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1. INTRODUCTION

1.1 The context of this work

The use of foundation piles to support structures over water or soil with inadequate bearing capacity dates from

pre-historical times. Although the use of cast in-situ piles has become popular in recent years, piles are

commonly driven into the ground with some type of hammer.

Until the nineteenth century, the size and number of piles required to support a particular structure, and the =

hammer required to instali those piles, were determined by rules of thumb and experience. As scientific
engineering expanded, formulae for pile capacity and drivability were developed. Pile drivability formulae
initially represented a correlation of empirical data, and later formulae were based on a combination of basic
mechanics and empirical data,

~ Although the dynamics of pile driving were appreciatéa"éarli}mtl'li'é' century, apracucal method of solviné the pﬂe .

driving wave equation was not developed until the advent of digital computers. The method then developed
employed an empirical model of the soil surrounding the driven pile. - The one-dimensional wave equauon is still
the primary means of analysing pile drivability today. The last thirty years have seen various improvements
made to the original method. Much additional data has been collected, allowing the empirical soil parameters (o
be refined, and the computational techniques have been improved. Because of the wealth of experience and data,
the current techniques provide satisfactory solutions for most practical pile drivability problems today.

However, there are some cases, particularly in the offshore engineering field, in which piles of unusual size must
be driven into soils which are uncommon on land, Since a large empirical database is not available, the
parameters required for the standard wave equation analysis can be difficult to determine, This has motivated
attempis to formulate a numerical model relying only on fundamental soil properties, which can be measured by
standard geotechnical investigation methods. The finite element method has been used to analyse pile drivability
occasionally, but the highly transient dynamics of the stress wave propagation and the non-linear behaviour of
the soil canse such a solution to be computationally expensive.

Several models based on the one-dimensional wave equation and measurable soil parameters have been proposed.
The finite element method has been used previously in attempts to verify these models, but the lack of a
conclusive comparison in the literature suggests that these attempis have been less than successful. The
coarseness of the finite element meshes used in these studies has led to some concern.

This thesis is a contribution to the process of finding a suitable one-dimensional model, based on measurable
soil parameters, which adequately represents the pile driving process. The finite element method is nsed to
accurately analyse the response of an ideal von Mises soil during a hammer blow on a full displacement pile. A
one-dimensional model is developed which gives excellent agreement with the finite element results. In the
process, doubt is cast on the accuracy of some of the finite element work previously reported in the literature,
but the ability of one-dimensional wave equation models to represent pile driving behaviour is verified.

1.2 An outline of this thesis

A historical review follows this introduction, tracing the development of the analysis of pile driving dynamics
through the literature, The thesis then follows the same route as the stress waves in a hammer/pile/séil system,
commencing with the hammer system at the pile head, progressing to the propagation of axial waves in the
shaft, then tracing the radiation of waves from the pile shaft, and finally considering the radiation of waves from
the pile toe.

In Chapter 3 the hammer blow used to drive piles is examined. Analytical solntions are developed for a number
of simple pile hammer models. These analytical solutions are shown to provide a convenient way of performing
parametric studies of hammer performance, Studies of hammer separation and energy transmitted to the pile are
included.

Chapter 4 formulates the equations governing the pile response. The finite element method and numerical time
integration methods required to solve these equations are introduced. Soil plasticity is discussed, together with
numerical methods for calculating non-linear response.

Chapter 5 examines the propagation of impact waves in a [ree-standing pile in detail. The effect of integration
method, element size and type, and impulse shape on the accuracy of the solutions are investigated.




Chapter 6 considers the radiation of stress waves from the shaft of a pile embedded in an elastic soil. Plane
strain shear waves emanating from a rigid pile are investigated first. A transmiiling boundary for shear waves is
derived. The effect of a finite pile stiffness is determined, and a one-dimensional model based on the transmitting
boundary is developed. The radiation of dilation waves from the shaft is also investigated, and an appropriate
Tansmitting boundary found.

The propagation of dilation waves from the pile toe is investigated in Chapter 7. Three-dimensional surface
plots showing the propagating stress waves are presenied. Existing one-dimensional base models are
investigated, and a modified model developed. The complete elastic response of an embedded pile is computed
and compared with results obtained by combining the new base and shaft models.

Chapter 8 deals with inelastic soil behaviour. Again, the transmission of shear waves from the shaft is
investigated first. A variety of techniques for incorporating slip at the pile-soil interface into the finite element
method and a one-dimensional model are considered. A one-dimensional model is again found to model the
situation very well. The finite element method is used to model the inelastic penetration of the pile toe into the
_soil. Existing base models are compared to the finite element results. A new base model is developed. - The- -

respense of the entire system is computed using finite elements, old one-dimensional models, and the new one- ~
dimensional model.

Some examples of finite element analysis of pile driving available in the literature are analysed using the
methods developed in this work, and the results are compared with the published results,

Conchisions, references, and figures follow.




2. PILE DRIVING ANALYSIS . A REVIEW

This chapter traces the development of rational pile driving analysis through the literature, identifying the major
achievements. Although a mass of literature about pile driving formulae has formed over the years, only a few
review articles will be identified. Similarly, much has been written about wave equation analysis in recent -
times, but only some key papers will be referred to in this chapter. Many other articles are referenced elsewhere
in the thesis. The aims of the present study are stated at the end of this chapter.

2.1 The use of foundation piles

Foundation piles have been used to support structures over weak soils and water since prehistoric imes. Early
piles were made of wood. They were driven into the ground with various types of hammers. The city of Venice
was built almost entirely on driven wooden piles (Legget, 1973), At that time, the hammer requued to dnve a
- particular pile was determined by-experience, trial and error, and rules of thumb,

Piled foundations are still used extensively today, and, although cast in situ piles are now avmlable driven piles
are still widely used.

_2.2 Pile driving formulae

Pile driving formulae date back to the 1800's. The first formulae were purely empirical, and were valid over very
limited ranges of soil and pile types. Dynamic formulae were later derived by treating the pile as a rigid body,
equating the hammer energy (less various losses) to the energy required to push the pile through the ground.
Reviews of the historical development of these formulae and comparisons between them have been performed
regularly. Some examples are Terzaghi (1929), Dean (1935), and Chellis (1961).

2.3 Early progress in wave equation analysis

Although the differential equation for axial waves in a longitudinal bar was formulated and solved by St Venant
in the 1850's (Timoshenko and Goodier, 1951), the presence of axial compression waves in piles during driving
was first postulated by Issacs (1931). The existence of these waves was confirmed experimentally by Fox
(1932). A method of analysis based on the wave equation was presented by Glanville et al (1938), but the
simplifications required to permit manual solution did not allow satisfactory accuracy to be attained.
Consequently, the approach did not find widespread acceptance, and pile formulae remained in common use.

