft should be separated with continuously disuibuted rigid plastic 
sliders. In a numerical model, discrete rigid/plastic sliders can he used to separate the pile model from the soil 
model at discrete points. To allow solution by the initial stress method, these simple two-node interface 
elements must have finite stiffness. As discussed above, this stiffness should have both real and imaginary 
components. The simplest possible element therefore consists of a spring and dashpot in parallel, connected in 
series with rigidlplastic slider, as shown in Figure 8.8. 



The complex suffness of the springlslider combination should be high enough to prevent distortion of the 
soluuon, but low enough to permit reasonable convergence when the slider action is calculated by the initial 
stress method. Since slip only occurs in the z direction, the radial degrees of freedom either side of the interface 
element can be rigidly linked together. 

This interface element can be used between the pile and the soil in both the fmite element model and the one- 
dimensional model. However, unless direct calculation of the soil nodal displacements, velocities and 
accelerations is required, the stiffness of the interface element can be ignored in the one-dimensional model, and 
the excess body force applied only at the pile node, as shown in Figure 8.9. Since the elastic stiffness defined 
by the soil model is much smaller than the interface stiffness, convergence of the Newton-Rhapson iteration is 
then considerably quicker. 

When rigidlplasac sl~ders are used in a time-stepping integration scheme, the commencement and cessation of 
sliding are possible sources of error. Sliding usually commences within a time-step. At the beginning of the 
time-step the slider force is less than the yield force, and at the end of the time-step the force is greater than the 
yield force. When initial stress iteration is used, the force at the end of the time-step is always limited by the 
yield force, and the commencement of sliding taken into account implicitly. However, when the interface 
possesses both stiffness and damping, th&.si:prrtion time and the relative velocity of the two nodes at the 
separation time are needed to determine when sliding action ceases. 

A plasm slider will close when the sliding velocity decreases to zero. If the interface has no damping, the 
sliding velocity is equal to the relative velocity of the two nodes, since there will be no change in spring 
deformation while the force is held constant However, if the interface possesses both stiffness and damping, the 
slider velocity will be affected by the internal response of the element. Referring to Figure 8.8, the equation of 
motion for the internal spring and dashpot can be solved to find the slider velocity (0,). At any time after 
sl~ding commences, the slider velocity is determined by the equation 

ki - - (t  - fs) 
as = (i2(tJ - a](t)) - (Q(tsJ - irl(ts)) e (8.101, 

where t, is the time at which sl~ding commenced, ki and ci are the interface stiffness and damping, and u] and zi2 
are the nodal velociues. When the constant-average-acceleration method is used to uerform the time internation, 
a close approximation to the separation time can be obtained from the nodal velocities and the slider for& at the 
end of the time-step in which the yield force was exceeded, and the average nodal accelerations within the time- 
step. 

The time at the end of the step is represented by 12, the force is the slider is represented byf, the yield force is 
fy. and the average relative acceleration of the nodes is 

The sign of the square root term is selected to ensure that the separation time falls between I] and 12. Once this 
time has been determined, the relative velocity of the nodes at separation is simply 

These equations allow the time at which sliding should cease to be determined accurately. However, this time is 
also usuallv inside a time-steu. Unless an adiustment is made. the slider could be removed too earlv or too late. ~ ~~ , ~ ~ - - -  

If the slide; is not removed at'the correct time, the velocity of the slider is not zero, and a small equilibrium error 
is introduced when the velocity is set to zero. This error can be reduced considerably by decreasing the slider 
force over the time-step so that the slider velocity becomes zero at the end of the time-step. This can be 
achieved by iteratively satisfying the equation 

Unless the above adjustments are implemented, accurate results can only be obtained when the integration time- 
step is considerably smaller than that necessary to solve the elastic problem. When the adjustments are used, 
accurate results can be obtained with the same time-step. 



8.2.7 Comparing the models 

To compare the inelastic response of the simplified shaft model and the finite element model, the semi-infinite 
pile used to compare the elastic response was employed (Figure 6.25). Interface elements were placed between 
the pile shaft and the surrounding soil in both models. The dimensionless stiffness and damping of these 
elements was 20, and the shear strength (fs) was 100 Wa. 

The calculated displacements at the pile head and at the bottom of the soil layer are shown in Figure 8.10. The 
axial force in the pile at the pile head and at the bottom of the soil layer are shown in Figure 8.1 1. The results 
obtained from the simplified model are virtually identical to those obtained from the finite element model. Since 
there is no significant interaction between the soil layers when soil inelasticity is included, the vertical 
dimension of the soil elements surrounding the shaft need only be sufficiently small to accurately represent the 
axial wave in the pile, rather than small enough to represent vertical waves in the soil. 

8.3 Toe penetration 

8.3.1 Finite element modelling 

The effect of soil inelasticity on the travelling waves under a circular rigid footing was investigated by applying 
the hammer impact force shown in Figure 8.12(a) to the finite element model shown in Figure 8.12fb). This 
hammer impact has a longer rise time than that used to investigate elastic wave propagation at the beginning of 
Chapter 7, and so the travelling waves are less sharp, and a coarser element mesh can be used. 