However, the advent of the digital computer opened up new avenues for the solution of the wave equation.
Smith (1960) published a numerical method for analysing pile driving problems using the wave equation. The
pile and hammer are broken into a system of discrete springs and masses, and the surrounding soil is represented
by dynamic reaction forces dependent on the pile displacement and velocity (Figure 2.1). The eguations of
motion of the discrete system are solved using the finite difference method.

In the original implementations of Smith's method, the dynamic resistance of the soil at the pile toe is modelled
by a point force at the last pile node, the value of which is

RA
Rt=_£"“ut(1+fﬂt} for u; < Oy
Ot
Ry = RM(1+74) for uy > Q¢ 2.1

where R is the ultimate static toe resistance, Q; is the quake (which is the elastic ground compression before
plastic behaviour commences), J is a damping constant, u; is the toe displacement, and 1; is the toe velocity.
The resistance of the soil along the pile shaft is represented by a discrete force at each pile node point, the
magnitude of which is related to the nodal displacement and velocity by

R H
Ry = =5 ug {1+ i) for ug < U5
s
Rg = R (1+7 1) for ug > Qs . (2.2)




where Rg# is the ultimate static soil resistance summed over the shafl segment, Qj is the quake reqguired to
utilise plastic deformation, J'is a damping constant, ug is the pile node displacement, and #; is the pile node
velocity. Smith (1960) tentatively proposed quake and damping values for use in all soils {Table 2.1).

The viscous dashpots used in the original Smith model are non-linear, ag indicated by equations (2.1) and (2.2).
Smith introduced the damping factor J into the soil resistance because "obviously, the ground will offer more
resistance to rapid motion than to slow motion” (Smith, 1960). He was, of course, correct. However, the
damping was treated as an augmentation of the static response simply for convenience, with no theoretical
justification. Goble et al (1975) modified the model by using a linear dashpot in place of the non-linear
damping term. The eguation for dynamic resistance along the shaft became

Rg = RH (ﬁ-{—l'fts) forus < Qg
Oy :
Rs = RH#(L+T 45) R  forug>Qg .. ... 23

The equation for base resistance was modified in the same way. Computer programs-implementing the Smith
model in both the original form and the modified fosm aresill used-in engineering pracice, Corte and Lepert
(1986) have shown that the two forms give similar results.

In the twenty years following the publication of Smith's model, many computer programs were written
incorporating the method, and the computational techniques were improved as computer capacity and speed
increased. The development of these techniques has been reviewed by Goble et al (1980). The choice of quake
and damping parameters was also the subject of much research, Coyle et al (1977) reviewed some of this work,
and recommended parameter values slightly different from those of Smith (Table 2.1).

2.4 Recent advances

Although the method proposed by Smith has been used successfully for many years, the approach has some
shortcomings. The empirical nature of the soil influence on the pile (equations (2.1) and (2.2)) is a major
problem. The relationships between the pile motion and the soil reactions are not based on rigorous analysis of
dynamic soil behaviour, Consequently, the quake and damping parameters cannot be associated with
fundamental soil properties, and cannot be measured by standard geotechnical investigation techniques.
Experience with the Smith method over the years has led to quake and damping parameters which can be used in
normal pile driving situations with reasonable confidence. However, unusual sitnations can be encountered,
especially in the offshore environment, in which reliable Smith parameters are difficult to estimate prior to
driving.

The limitations discussed above, together with a general movement towards a more rigorous approach to
geomechanics, have stimulated interest in alternative methods of analysis based on a rational understanding of
soil behaviour.

The damping parameter J was originally associated with soil viscosity, However, laboratory studies into the
strain rat¢ and penetration velocity dependency of soil viscosity (Gibson and Coyle, 1968; Dayal and Allen,
1975; Litkouhi and Poskitt, 1980) consistently showed non-linear velocity dependence. Indeed, Randolph and
Simons (1986) have examined the available data and found little evidence of velocity dependency once shaft
velocity exceeds 0.1 my/s,

Following the analytical work of Novak (1977) and Novak et al (1978), Meynard and Corte (1984) conducted a
iaboratory investigation which led them to conclude that most wave attenuation in piles can be explained by
radiation damping along the pile shaft, rather than soil viscosity, They used the work of Novak et al {1978) to
show that radiation damping could be modelled by a viscous dashpot, and that the dynamic shear stiffness of the
soil conld be modeiled by a spring. The spring and damping parameters are dependent mainly on the shear
modulus and density of the soil,

2.4.1 Shaft model

The work of Meynard and Corte (1984) allowed the dynamic soil reaction along a pile shaft to be determined
from basic soil properties. The association of the damping constant with radiation damping aiso led to a
reconsideration of the structure of the soil model. In the original Smith model, a plastic slider was-used in series -
with the spring, but not with the dashpot, as shown in Figure 2.2(a). Considering an elastic-perfectly plastic
material, Simons and Randolph (1985) concluded that, since slip only occurs at the pile/soil interface, radiation
damping cannot increase the shear stress above the yield siress, and so the plastic slider should be placed in series




with both the spring and the radiation dashpot (Figure 2.2(b)). Corte and Lepert (1986) reached the same
conclusion after studying the multiple degree of freedom models of shear wave radiation presented by Holeyman
{1984). :

Randolph and Simons {1986) added an extra dashpot in series with the plastic slider to represent the rate
dependency of the soil yield stress (Figure 2.2(c)). They stated that the damping constant of the extra dashpot is -
usually an order of magnitude fess than the radiation damping constant. Corte and Lepert (1986) also considered

the addition of such a dashpot, but dismissed it as unnecessary, :

Nguyen et al (1988) modified the soil model shown in Figure 2.2(c) by varying the soil shear modulus with. .- :

shear strain amplitude, using a relationship derived by Hardin and Drnevich (1972). They presented results ™~

which agreed well with field data, by did not show how significantly the variation of shear modulus affected their
analysis.

Mitwally and Novak (1988) used the model shown in Figure 2.2(b), but varied the spring and damping
“coefficients to account for the effect of a weakened soil Zote adjacent to the pile. They produced resulis which
indicated that the computed shaft response could be significantly affected by a small zone of soil with reduced
shear stiffness.

Warrington (1988) also implemented the model shown in Figure 2.2(b) in his ZWAVE program. He presented
estimates of pile capacity from pile driving data which were of similar accuracy to CAPWAP,

2.4.2 Base model

Following the association of the viscous dashpots in the Smith model with radiation damping, Simons and
Randolph (1985) used Lysmer's analoguoe to provide stiffness and damping values for the soil af the pile base
which were dependent only on the shear modulus and density of the soil. The Lysmer analogue (Lysmer and
Richart, 1966) allows approximation of the vertical vibration of a rigid footing on a semi-infinite hatf-space by
replacing the hatf-space with a spring and a viscous dashpot in series.

Simons and Randolph did not alter the structure of the original Smith base model (Figure 2.2(a)). This base
model was used by Novak and Mitwally (1988) in their demonstration of the effect of a weakened shear zone,

In their work discussed above, Nguyen et al (1988) used a base model with the plastic slider in series with both
the spring and the dashpot, reasoning that the soil at the base behaves in a similar way to the soil along the
shaft (Figure 2.2(b)). Warrington (1988) used the same model in his ZWAVE program.

Holeyman (1988) introduced a multiple degree of freedom model to represent the base response (Figure 2.3). His
model uses a one-dimensional equivalent solid cone to simulate radiation damping. Plastic behaviour is included
by specification of a power law stress/strain relationship for the discrete springs representing the soil cone.
Holeyman presented analyses which showed reasonable agreement with field data.

2.7 Finite element studies

The first full finite element analysis of the pile driving problem was performed by Chow (1981). Smith and
Chow (1982} compared a one-dimensional model based on the Smith (1960) method with an axisymmetric finite
element model. The finite element mesh used by Chow is shown in Figure 2.4, and an example of the variation
between the two models is shown in Figure 2.5. They neglected soil viscosity, and equated J to zero in the one-
dimensional model. Consequently, the results obtained from the finite element model showed considerably less
oscillation than the one-dimensional model, as the finite element model permitted radiation damping.

Simons (1985) performed similar axisymmetric finite element analyses, but compared the results with the
improved one-dimensional model described by Simons and Randolph (1985). The mesh used by Simons is
shown in Figure 2.6, and the pile head displacements computed with the finite element and one-dimensional
models are shown in Figure 2.7, Since the improved one-dimensional model included the effect of radiation
damping, the one-dimensional response is much smoother than that computed by Smith and Chow (1982).
However, the finite element response shows significant oscillation.

Smith et al (1986) published further finite element results obtained with a refined mesh, which they claimed
verified the accuracy of Chow's results. However, Figures 2.8 and 2.9 show significant differences in the
displacement and force responses, although the permanent deformations and maximum fortes are similar. Ata
time of approximately 18 milliseconds, the force calculated with the finer mesh is 180° out of phase with the
coarse mesh. The calculated displacement responses during rebound are entirely different.




Coutinho et al (1988) reporied the results of an axisymmetric finite element analysis of the driving of a cone-
ended offshore pile. The mesh nsed is shown in Figure 2.10, and the results of the analysis presented in Figure
2.11. The simulation was stopped soon after the maximum toe displacement had been attained. No resulis were
presented for the pile head displacement, and, with so little time integration, assessment of the accuracy of the
model is difficult,

Mitwally and Novak (1988) also reported using axisymmetric finite elements to model pile driving. However,
they concluded that, since finite element results depend mainly on the modelling of the pile soil interface, and in
view of the computational cost of the method, shaft models are preferable.

2.8 The necessity for this study

Although some progress has been made in formulating a one-dimensional wave equation model of pile driving
based on fundamental soil properties, much work is still to be done.

~New models Tof thé dynamic response of soil along the pile shaft have been formulated by a number of
rescarchers. All of these models are based on the Novak's {1977) solution for harmonic oscillation of an
axisymmetric soil disk under plain strain conditions; which was originally used.to evaloate the response of a
vibrating rigid pile. Verification of the applicability of such models to pile driving situations is required.

Three new base models were described above. There has been no significant comparison of these three models,
and no conclusive demonstrations of the ability of any of them to accurately model the inelastic soil behaviour
at the base of a pile.

The finite element method provides a way of finding approximate solutions to the equations of motion
governing pile driving in idealised scils. One featnre of the finite element method is that reasonable
approximations of displacements can be produced long before the higher order derivarives have converged.
However, the finite element method is prone to discretisation errors, particularly in dynamic and non-lincar
cases. Great care must be taken if accurate solutions to a problem as complex as pile driving dynamics are (o be
obtained. The published results of the finite element work reviewed above show some discretisation problems,
The accuracy of these analyses is questionable.

2.9 The aims of this study

This study aims to use the finite ¢lement method to investigate pile driving in an ideal elastic/purely plastic
(Von Mises) soil, producing solutions which are converged and accuarate. The discretisation problems which are
obvious in previous published work will be resolved. The accurate solutions will be used to find a one-
dimensional model which adequately reproduces the behaviour of the ideal system. The one-dimensional model
will be established from a purely analytical point of view, permitting the influence of real soil behaviour to be
examined by other investigators,
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3. HAMMER IMPACT

3.1 Introduction

Numerical analysis of the response of a pile during driving requires a model for the hammer system driving the
pile. In the original Smith (1960) method, the hammer was modelled as lnmped masses and springs. To
simulate impact, the mass representing the hammer ram was given an initial velocity. More complex models

have since been developed, especially for the modelling of diesel hammers (Goble and Rausche (1986), Rauische. :- *
ct al (1988)). However, Middendorp and van Weele {1986) have shown that relatively simple hammer models-: -

can provide adequate agreement with field data.

When examining the propagation of stress waves in a pile and in the surrounding soil, representing the influence
of the hammer by a time-varying force-at the pile head is advantageous, as a stress wave of known shape can be

‘injected’ into. the. pile.. The changes in the stress wave during.propagation can then be examined.- However;-the - -

impact function should closely approximate the force created by the real hammer,-otherwise the calculated
behaviour may not accurately reflect the tre behaviour.

The forces exerted on piles by simple hammer models can be computed analytically. The force caused by a
hammer impacting directly on the top of a pile (Figure 3.1(2)) is well known (eg. Johnson, 1982). Randolph
{1991) has presented an analytical sofution for a model consisting of 4 ram impacting on a lingarly elastic
cushion seated directly on a pile (Figure 3.1(b)). As well as providing driving forces for pile drivability
analyses, these analytical solutions also allow parametric studies of hammer performance to be performed .= -
rapidly. :

This chapter presents solutions for some simple hammer models in new dimensionless quantities, including new
analytical solutions for the models shown in Figure 3.1(c) and 3.1(d). The new solutions are shown to match
ficld data extremely well. The potential of the analytical solutions to allow parametric analysis of hammer
performance is ilfustrated by studies of ram separation, transmitted energy, and maximum impact force.