Figure 8.13 shows the generalised stress in the soil at 2 ms intervals. Soil inelasticity limits the generalised 
shear stress to 1 MPa. The wave velocity indicates that the major part of the plastic behaviour is associated 
with the shear wave. The final plot in the series shows the residual soil stresses after all dynamic action has 
ceased. 

8.3.2 The effect of pile embedment 

Section 7.1 1 showed that the elastic response of the soil at the pile toe could be separated from the response of 
the soil along the shaft, and treated as a rigid footing on a half-space. However, inelastic penetration of the pile 
toe requires the formation of a plastic mechanism in the soil, while soil inelasticity along the shaft is confined 
to the pilelsoil interface. Soil above the pile toe will therefore affect the failure mechanism, as indicated in 
Figure 8.14(a). In practice, the static failure load of an embedded circular footing in an undrained soil is often 
taken to be 9 su, while the failure load of surface footing is often taken to be 6 su . 

The effect of embedment on the dynamic inelastic behaviour was investigated by comparing the response of a 
surface footing to the response of footings embedded by 2R and 4R. A dashpot was used to account for 
reflection of the wave back up the pile, and twice the impact load applied to the footing, as described in Section 
7.12. The finite element models are presented in Figure 8.14@). Anticipating that the inelastic footing 
response would he a function of the static failure load, the shear strength for the soil containing the embedded 
footings was taken as 330 Wa, while the shear strength for the soil under the surface footing was taken as 500 
Wa, giving all footings static failure loads of approximately 2.15 MN. 

The response of each footing to static loading was computed, and is shown in Figure 8.15. The behaviour of 
the two embedded footings was similar, especially at loads near the failure load. The failure load of the surface 
footing (on the stronger soil) was close to thal of the emhcddcd footings. Thc suuc Cdilurc load indicated by the 
finite cl:menl mcsh~s is slightly larger than lhc assumed Wurc load of 2.15 hlK, as expcctcd. 

The hammer impact shown in Figure 8.12(a) was then applied to all three meshes. The displacements of the 
embedded footings and the surface footing are shown in Figure 8.16(a), while the forces exerted on the footings 
are shown in Figure 8.16fb). Up to the time that the maximum displacement is attained, there is vely little 
difference between the responses, supporting the proposition that the dynamic response is mainly a function of 
the static footing failure load. The difference between the footing embedded by 2R and that embedded by 4R is 
negligible. 

The force exerted on the footing by the soil mass initially increases above the static failure load, but then falls 
below this failure load, although plastic soil deformation is still occurring. The reduction of the base force 
below the static failure load during inelastic penetration can be partly attributed to the effect of the dilation wave. 
Studies presented in the previous chapters indicated that as a dilation wave travels, a region of tensile stress 
develops behind the wave. This tensile stress effectively pulls the near field in the direction of the travelling 
dilation wave for a short period of time. In the case of the wave propagating from the pile toe, the tensile region 



behind the travelling wave reduces the stresses in the soil beneath the pile, and hence the force exerted on the 
pile. The confining stress surrounding the plastic zone is also reduced, and so the vertical load required to 
produce plastic penetration is reduced. 

The force on the surface footing is slightly larger than the force on the embedded footings during the later stages 
of plastic penetration. Consequently, when plastic behaviour ceases, the rebound of the surface footing is 
slightly greater. 

The larger force on the surface footing supports the proposition that the dilation wave reduces both the footing 
force and the vertical load to produce penetration. Since the yield stress of the soil under the surface footing was 
larger than the yield stress of the soil surroundmg the embedded footings, and the stress reduction caused by the 
dilation wave is not significantly affected by the embedment, the stress reduction is relatively larger for the 
embedded footings. 

8 

The base model originally used by Smith (1960) to model the inelastic base response is similar to that shown in 
Figure 8.17(a). ~ ~. Siqons .- and Randolph (1985) used Lymer's analogue (Lysmer and Richart, 1969) to provide . 

values for the spring and dashpot constants based on the fundamental soil properties of shear modulus and 
density. They identified the slip load of the plastic slider with the ultimate static failure load. Nguyen et a1 
(1988) used a similar model, but relocated the position of the plastic slider to that shown in Figure 8.17(b). 
They used the same stiffness and damping values as Simons and Randolph. 

A more complex model of inelastic footing response was proposed by Holeyman (1985). This model replaces 
the half-space beneath the footing with an equivalent conic solid. The cone angle is computed to ensure that the 
elastic response of the cone is virtually identical to the response of Lysmer's analogue. The cone is truncated 
with Lysmer's analogue for a footing of equal radius to the cone base. The equivalent solid is divided into one- 
dimensional elements of varying cross-section, as shown in Figure 8.18. The stress-strain relationship for each 
of these axial elements is approximated by a hyperbolic curve (Holeyman, 1988). 

In Chapter 7, a new model for the elastic response of a rigid circular footing was developed. This model 
provided significantly better agreement with finite element results than Lysmer's analogue. The model will now 
be modified to include the effect of soil inelasticity. Following from the lead of the Smith models described 
above, a plastic slider with a slip load equal to the static failure load will be introduced. 