3.2 Ram/pile model

The simplest model of a pile hammer is that of a falling mass impacting directly on the top of a pile. The
response of the pile to the impacting mass can be modelied by replacing the pile with a dashpot of equal
impedance to the pile (Randolph, 1991). This impedance is given by

Ep A
z = —2=L 3B.D
p
where Ep is the Young's modulus of the pile, Ap is the cross-section area of the pile, and ¢p, is the axial wave
velocity in the pile,

The force exerted by the hammer on the pile can be obtained by analysing the system shown in Figure 3.1(a),
where my is the mass of the ram, i, is the displacement of the ram after it strikes the top of the pile, and v, is
-the velocity of the ram when it strikes the pile. Dot notation will be used to represent differentiation with
respect to time. The equation of motion for the ram is

iy ar + Zur =0 . (3.2).
Defining a dimensionless time as

A 3.3)

my
and a dimensionless velocity as

*
cx du
*

H = —F =

& (34,

& [=

the dimensionless displacement and acceleration are




U = ;; ;; (3.5)
and

L& dZu* iy 4

i = ——“dr*z =7 v (3.6).

gt 4 =0 GB.7)
At a dimensionless time of zero (the instant the hammer strikes the pile), the dimensionless velocity of the ram

is unity, and the displacement is zero. Applying these initial conditions, the solution to equation (3.7) can be
found. BT B

iy =e (3.8
The force exerted on the pile is given by multiplying the pile impedance by the ram velocity.
b P = Z by

Since the appropriate non-dimensionalisation of force is

_ £
=7 (3.9),

the dimensionless force exerted on the pile is simply
fp = " = flr' =g (3.10).

The dimensionless impulse function exerted on the pile by this pile hammer model is shown in Figure 3.2,
denoted by an infinite cushion stiffness. At time zero the dimensionless force rises instantaneously to unity, and
then decays exponentially with a non-dimensionat time constant of unity,

3.3 Ram/cushion/pile model
The accuracy of the model described above can be increased by using a linear spring to model the effect of a
cushion between the ram and the pile. The system then has two degrees of freedom, since the motion of the pile

head can be different from that of the ram. The displacement of the pile head will be denoted by ug, and the
stiffness of the cushion spring by k;. The model is illustrated in Figure 3.1(b).

The two equations of motion for this model are

iy I:I-r + kc (ur - ua)= 0 . (3'11)

Z l:ta + kc (ua - ur) =0 (312)

Using the dimensionless variables given in equations (3.3) 1o (3.6), these equations can be re-written as

I.ir* + kc* (ur* - ua*) = 0 (3'13)
bg + ke (g - up) =0 (3.14)
where |
* kc My
ke = ———22 (3.15).




Applying the Laplace transformation to equations (3.13) and (3.14) and solving simultaneously, the Laplace
transform of the velocity at the pile head can be found.

%

ke

L = (3.16)
4 5'2 + k(;* s + kc*
Factorising the quadratic denominator
ket
Lu, = - c = (3.17) -
kC_ + (s + kC_ -
(s+ 5 +u)(s+ 5 -H
where
k"2
=" ko (3.18).

The inverse transform of equation (3.17) dependé on the value of kc*. If kc* is greater than 4, equation (3.17)
becomes

k 1 1 ' :
Lk = ) (3.19),
’ 2 s+k“§i- s+kC—*+u '
7 K 2
and performing the inverse transform yields
_’ic_i* X %
= =e 2 —-‘L—sinh(;u*) (3.20).
If k" is equal to 4,
.o K __kL 3.21
Lua = i % ( - )
(s + -3—)2
and
fp =g =1te 2 (3.22).
Finally, if k" is less than 4, i is imaginary. Let
*9
poepi= N\ kS -k"'4 (3.23).
Equation (3.17) becomes
,oE kc* 1 1
Lig" =357 P v (3.24)
s+ oM s+ 5+ pi
and
k_C:* P N
fp =tg =¢ 2 ﬁsin(,u’t ) (3.25).




The force in the cushion spring is equal to the force exerted on the pile. If kC* is less than 4, equation (3.25)
indicates that the force will become negative after time tg*, where

IS* -

j=

- (3.26).

=

Since the cushion is not attached to the pile or the ram, negative stresses cannot develop in the cushion spring,
so gaps will form and the ram will become separated from the pile. The force exerted on the pile after time

ts*will be zero. Equation (3.25) is only valid for times Iess than or equal to ts*.

The dimensionless response of the ram/cushion/pile model is dependent solely on the dimensionless stiffness of
the cushion, kc*. The effect of this stiffness on the response is shown in Figure 3.2. Finite stiffness of the

cushion causes the force on the pile to have a finite rise time. A soft cushion causes a large rise time. As the
cushion stiffness becomes large, the rise time decreases, and the solution approaches that for the ram/pile model.

3.4 Ram/cushion/anvil model

The hammer model can be further improved by introducing a finite anvil mass (Figure 3.1(c)). This does not
change the number of degrees of freedom, but increases the complexity of the solution,

The two equations of motion governing the systern are as follows, where my; is the anvil mass.
my Uy + ke lur - ug)= 0 (327
Ny ﬁa + Z l.ta + kc (ua - ur) = 0 (3_28)

Again vsing the dimensionless variables given in equations (3.3) to (3.6), these equations ¢an be re-written as

"+ ke (- ug"y= 0 (3.29)
1 £

g+ —wid + g - =0 (3.30)
mg ng

where k." is given by equation (3.15), and the dimensionless anvil mass ma* is given by
mg = (3.31).

Applying the Laplace transformation to equations (3.29) and (3.30) and solving simultaneously, the Laplace
transform of the velocity of the anvil and the pile head can be found.

ke
%
L, = 1 mal = (3.32)
s34 *52+k5*( ¥ + l)s + C*
Mg ma Mma

The anvil velocity and the force on the pile head can be found by factorising the cubic denominator and
performing the inverse Laplace transform, as detailed in Appendix A. An expression of the following form is
obtained. Expressions for the parameters Fp, c1, c2, , and ¢ are presented in the appendix.

et czr* *
; : i 208 (@0f - ¢)
B =gt = Fpe (1 .o o RO (3.33).

cos ¢

The dimensionless force in the spring is given by

fs = mg gt + g - (3.34).
Differentiating equation (3.33), substituting into equation (3.34), and simplifying, the spring force can be
expressed as
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*®
% cal cos (of - @ )
fs = Fg [e - P (3.35),

where Fg and 8 are also specified in Appendix A,

The ram will separate from the top of the cushion when the spring force is zero, which oceurs at time rs*, where

* * -
Cats cos (wig - 6) '
¢ = cos O {3.36). . .
An analytical solution for ts* cannot be found. For a certain range of anvil mass and cushion stiffness, ram
separation does not occur. (This range is discussed in a subsequent section.) For those cases where separation
does occur, equation (3.36) must be solved numerically o identify ts*.

For most combinations of dimensionless anvil mass and cushion stiffness, the cubic denominator in equation
{3.32) has one real root and two imaginary roots;-and the solution presented above applies. For a small range of
combinations, ithe cubic denominator has three redi roots, and different solutions must be used. In this case,
equation (3.32) can be written in the following way.

. F al
Lia = XD G+ b2) G5 + 53) o (3.37)

‘When b1, b3, and b3 are distinct, the solution is given by
* * *
5t = e = By (01 Ly e t2 gy, b3 ) (338).
The force in the spring is
bt” bt -b3t"
fo =Fs(e- 1 -Age 2 _Bse 3 ) (3.39).

These solutions are developed in full in Appendix A, together with expressions for all the parameters.

However, if two of the real roots are the same, the solution is different again. When b3 is equal to bo, the
solution becomes

* ¥
A (1 e Tk )) (3.40)
-C t* -¢ t* EY
fi& = Fgel (1 e (L abgAgt )) (341),
as detailed in Appendix A.

For cases where b1 is equal to b3 or bp, the above solution can be adjusted by interchanging subscripts.
However, in a practical computer implementation of these analytical solutions, equations (3.40) and (3.41) are
probably not needed, since a very small change in ma* or kc* will allow one of the solutions discussed
previously to be used. Equations (3.40) and (3.41) are presented here for completeness.

‘When ram separation occurs, the equation of motion of the anvil is

Mg tg + Zhig =0 (3.42)
or

mg tg + g =0 : (3.43).

The dimensionless velocity of the anvil at the time the ram separates will be denoted by Vs* The velocity of
the anvil after separation is then given by
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S =gt = v e Ma (3.44).

The effect of the anvil mass on the force exerted on the pile head is shown in Figure 3.3 for a dimensionless
cushion stiffness of 4. As the anvil mass increases, the time taken for the force to peak increases. The peak
force also increases for a range of m," values, but decreases after mq" exceeds a certain value. The anvil mass
which leads (o maximum peak force on the pile head is discussed in a later section.

3.5 Damped cushion model

The model above assumes that the cushion behaves as an elastic spring. However, in practice the cushion
absorbs energy. This energy absorption is pariicularly significant for wooden and plastic cushions. To account
for this energy loss, the cushion can be modelled as a linear spring in paraltel with a dashpot (Figure 3.1(d)).
This again increases the complexity of the solution, but does not introduce any extra degrees of freedom.. Using .
¢¢ to represent the damping in the cushion, the equations of motion of the system are

my ﬁ.r + Cp (l.ir - ﬂa) + kC (ur - ua)= 0 - (3.45) o

Mg ﬁ.a + Z ?:ta + Ccp (aa - I‘ir) + kC (ua - Ur) =0 (3.46)

Again using the dimensionless variables specified in equations (3.3) to (3.6), these equations can be re-written as

G+ et (@t - g+ kS - ugH=0 (3.47)
1 C k * *
da" + —wug" + 5l - )+ e - =0 (3.48)
Mg Mg Mg

where the dimensionless cushion damping cc* is given by

e = %‘? (3.49).

Applying the Laplace transformation to equations (3.47) and (3.48) and solving simultancously, the Laplace
transform of the anvil velocity can be found.

c_ (s + k‘c—,;')
Lu,™ = Ma ce (3.50)

% %
k
PEn (cc*( 1*+1)+L*) s2 4 (kc*( 1*+1 Lo *)s + C*
Ma Mg Mg Ha My

Performing the inverse Laplace -transform, the pile force and anvil velocity can be expressed in the same form as
equation (3.33).

L %
" " -c1t -C2t cos (ot -
fp =ug =Fpe (1 - e cos ¢ (3.51)

The intermediate steps and expressions for the parameters are presented in Appendix B. The spring force can be
found by applying equation (3.34), and is of the form

~(cre)t™ [ eat” *_
* 7 1+c2) e2 . 4.ces wt -8

fs =Fse 5 cos @ (3.52),

where the coefficients are also detailed in Appendix B.

The ram will separate from the top of the cushion when the spring force is zero, which occurs at time rs*, where

12




epts” *.6)
cos (wty -
e 5 -— A _(.-.-...-...‘sl_._...—-

= Ag S (3.53).

Again, this eguation cannot be solved analytically. For those cases in which hammer separation occurs, the

time for separation must be established numerically. The subsequent force response is then given by equation -

(3.44).

The above solation applies when the denominator has one real and two imaginary roots. If it has three distinct =~

real roots, Appendix B shows that the solution can be expressed as

* * *
=g = Fp (e‘b” - Ap e 02 +Bp e 03 ) (3.54).

The force in the spring is

fs* = Fg (enblt -Ag e-bzt + B e-b3t ) (3.55).

When two of the roots are identical, the solution below applies {Appendix B).
7 -cot” *
fo' = ug" = Fpe™! (l-e 2 (e )) (3.56)

1t ot *
fo = Fge“l (l—c 2 (Ag+ vy Byt )) (3.57y
When the three roots are real, ram separation never GeCurs.

Figure 3.4 shows the effect of the dimensionless cushion damping on the solution for the case when kc* isd
and ma* is 0.2, Asexpected, increased damping in the cushion decreases any oscillation of the force.

Figure 3.5 shows which of the above solutions must be used for different combinations of k. and ma*. ‘When
there is no cushion damping, equation (3.33) must be used in the region with two imaginary roots. In the
region with three distinct real roots, equation (3.38) applies, and along the dividing line between the two
regions, equation (3.40) can be used. For non-zero values of ¢,*, equation (3.51) applies in the region with two
imaginary rools, equation (3.54) applies when there are three distinct real roots, and equation (3.56) should be
used along the dividing line.

3.6 Matching field data

The ability of the analytical model to represent real pile driving hammers will be demonstrated by comparing
two sets of field data to the analytical solutions.

In the first case, a BSP 357 hammer was used to drive a 762 mm diameter by 18.5 mm wall thickness pile with

an impedance of 1750 kNs/m. The cushion was steel with a stiffness of 1.6x10® kN/m. The recorded variation
of the pile head force with time is shown in dimensionless terms in Figure 3.6,

The specified ram and anvil masses for this hammer are 6860 kg and 850 kg respectively, yielding a
dimensionless anvil mass of 0.124 and a dimensionless cushion stiffness of 3.653. Using these values in
equation (3.33), which applies for zero cushion damping, yields the solution also plotied in Figure 3.6. The
agreement between the analytical solution and the field data is excellent, suggesting that there is little damping
in the cushion.