There are three possible locations at which this slider could be introduced. These are marked A, B and C on 
Figure 8.19(a). Placing a slider at location A will limit the force exerted on the tooting to the static failure load. 
The finite element results presented in Figure 8.16 indicate that the force rises significantly higher than the static 
failure load, so this location will not be used. Preliminary results published by Deeks and Randolph (1991) 
indicated that placing the slider in position C would result in an under estimation of the inelastic deformation. 

Placing the slider at position B can be justified by the above observations regarding the propagation of stress 
waves within the half-space. The dilation wave rapidly travels away from the footing in the vertical direction. 
Although the dilation wave may cause soil plasticity, the time period during which inelastic displacement occurs 
is small. The amount of permanent displacement associated with the dilation wave is therefore also small. The 
plastic slider should not, therefore, be placed in series with the auxiliary mass and dashpot, as these are identified 
with the dilation wave. The standard spring and dashpot largely represent the response to the shear wave, which 
causes most o i  Ule plastic deformation. Once n plastic mechanism is formed, the force exerted on the footing 
can onlv incrcasc if soil viscositv effects x e  included. These cifecls have bcen nerrlected in the work remrted i n  
this thesis. Since the force on the footing cannot be increased by radiation dam$ng after a plastic m6chanism 
has formed, the slider should be in series with both the spring and the dashpot. The slider should therefore be 
positioned at B, as shown in Figure 8.19@). 

As was noted above, the tensile stress region following the dilation wave reduces both the stress on the footing 
and the stress reouired to nroduce ~last ic  deformation. The auxiliarv mass and dashnot in the model account for 
the reduction of hating &ess. once the velocity of the auxiliary mass is larger &an the footing velocity, the 
auxiliary dashpot exerts a tension on the footing. However, a method for modelling the reduction in the stress 
required to cause plastic deformation is not immediately evident. The reduction must be related to the tension 
caused by the dilation wave. The effect of reducing the plastic slider slip force in proportion to the tension in 
the auxiliary dashpot will be evaluated. 

There is no viscosity in the ideal soil currently under consideration. However, in real soils the effect of soil 
viscosity on the dynamic failure could be modelled by placing an extra dashpot in series with the plastic slider, 
as also shown in Figure 8.19(b). 



The new model will give correct static response (as will the other simplified models) and, compared with the 
other models, will give superior elastic response to transient loads. In the following sections, the ability of the 
new model to model the dynamic inelastic response will be investigated. 

8.3.3 Comparison of methods 

In Chapter 7, the elastic response of each of the models to a pulse of general shape was evaluated by examining 
the frequency dependent complex flexibility and stiffness, and comparing them with those obtained by accurate 
analysis. Since a pulse of arbitrary shape can be modelled as a combination of harmonics, and the system is 
linear, the general accuracy of the models was established. However, when inelastic soil behaviour is involved, 
the system is non-linear, and such a general measurement of accuracy cannot be obtained. 

Since [he accuracy of the elastic response of each model has alrcady hecn evaluated, the additional factors which 
could affect the inelastic resnonse are the ratio of maximum footing load to static failure load. the ratio of soil 
shear strength to soil shear mbdulus, and the pile impedance. The piG impedance can be non-dikensionalised by 
dividing by the radiation damping constant. The effect of each of these factors was examined by analysing a 
variety of problems. The finite element niesh and each combination of  hammer, soil, and pile properties are 
shown in Figure 8.20. -. .- , -..~' 

1\11 111- arrangements wsrc analyscd using the finire elcmcnf method, and using thc sirnplifitd models described 
abo\,c. l'h: new mo:lel u,~th a nlastic sl~dcr force eoual to ihc swtic failure load will bc denoted as new model 1. 
while the same model with the plastic slider force rehuced by the tension in the auxiliary dashpot wiU he denoted 
as new model 2. 

The footing displacements for arrangement A in Figure 8.20 are presented in Figure 8.21(a), and the forces in 
Figure 8.210). The new models show the footing force exceeding the static failure load, and subsequent plastic 
action occurs at a force less than the static failue load. This behaviour is evident in the fmite element results, 
but not in the other simplified models. The maximum force predicted by the Smith model (1) is considerably 
higher than the finite element force, while the displacement is significantly lower. The results of the Holeyman 
model and the modified Smith model are in close agreement, but neither show the variation in footing force 
predicted by the fmite element analysis. The modified new model, in which the plastic slider slip load is reduced 
by the tension in the auxiliary dashpot, shows better agreement with the finite element results than the standard 
new model. 

The effect of the ratio of maximum force to static failure load was examined by analysing the same problem 
with twice the hammer load (arrangement B in Figure 8.20). The forces and displacements calculated with the 
different models are shown in Figure 8.22. The differences between the models noted above are still evident. 
The finite element results fit between the new model and the modified new model, although the models slightly 
underestimate the peak force. This analysis indicates that, providing the maximum hammer force is 
significantly higher than the static failure load, the model responses are not significantly affected by this ratio. 
During pile driving, the hammer forces in the pile are usually significantly higher than the static failure load of 
the pile base. 