The second data set was obtained from a BSP HA40 hammer, driving a 762 mm diameter by 44 mm wall
thickness pile with an impedance of 4000 kNs/m. In this case the cushion was Bongassi with a stiffness of

7.5x106 kN/m. The force measured at the pile head is shown in Figure 3.7.

The specified cushion stiffness, together with a ram mass of 39 300 kg and an anvil mass of 6000 kg, give a
dimensionless cushion stiffness of 18.8, and a dimensionless anvil mass of 0.153. Equationt (3.51) was found to

best maich the field data when a dimensionless cushion damping of 0.6 was used with a kc* of 25. The
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4. PROBLEM FORMULATION AND SOLUTION TECHNIQUES

4.1 Introduction

This chapter presents the differential equations which govern the response of a pile embedded in a semi-infinite
half-space to impact loading. Since these equations are too complex for general analytical solution, the
equations are reformulated in a weak form to allow the solution to be approximated by a linear combination of a
set of base functions. The finite element method is presented as a means of obtaining base functions sets which
lead to banded symmetric matrices, and hence efficient numerical solution, Nomerical integration of the finite
element equations in time is discussed. Von Mises plasticity is introduced, together with numerical methods of
solving the resulting non-linear equations.

4.2 Governzng equatmns

A pile of circular cross-section embedded in a half-space, the propemes of whxch vary only with depth, presents
an axisymmetric problem. For simplicity, a pile of constant radius and a half-space with-cotistint material
properties will be considered. This idealised model is shown in Fignre 4,1,

Assuming that both the pile and the half-space are elastic, the constitutive equations for the entire half-space
(including the pile) in ¢cylindrical coordinates are

_%: _Or 08
E2=F " VYE " VE
_o% o o0
=8 Vg VE
_%8 Or Oz
8=F "VE VE
= 2 (14v) TZ | 41
Tz = 2 (V) S

where £;, & and €g are the axisymmetric normal strains, %, is the shear strain, oz, 6, and og are the
axisymmetric normal stresses and Ty is the shear stress. E is Young's modulus and v is Poisson’s ratio. The
variation of these two parameters in axisymmetric space may be ¢xpressed as

Ep for-L<z<(0andr £R

E = 3y E; forz<0andr>Rorz<-L (4.2)
0 forz >0
and
Vp for-L<z<0Candr <R
v o= 3 Vg forz<0andr>Rorz< -L (4.3)
0 forz>0

where Ep, 18 the clastic modulus of the pile, vj is the Poisson's ratio of the pile, Eg is the elastic modulus of the
soil, vp is the Poisson's ratio of the soil, and R is the radius of the pile.

The constitutive relationships stated in equation (4.1) can be expressed in matrix form as
o =Dcs _ @44

where
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The local strains can be related to the displacements in the z and r d-zctions (designated by u, and u,) with the
following compatibility equations. Tensile strains and swesses are tzczn as positive in this chapter.

ouz dur u du- Our

£z=g,€r=ar,89=js“{rz=§+“é"_j . ‘ (4.6)

~

These equations can be expressed in marrix form as
e =Lu : 4.7

where

u = {ZZ} and L = 4.8).
T

'l e Yo o

The half-space will contain a initial stress ficld balancisg the force mmavity of gravity, and possibly containing
locked in stresses. Since this stress field is szif-equilibrating, and the system is assumed to be elastic, only the
changes in stresses, strains, and displacements from ths initial fielZ will be investigated. All stresses, strains
and displacements in the following equations are taken 1> be changes om the initial state.

The dynamic equilibrium equations can be found by considering the saanging vertical and radial forces acting on
an infinitesimal element in the pile or the half-space Figure 4.2 . Since the only changing exterral force
present is the vertical force exerted by the hammer system. the equilitciam equations are

Pu; o, A 1)
a2 T T o

-rfzr) = 0 4.9

azu;- a(?’ G'r) 8’[,-3
pr¥—7+cg-ra—z=0 4.10)

The external distributed stress (fz) caused by the hammszr impact lo=d can be modelled as a time-varying stress
uniformty distributed over the pile head. The external d'swriburad str=ss in equation (4.10) can then relatzd to the
force impact functions {fp) derived in Chapter 3 by the saple equatica

_fp(_f% forr<Randz=20 _
(5 = R 4.10).
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Prior to the ram striking the cushion, the displacements, velacities, and accelerations are zero at all points in the
pile and half-space. The response of a pile to hammer impact can therefore be found if the system of second
order linear differential equations represented by equations (4.9) and (4.10) together with equations (4.4) and (4.7)
is solved, subject to the boundary condition represented by equation (4.11) and the initial conditions of zero
displacement, velocity, and acceleration at all points.

Unfortunately, this equation set is too complex to be solved by analytical methods for the general case. The
equations can be solved if certain simplifications are introduced, such as setting the soil stiffness to zero, leaving
a floating pile, or making the pile infinitely long and infinitely stiff. However, for most realistic cases, only
approximate solution is possible. Such approximate solutions are most conveniently obtained by numerical
methods.

4.3 Weighted residual approximation

The weighted residual method allows an approximate solution for a set of differential equations o be found as a

~-linear combination of-a pre-defined set of basis functions. The method dates back to the last ¢eritury, and i§™

described fully by Finlayson (1972). The application of the welghted residual method to the differential
equations governing pile driving will be described in this section, . fi

“The solution domain, which consists of the pile and the half-space, will be denoted by £2. If the differential
equations presented above are satisfied at every point in this solution domain, then for any function w, where

_ { wz(z,)
- wiz,r)

the following equation must also hold.

H y a2uz_ra&_a(m”)_rf
QY {PT 2 2z or z

32u; 3(r o) T
+ Wy (pr?{- ~aTr+0'9—r ﬁ) dgrdz=20 4.12)

Since satisfaction of this equation is necessary but not sufficient for equilibrium, equation (4.12) is a weak form
of the equilibrium conditions. Expanding and integrating by parts, and recognising that the stress changes from
initial equilibrium at the domain boundaries are zero, equation {4.12) becomes

” [ 32uy Owz , . Owz
Wz p 82 + Wy P 312 + O3 3z Trz af'

d 0
- W, fy + Op %-&- 69%’:+ Trz -—gf] rdrdz=0 4.13).