Deeks and Randolph (1991) have shown that, when the ratio of applied force and static failure load is close to 
unity, the Holeyman model predicts the finite element displacements better than the other models. This is 
because the hyperbolic stress-strain relationship used in Holeyman's model permits inelastic deformation to 
occur before the static failure load is reached. Such deformation is not permitted by any of the other models. 
However, in practical pile driving problems most inelastic deformation takes place after the static failure load is 
exceeded. 

The effect of pile impedance was examined by considering two extremes. Firstly, the influence of the pile was 
disregarded entirely, and the hammer load was applied directly to the footing (arrangement C in Figure 8.20). 
This represents a pile impedance of zero. The footing was given a mass of 8000 kg (equivalent to the anvil 
mass) to prevent unrealistic acceleration under the prescribed impact load. Secondly, a pile impedance of 10 
MNsIm was used, representing the upper end of practical pile impedances (arrangement D in Figure 8.20). The 
results from the arrangement C are shown in Figure 8.23, and from arrangement D in Figure 8.24. 

When no pile impedance is used, all the models except the original Smith model yield results which are similar 
to the finite element model. However, the results of the new model are significantly closer than the other 
models. When the pile impedance is 10 MNs/m, the same differences between the models and the finite element 
results are still evident, showing that the models account quite well for the pile impedance. The finite element 
results fall between the results of the new model and the modified new model. 



The effect of the soil strength/stiffness ratio was examined by increasing the soil strength by a factor of three 
(arrangement E in Figure 8.20). The hammer force was doubled to ensure sufficient inelastic penentration. The 
computed displacements and force are shown in Figure 8.25. The effect of the soillstrength ratio can be seen by 
contrasting these results with those shown in Figure 8.22, which were obtained for the same hammer blow and a 
static failure load of 2.15 MN. The effectiveness of the models is not affected. The modified new model best 
represents the finite element results. 

The effect of a sharper hammer blow was investigated by using the original footing and soil strength and 
increasing the cushion stiffness to halve the rise time of the hammer force (arrangement F in Figure 8.20). The 
resulting displacements and forces are shown in Figure 8.26. Again, the same differences between the models 
can be observed. While slightly underestimating the peak force, the modified new model best fits the finite 
element results. 

The foregoing investigations have shown that the new models are significantly better than existing base models, 
yielding results which are in close agreement with results obtained from accurate finite element analysis. This 
agreement has been shown to extend over a broad range of problems. The differences between the new model and 
the momfied new model were only apparent at large times, and the forces computed from the finite element 
models were often found to fall between the forces cw.p&ksd with the two new models. Consequently, although 
the results of the modified new model were generally better, thesimpler new model can be used with only slight 
reduction in accuracy. 

8.4 Overall pile response 

The foregoing analyses have established the accuracy of the simplified shaft model and the new base models. 
The effect of combining the shaft and base models will now be examined, and compared with a complete finite 
element model. 

Due to computer capacity limitations, the short pile shown in Figure 8.27(a) was analysed. The response was 
computed using the finite element mesh of Figure 8.27(b) and the simplified model shown in Figure 8.27(c). 
Both of the new base models were used. 

The results obtained for a single hammer blow are shown in Figure 8.28. The results from the new one- 
dimensional models are very close to those computed with the finite element model. The model with the 
modified new base (designated as 1D model @)) gave slightly better results than the model with the standard new 
base (ID model (a)). However, both models gave good representation of the significant features of the 
displacement and force responses. 

8.5 Repeated driving and residual stresses 

The abilities of the one-dimensional models to represent residual stresses in the soil and the pile were examined 
by subjecting the same pile to three hammer blows, preserving the permanent displacements and residual stresses 
between each blow. 

The displacements and forces are presented in Figure 8.29. The simple models again gave results which are very 
close to the finite element results. The model with the modified new base gave a better approximation to the 
displacement. However, by the third blow the finite element force response was closer to the model with the 
standard new base. 

The variation of residual axial force along the length of the pile is shown in Figure 8.30 for each blow. Again, 
the results from ihe simple models are very close to the fmite element results. During the first blow, the model 
with the modified base predicted the residual axial force better. However, by the third blow the standard new base 
model was superior. The residual soil suesses surrounding the pile after three blows were computed from the 
finite element analysis, and are shown in Figure 8.31. 

The behaviour of the finite element model falls between the model with the standard new base and the model 
with the modified new base. At higher blow counts, the error in the standard base model is reduced. In practical 
pile driving problems, the pile is driven from the surface, so residual soil stresses surround the pile at every 
hammer blow except the fist.  Consequently, the simple version of the new base model should be adequate in 
most applications, and will be used in the comparisons which follow. 



8.6 Comparison with other analyses 

This thesis has shown that much care must be taken to ensure that finite element analysis of pile driving yields 
accurate results. Some analyses presented in the past have not taken this care. As an illustration, the problem 
presented by Simons (1985) was reanalysed using a finite element mesh of appropriate fineness, and using the 
new one-dimensional model. The pile, hammer, and soil parameters are shown in Figure 8.32(a), and the mesh 
used in the present analysis is shown in Figure 8.32@). The finite element mesh used by Simons was shown in 
Figure 2.6. The work reported above has shown that the shear transmitting boundary together with a plastic 
slider represents the effect of soil along the pile shaft extremely well, so this boundary was used along the pile 
shaft to reduce the size of the finite element mesh. 

The displacement at the pile head computed by the different methods are shown in Figure 8.34. Simon's finite 
element results are far worse than those he obtained with a simplified one-dimensional analysis. The difference 
between the new one-dimensional model and the current finite element analysis is small. 

The problem used by Chow (1981) was also analysed. The pile is shown in Figure 8.34(a), and the finite 
element mgs-h in Figure 8.34@). Chow's mesh was shown in Figure 2.4. The results are shown in Figure - - 
8.35. The new one-dimensional model and the current finlte element analysis are in close agreement, hut the 
only similarity with Chow's results is the permanent displacement. 

8.7 Conclusions 

This chapter examined the effect of inelastic soil behaviour on pile driving dynamics. Slip between the pile 
shaft and the surrounding soil was modelled by using interface elements with complex stiffness, as interface 
elements with only in-phase stiffness were found to interfere with the elastic response of the system. The 
differences between a finite element model of the shaft response and a one-dimensional model with the shear 
transmitting boundary separated from the pile by plastic sliders were found to be negligible. 

The effects of inelasticity on the stress waves emanating from a rigid footing were examined by finite element 
analysis. Existing simplified base models were reviewed, and two alternative models were formed by modifying 
the new elastic base model to include soil plasticity. The base models were compared with finite element results 
for a range of pile driving problems, and the new models were shown to be more accurate than the other models. 
The accuracy of the new models was shown to be insensitive to pile embedment, applied force to static failure 
load ratio, soil strength ratio, pile impedance, and force rise time. 

A complete pilelsoil problem was then analysed, using a finite element model and new one-dimensional models. 
The new models consisted of a one-dimensional pile with the shear transmitting boundary separated from the 
shaft by plastic sliders, and the new base models. The new models were shown to agree well with the finite 
element analysis. During repeated blows, the model incorporating the standard version of the new base model 
was found to perform slightly better than the model with the modified version, justifying the adoption of the 
simpler version. 

Two pile driving problems available in the literature were analysed, and the new simplified model was shown to 
give closer agreement with accurate finite element analysis than the published finite element solutions. 



9. SUMMARY AND CONCLUSION 

9.1 Synopsis 

Dynamic soil-pile interaction models used in practical field applications must be 'correct' for ideal conditions, 
otherwise no faith can be placed in soil parameters deduced from such models. Conversely, without models 
based on measurable soil parameters, predictive dynamic pile analysis must rely on empirical soil-pile 
interaction models. In a contribution to the development of a model based on fundamental soil parameters, this 
thesis has presented a detailed study of dynamic soll-pile interaction in a simple (ideal) soil. The study proceeded 
in a methodical manner through hammer impact, stress wave propagation in the pile, elastic shear wave radiation 
from the shaft, elastic wave radiation from the toe, the effect of soil inelasticity on the wave radiation, and 
finally the analysis of the complete pile-soil system. In the process, a simplified model was developed which 
represents the behaviour of the ideal system extremely well, laying the basis for simplified models that may be 
calibrated in future work for field application. 

This chapter presents a summary of the contents of the thesis, including the major findings and conclusions. 
The summary is followed by a section identifying areas in which further work could be performed, and 
concluding remarks. 

9.2 Summary 

Following a literature review, an analytical study of some simple drop hammer models was performed. The 
equations of motion of the hammers were written in a new dimensionless form, and the force exerted on the pile 
solved analytically for each model. Two of these analytical solutions are new. Comparisons with field data 
were presented, demonstrating the ability of the new solutions to represent real hammers. Unlike numerical 
models of the pile hammer system, the analytical solutions allow parametric studies of hammers performance to 
be carried out quickly and easily. Studies of ram separation, transmitted energy, and maximum transmitted force 
were presented to illustrate this ability. 

The propagation of axial stress waves within a pile was then studied using the finite element method. The 
major conclusions from this study were that a continuous impulse function should be used to represent the 
hammer impact, and that the node spacing be small enough for the finite element mesh to adequately represent 
the sharply rising wave-front Unless these conditions were maintained, the travelling stress wave was found to 
give rise to spurious high frequency oscillation. A study of time integration schemes concluded that the 
Newmark constant-average acceleration method most faithfully represented the response of the discrete finite 
element mesh. Errors introduced by ignoring the effects of radial inertia were found to be quite small, and an 
adequate representation of the pile behaviour was achieved by ignoring radial inertia and assuming plane sections 
remained plane. 