The lincar operators applied to the functions w are identical to those applied to the displacements to obtain the
strains (equation (4.6)). Equation (4.13) can therefore be wrilten in matrix notation as

” praz—u+[Lw]T0' rdrdz-,” wyfy r drdz = 0 (4.14).
0 262 0

Substituting equations (4.4) and (4.7), and applying the definition of f; (equation (4.11)), equation (4.14)
becomes

R
” [ wT——-+[LW] D [L u}:|rdrdz- Jwzferdrdz = 0 (4.15).
0

Now, if an approximation 11 is used in place of the exact solution u, the equation above will not hold for every
function w. For any particular w, the integrals in equation (4,15) will add to give a residual, wh;ch is & sum of
the equilibrium errors caused by the approximation, weighted by the function w,
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In the method of weighted residunals, an approximation i is sought as a linear combination of n base functions,
Nj(z,r). This approximation can be written as

ulz,r.f) = ifz,r,f) = iNg(z,r) ai(lt) = Na 4.16)
1 ‘ .

where a is an column vector of n unknown time dependant coefficients, and N is a column vector of n known
base or shape functions. Since there are n unknown time dependant variables, n differential equations are required ~ ~
if a solution is to be obtained. A solvable system of equations can be formed by selecting n distinct weighting .

functions.

In general, each different set of weighting functions will lead to a different approximate solution. There are a
variety of methods available for selecting weighting functions, including the Galerkin method, which uses the
base functions as the weighting functions; point collocation, which satisfies the equilibrium equations exactly at
n-discrete points-in the solution domain; and subdomain collocation, in which the integral of the error over each
of n subdomains is equated to zero. The Galerkin method is particularly useful, as it often leadsto symmetric
matrices.

To apply the Galerkin method, each weighting function is equated to a shape function.
w; = N; i=1..n 417

Equation (4.15) becomes a set of n equations, which, after substitution of equauons (4.16; and (4.17), may be
written as

R
”Q I:p Ta——(—l + [LNTT D [L(Na)] ]r drdz - [Nzfyrdrdz = 0 4.18),
0

Since the coefficient matrix a is a function of time only, and the shape functions N are functions of position
only, equation (4.18) can be rewriiten as

R
” [ NTN~5—5+BTDBa:|r drdz - [Nzfprdrdz = 0 (4.1%2)
0
where
B=LN (4.19b)
or alternatively as
Ma+Ka-=f (4.20)
with
M=”QpNTNrdrdz, K=J-J.QBTDBrdrdz @.21)
and
R
[Ny fyrdradez (4.22).
0

4.4 The finite element method

The finite element method is a type of weighted residual method. In the finite element mezthod, the domain of
interest is broken up into a number of discrete regions, or elements. Each element contairs a number of nodes.
Shape functions are formed by specifying a unit value at each node in turn, and holding the value at all other
nodes at zero. The variation of the shape function between nodes is usually polynomial or linear, but other
forms can be used. Nodes can be contained totally within one element, or shared by rwo or more adjacent
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elements. An example of a small domain broken into triangular elements is shown in Flgure 4.3, together with
the associated linear shape functions.

The advantages of the finite element method are due to the way that the matrices in equation (4.15) can be
assembled on an element by element basis. Because each shape function is only non-zero in a small region of
the domain, many of the shape functions have no non-zero values in common, and this Ieads to sparsely
populated matrices. If the equations are ordered carefully, considerable banding of the matrices can be achieved,
leading to substantial economies in calculation time and computer memory requirements.

The finite element method for axisymmetric stress elements is usnally formulated from virtual work principles
(eg. Zienkiewicz (1977), Smith (1982)). The virtual work formulation leads to identical equations to those
obtained above with the Galerkin weighted residual method.

4.5 Time integration

Finite element discretisation of the spatial solution domain leads to a set of n second order linear differential
equations in time, with r time dependant variables (equarion (4.20)}. In general, this set of equations cannot be
solved analytically, and must be numerically integrated forward in time from the instant the hammer ram strikes:
the cushion assembly. There are numerous numerical schemes through which this can be accomplished.

Zienkiewicz (1977) has shown how most of these schemes can be derived using the weighted residual method.
Some commonly employed schemes have been reviewed in detail by Bathe and Wilson (1976). This section
briefly introduces three of the most widely used numerical time integration schemes.

In the central difference scheme, the displacement at time 1+Az is related to the displaceménts at rand -At by
apear= M1 [AZ Q) - (A2 K -2M)a;-Mapa;) (4.23).

Since the displacement at time +Ar is calculated from the equilibrium at time ¢, this scheme is called an explicit
method. Solution of equation (4.23) reguires inversion of the mass matrix (M). If the only non-zerc terms in
the mass matrix are on the diagonal, this is a trivial exercise. A mass matrix with only non-zero diagonal terms
is a lumped mass matrix, since the physical interpretation is a model with mass concentrated only at the nodes.
Such a mass matrix can be formed by judiciouns selection of the shape functions, which can be different from
those used to form the stiffness matrix, and can be discontinuous, as derivatives of these functions are not
required.

An explicit integration scheme such as that described above can save much computer time when used in
conjunction with a lnmped mass matrix. However, the scheme is only conditionally stable (Bathe and Wilson,
1976). Unconditional stability is only guarantced when the time-step At is less than Ay, where

T
Atrig = 2 (4.24).

Ty, is the smallest natural period of the finite element system.

In the.constant-average-acceleration scheme (Newmark B = 1/’2), the displacement at time t+Ar is found by
considering the equilibrium at time f+A¢. Such methods are termed implicit. The new displacements are
calculated at each time-step using the following equation. '

- 1 1
a;+A¢—[K+4A2M} {fi+AD +M 5

4A23I+

2At ar+ip ] (4.25)

This scheme is unconditionally stable and exhibits no numerical damping, but requires reduction of an ¢ffective
stiffness mairix. Since this matrix is a linear combination of the stiffness and mass matrices, it always containg
non-zero off-diagonal terms.

The Wilson 8 scheme calculates the displacements at time #+0A¢, and then the displacements, velocities and
accelerations at time /+Af. The equilibrium conditions are satisfied at time ¢+8A¢, and so the method is
implicit. Like the constant-average-acceleration method. reduction of an effective stiffness matrix is required.
However, the scheme is only unconditionally stable when @ is greater than 1.37 (Bathe and Wilsomn), and
exhibits numerical damping at high frequencies.

These time integration schemes will be compared in the next chapter.
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4.6 Plasticity

The equations of motion formulated in the first section of this chapter were based on an elastic $0il mass.
However, pile driving involves inelastic deformation of the soil. There is a large variety of models of soil
inelasticity available (eg. Chen and Baladi, 1985), but only the simplest will be used in the present work.