The radiation of elastic shear and dilation waves From the pile shaft was then studied. The deformation of the 
soil along the shaft was found to be essentially plane strain, as the axial wave velocity in the pile was much 
higher than either the shear wave velocity or the dilation wave velocity in the soil. An investigation of the 
propagating axisymmetric plane strain waves revealed that both the shear and dilation waves sharpen as they 
propagate away from the pile. Consequently, increasing the size of the finite elements away From the pile was 
found to cause significant erroneous reflection. 

Truncation of the finite element meshes with a standard viscous boundary was found to lead to rigid body 
motion. A new derivation of a transmitting boundary for transient axisymmetric plane strain shear waves was 
presented. This boundary consists of a spring and a dashpot. The boundary was shown to give excellent 
agreement with an extended finite element mesh, even when applied directly to the pile shaft. A similar 
boundary was derived for axisymmetric plane strain dilation waves. A new equivalent mechanical model for this 
boundary was also derived. Again, the boundary was shown to give good agreement with a finite element mesh, 
even when applied directly to the pile shaft. 

Little interaction between the soil adjacent to the pile shaft and the soil beneath the pile toe was found, so the 
r-diation of u,avcs irom thc pile toc was in i t i d ly  exan~r~ed hy considerin: tlic rcsponie of a rigid circul~r footin2 
on n semi-~nlinitc hdf-soacc. The F t r C S j  waves en~:tnatin,! l'rom :I riel,l f ~ d t i n r r  sublwt to hamnier imnact uerc - - - ~, ~~~~ ~ r~~~~ ~ 

examined. The dilation wave was found to propagate downwards, with little geometric attenuation of horizontal 
dispersion. The shear wave was found to form a reasonably uniform stress hemisphere propagating from the 
footing. 



The response of a rigid footing to harmonic loads was examined, and a new technique for computing the 
frequency dependent comolex stiffness and flexibilitv from one finite element analvsis was orouosed. In this . . 
technique, a mu~t i - f r e~ue&~ transient load is applied-to the footing, and the displacdment cokp;ted at discrete 
time intervals until the footing returns to rest. Fourier series representing both the applied force and the 
computed displacement are formed, and the complex flexibility is calculated for each discrete frequency in the 
series. The technique was shown to provide answers which agreed well with analytical and published solutions. 

Simplified mechanical models of dynamic footing response were considered. An improved model was 
constructed by matching the complex stiffness of the footing model with the complex stiffness computed by 
finite element analyses for a variety of Poisson's ratios over a large range of dimensionless frequencies. When 
subjected to impact loads, the new model was found to give closer agreement with finite element results than 
existing models. 

The elastic response of an embedded rigid pile was found to be adequately modelled by combining the new base 
model with an appropriate length of shaft transmitting boundary, indicating that little interaction occurs between 
the soil surrounding the shaft and the soil beneath the pile toe. A simplified model consisting of a one- 
dimensional pile, the shear boundary applied aIong the pile shaft, and the new base model was found to represent 
the elastic behaviour of a complete finite element model extremely well. - -=- 

The effect of soil inelasticity was then examined. Slip between the pile shaft and the surrounding soil was 
modelled using interface elements. Interface elements with only in phase stiffness were found to interfere with 
the response of the elastic system. A new interface element with complex stiffness was proposed. This 
interface element was shown to considerably reduce the distortion of the elastic solution. 

The response of a fmite element shaft model with interface elements between the pile and the soil was shown to 
be well represented by a one-dimensional model with the shear transmitting boundary separated from the pile by 
plastic sliders. 

The elastic model for the soil at the pile base was extended to include inelastic behaviour by the insertion of a 
plastic slider with a yield force equal to the static failure load. The new model was found to reproduce the results 
of finite element analyses significantly better than existing models. In particular, the force exerted on the pile 
was found to initially rise above the static failure load, and then drop below the failure load while plastic 
deformation continued. The new model was the only model which reproduced this behaviour. The accuracy of 
the new model was found to be insensitive to pile embedment, ratio of applied force to static failure load, soil 
strength ratio, pile impedance, and force rise time. 

A complete pilefsoil problem was analysed using a finite element model. These results were found to be 
reproduced extremely well by a simplified model consisting of a one-dimensional pile, the shear transmitting 
boundary separated from the shaft by plastic sliders, and the new inelastic base model. Two pile driving 
problems from the literature were analysed, and the new model was found to give closer agreement with accurate 
finite element analysis than the published solutions. 

9.3 Further work 

This thesis has shown that a simplified model can represent the driving of a closed ended pile in a Von Mises 
soil extremely well. However, there are a number of areas in which more work can be done. 

An analytical solution for a hammer model with cushion damping was presented in Chapter 3. This cushion 
damping could be chosen so that the solution represented field data very well. Research needs to be conducted 
into the equivalent cushion damping present in a range of practical hammer systems, so that the solution can be 
used to mode1 the hammer in practical problems. 

In Chapter 5, the radial motion of the pile wall was found to have only a small effect on the overall pile 
response. However, for a thin-walled pile, the radial motion was found to change the shape of the propagating 
wave quite significantly. This could affect the reflected force often measured at the pile head during driving. A 
full study of the effect of radial pile motion on the stress wave is required. The models developed in this thesis 
for shear, dilation, and base wave transmission could be used to represent the soil. Full finite element models of 
a range of thin-walled piles could then be studied, and comparisons made with field measurements. 

A new method for computing lhc complex compliance of iootitigs from 3 finitc elenlcnt analysis WLS propospd 
in Chanter 7. n ~ i s  method could b: dcveloned iurthcr. a; i t  has the notenti31 to cornnut2 [he con~oliance oi 

~~ ~~~~- - ~ 

footings for which analytical solutions are no; available. ' 



In Chapter 8, standard interface elements were found to cause significant distortion of the elastic solution, and an 
improved interface element with complex stiffness was proposed which could overcome this problem. The 
interface element was only used in a basic two-noded form. The element could be formulated in more general 
terms, and applied to a variety of dynamic shucture soil interaction problems. 

The new base model was shown to reproduce the fmite element results extremely well. An experimental study 
into inelastic base response could be undertaken to verify the theoretical predictions. The effect of a different soil 
type on both the finite element response and the experimental response could be examined. 

A dcrailed study correlating the complcte pile driving nlodcl uith a wide range of rield dab  should bc pcrformcd, 
determining whether the ncw model provides a signilicant practical improvement over the existing models. 

'The study reported in this thesis was limited to closed ended piles. Since doubt has been raised regarding the 
accuracv of ~reviouslv oublished finite elemcnl results. a detailed study of thc dvnsmic remonse of an ooen-ended 
pile should 6e undeGen.  The soil surrounding the pile shaft could be modelied with the shaft modeipresented 
above, and finite elements used to represent the soil plug and the soil immediately sunoundmg the pile toe. The 
mesh could be truncated with the transmitting boundaries described in this thesis. 

9.4 Concluding remarks 

A detailed study of pile driving dynamics has lead to an improved model of pile-soil interaction which represents 
the theoretical behaviour of a pile in an ideal soil extremely well. More complex fmite element models can only 
achieve greater accuracy than the improved model when great care is exercised. The new model is a promising 
alternative to empirical models in current use, and, once calibrated with field data, should find widespread 
application. 
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APPENDIX A -- SOLUTION OF RAMICUSHIONIANVIL MODEL 

The Laplace transform for the anvil velocity in the mm/cushion/anvil model is 

Naming the coefficients of the cubic denominat01 

equation (3.32) can be written as 

LC,* = 00 
2 3 a o + a l s  + a 2 s  + s  

(A3). 

Letting 

if p is greater than zero, the cubic denominator of equation (Al) has one real root and two imaginary roots. 
The inverse transform can be found readily if the following substitutions are made. 

a2 bl = - - ( a  + ~ ' ' 3  - (a - ~ " 3  
3 (A6) 

This allows the cubic denominator to be factorised, and equation (Al) becomes 

which can be expanded to 

Performing the inverse Laplace transform, the anvil velocity can be found. 

. * bz-bl . u, = COS mt* + -- 
W 

sin 



This solution can be written in a simpler, more convenient form by making 

c2 ao c l = b l ,  c2=b2 - b l .  @=atan- ,and  F -- 
W - &+c22 

The anvil velociry and the force on the pile head are then 

* 
* 

fp* = ua = Fp e -c2t cos (Wt* - 4 )  
cos 4 

The spring force can be found by using the equilibrium equation 

* .. * * 
fs* = ma u, + aa (A14). 

Differentiating equation (A13), substituting into equation (A14), and simplifying, the spring force can be 
expressed as 

czt* cos (Wt* - 0 )  fs* = Fr (e - 
cos 8 

where 

c2 (a2 - c l  -- c2j - ~2 Q = atan 1 and I;,= 
ao (az-cl) ( W (a2 - C I )  0 2 + ~ 2 2  

For most combinations of ma* and kc*, P is greater than zero, and the solution presented above applies. For a 
small range of combinations, p*2 is less than or equal to zero, and a different solution must be used. When this 
is Lhe case, the cubic denominator has three real roots, and equation ( A l )  can be written in the following way. 

* 
L U ,  = ag 

(S + b i )  (S + b 2 )  ( S  + b 3 )  

0 bl  = 7 + 2 ' 4 5 ~ 0 s -  
3 

If b l ,  b2, and b3 are all distinct, equation (A18) becomes 

and the solution is given by 

r ( b *  -b2t* - -b3r*) 
fP* = U, = F p  A g e  BP 



F - A ,and - b* b3-b2 
P - (b2-bl)(bj-bl) ' 

= 
- b2-b3 

The force in the spring is 

(02-mib2'* (a2-b3)eb3'* 
(bl-b2)(b3-b2) (bl-b3)(b2-b3) (A271 

or 

* x b3t* $ = F, (dblf -A,  e-b2f - B, e- ) (-428) 

with 

az-b2 b3-b2 ao(a2-b1) 
A, = 

a ~ - b 3  b2-bl 
F ,  = 

(h-b l ) (h-b l )  
,and B - -- 

02-bl b3-bl - a ~ - b l  b2-b3 
(A29). 

However, if two of the roots are the same, the solution is different again. When p i s  zero and b3 is equal to b2, 
and the solution becomes 

* * f px  = zia = h e - c 1 t  ( 1 - e  (1 + bz  t* )) fA30) 

f/ = F,e ( 1 + b 2 A s t * ) )  (-431) 

Q * F P = ~  Fs=- 2 ,  A s = l - m a  b2 (A32). 
ma c2 



APPENDIX B -- SOLUTION OF DAMPED CUSHION MODEL 

The Laplace Eansform of the anvil velocity for the damped cushion model is 

Naming the coefficients of the cubic denominator as before 

kc* 
* 

ao=- 
*(mi )+: 1 * ,  a i = k c  ,+ 1 --;, a 2 = c c  :+ 1 +-- 

ma *(mL ) ma 

and introducing 

equation (B 1) can be written as 

Introducing the substitutions specified in equations (A21 to (A8), the denominator may be factorised as follows, 
providing /3 is greater than zero. 

This can be expanded to 

* co(b4-bl) 1 Lira = s + b:! b:!2+w2+b~b4-b4b2-b2bl 
2 1 2  ( + b 2  (b4-bl)((s+b2)2+$) ) (B6). 

Performing the inverse Laplace transform, the anvil velocity can be found. 

This solution can be written in a simpler form by making 

c l =  bl . cz = b2 - b1 . c4 = b4 - bl , @ = atan 
cz(c4-c2)-w2 co c4 

, and F - --- 
w c4 - (B8). 

The equation for the pile head force and velocity is then in the same form as equation (A15) 

* 
fp* = uu = F p  e-clt*(l - e -cztF cos ( a t *  - 4) 

cos @ 1 
The spring force can be found by applying equation (A14). 

fS* = F, e 
- As cos B 



where 

and 

When P is less than or equal to zero, the denominator again has three real roots. Equations (A18) to (A24) 
define parameters bl, b2, and b3. 

If bl, b2, and b3 are distinct, equation (Bl) becomes 

and the solution is given by 

* * (,-bit* - -b2t* - -b3t*) 
fp = ir, = Fp A~ B~ (B14) 

The force in the spring is 

with 

The solution for the case when Pis zero and b3 is equal to b2 follows. 

* * 
fp = u, = F~ e -cjt* (l - e-c2t* (1 + ~ t * )  
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Fig 3.9. Effect of anvil mass on transmitted energy factor with no cushion damping, 
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Fig 4.3. Example of finite element discretisation with corresponding shape functions. 

Fig 4.4. Yield surface for van Mises plasticity. 
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Fig 4.5(a). Graphical illustration of the Newton-Rhapson iteration method. 
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Fig 4.5(b). Graphical illusuation of the modified Newton-Rhapson iteration method. 



NODAL DOF STIFFNESS SHAPE FUNCTIONS MASS SHAPE FUNCTIONS 

Fig 5.1. Pile element shape functions for consrmction of local stiffness and mass marices 
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Fig 5.3. Axial force 3 ms after impact, 2 node lumped mass elements, hammerlpile impact. 

Node spacing 0.25 
4.00Et07 

Distancs from pile head (m) 

Fig 5.4. Axial force 19 ms after impact, 2 node lumped mass elements, hammerlpile impact. 
Fig 5.2. Pile and hammer properties. 
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Fig 5.35. Toe force vs time by different methods, dt = 25e-6, hammerlanvil impact. 
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Fig. 5.36. Head displacement vs time by different methods, dt=25e-6, hammerlanvil impact 
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Fig 5.38. 19 ms after impact with various time steps, hammerlanvil impact. 
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Fig 5.40. Head displacement vs time with various time steps, hommerlanvil impact 
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Fig 6.1. Plane strain idealisation of the soil surrounding a rigid pile. 
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Fig 6.2. Plane strain soil disc and axisymmetric finite element meshes 





















Fig 7.3. The relationship between the surface plots and the finite element mesh. 
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Fig 7.4. Propagation of vertical stress wave beneath a rigid footing (Pa). 
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Fig 7.5. Propagation of shear stress wave beneath a rigid footing (Pa). 
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Fig 7.6. Propagation of radial stress wave beneath a rigid footing (Pa). 
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Fig 7.7. Propagation of Von Mises generalised stress wave beneath a rigid footing (Pa). 
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Fig 7.8. Propagation of vertical mess wave at r = 0 (legend below). 
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Fig 7.9. Propagation of vertical stress wave at r = R. 
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Fig 7.10. Propagation of shear stress wave at r = R, 

Radius (m) 

Fig 7.11. Propagation of shear stress wave at z = -0.1 m (legend above), 
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Fig 7.12(a). Propagation of generalised stress wave at r = 0 (legend below).3 
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Fig 7.12(b). Propagation of generalised stress wave at r = R. 
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Fig 7.16(a). Finite element mesh used to compute footing complex compliance. 
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Fig 7.17(a). Mechanical system used ro check compliance computation. 
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Fig 7.39. Calculated pile base force with shaft response included 
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Fig 7.40. Calculated pile head displacement with shaft response included 
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