In the theory of plasticity, a yield surface in three-dimensional stress space defines the limit of elastic behaviour.

The stress state cannot pass through the yield surface, and when it is on the yield surface, irrecoverable plastic -

strains can occur. If the direction of the plastic strain is always normal to the yield surface at the state of stress,
the plastic flow is said to be associated.

The equation for the von Mises (1928) yield surface is

1
[Y2(01-02)2 + Ya(03-03)2 + Va(o3-01)2 + 37122 + 30232 + 32312 12 - 6oy =0 (4.26)

which forms a cylinder in three-dimensional stress space (Figure 4.4). The numerical subscripts represent the
three coordinate axes, and oy is the von-Mises yield stress. When combined with the associated flow rule, the

von Mises model represents the behaviour of an undrained soil (Smith, 1982). There is no volume change
during plastic flow, and the undrained shear strength is related to the von Mises yield stress by

sy = %‘i @27,

Equation (4.4) defines the relationship between stress and strain during elastic deformation. After yield, the
relationship between stress increment and strain increment can be represented by

do= [D-Dplde (4.28).

When the von Mises yield law is used with associated flow in axisymmetric coordinates {Yarnanda et al, 1968),
the matrix Dy is defined by

;2 Oy 0F  G/00 OFTpz

__3E__|o'e &2 olog ogoy 4.29)
P 20y(1+V) | or' 1y  Odoy crg‘z . OGTr o
Trz0z  Trz0r  Trz08 '-’:rz2
The deviatoric stresses, represented by the dash, are
20, - oy - 26y - Gy - 260 - Gy -
o5 =L§l’ﬂ , oy :L;TZ—O'_Q , and og TL;Z_& (4.30).

Since the matrix Dp is a function of stress, the set of differential equations represented by equation (4.20)

becomes non-linear. Writing equation (4.18) in incremental form and substituting the plastic stress-strain
relationship given by equation (4.28),

R
” [ NTN ? —2— +BT[D-DpIB Sa}rdrdz - szafzrdr dz = 0 @.31)

or
Ma+ Kba=358f +f (4.32)
where M and K are defined in equation (4.21),

R
N, 8fzrdrdz : (4.33)
0 g’
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fp = ” o BTDpB rdrdz 8a (4.34).

The non-linear behaviour is now contained in the term f}, which represents the difference between the plastic
response and the elastic response. Equation (4.32) is usually solved at a particular time ¢ by using the Newton-
Rhapson method (Zienkiewicz, 1977). This method commences by solving equation (4.32) without fp to
obtain an initial estimation of 8a. f}, is calculated using equation (4.34), and equation (4.32) is solved with this
fp to find a refined estimate of 8a. These two steps are repeated until a and f do not change significantly.
The process is illustrated graphically in Figure 4.5(2). The modified Newton-Rhapson method (Figure 4.5(b))
can be used to increase the rate of convergence of the iterative scheme. However, this method requires periodic
recomputation and reduction of the tangential stiffness matrix, which offsets savings in iteration time,
Consequently, the Newton-Rhapson method will be used in the work presented in this thesis.

To solve the pile driving eguations, the iterative method described above must be used in conjunction with one
of the numerical time integration methods described previously. When implicit integration is used, iteration
must be carried out within each time step untii the displacement changes converge.

4.7 Conclusions

This chapter derived the differential equations governing the response of a pile embedded in an elastic soil mass
to hammer impact. Since these equations could not be solved analytically, the weighted residual method was
introduced as a technique for obtaining an approximate solution. The finite element method was found to be a
convenient way to obtain numerical solutions, and will be used in all the work which follows.

Techniques of numerical time integration were briefly described. These techniques will be investigated further in
the next chapter,

The modifications to the governing equations caused by the assumption of von Mises plasticity were discussed,
and the Newton-Rhapson methods were introduced as a method of solving the non-linear differential equation
system. The standard Newton-Rhapson method was selected for use in the work which follows, since the
modified Newton-Rhapson method requires repeated reduction of the structure stiffness matrix,
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5. FINITE ELEMENT ANALYSIS OF THE PILE

5.1 Introduction

This chapter examines the propagation of impact waves in an elastic pile uging the finite element method. The
sarrounding scil is ignored. The effect of impact wave shape, integration method, element type and node
spacing on the convergence of the pile stresses is investigated. The level of discretisation required to produce

accurate results is determined. The effect of radial inertia is examined, and the differences between the responses
of solid and hollow piles are investigated.

5.2 The one-dimensional wave eguation

An analytical solution to the equations g_f _tpotiou pregented in Chapter 4
can beobtamed when the following simplifications are made.

1. The soil surrounding the pile shaft has zero stiffness (E; = 0).

2. The radial inertia term in equation {4.10}) is ignored.

3. The axjal stress and strain are taken as uniform across each cross-section.
4. The soil at the pile base has infinite or zero stiffness.

When these simplifications are applied to equations (4.1) to (4.10), the equation of motion in the vertical
direction becomes

o%u 32y
Poa - EpSa - f2=0 (5.1)

where u. and f; are functions of z and ¢ only. Since f, is only non-zero at z = {, equation (5.1} is a one-
dimensional wave equation aver the rest of the pile. The equation can be rewritten as

azuz 2 azuz
e 5.2

where cp, is the axial wave velocity in the pile, defined by

[E
¢p = !—:f; (5.3).

Solution of this equation is trivial. A stress wave applied at z = 0 will propagate down the pile with velocity
¢p. In this chapter, compressive stresses and strains are defined as positive. Since the wave travels in the
negative z direction, the solation can be represented as

o:(2) = f2 (r + é;) : (54).

If the pile is of length L and the soil at the base of the pile is infinitely stiff, the stress wave will be reflected
back up the pile after reaching z = -L. On returning to the top of the pile, the wave will be reflected back down
the pile with a change in sign. Since no energy is radiated from the pile, this process will continue indefinitely.
At any particular time, the axial siress in the pile can be obtained from the following equation, provided that the
function f(1) is taken as zero for negative £

oxle) = é i (4 —2%1-1&) srp (- %‘i)) (5.5)

This equation is valid in the time interval
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2{n - 1L 2n L
<t <

CP Cp

If the soil at the base of the pile has zero stiffness, there will also be a change in sign after the wave is reflected
from the base. For this case equation (5.5) becomes

o) = é (e (#2025 -1 (- 225)) 56

In the following sections, these exact solutions will be used to compare the abilities of several finite element
schemes to accurately analyse the propagation of impact waves in a pile.

5.3 Rod elements

Since equation {5.1) only contains vertical motion, a finite element scheme with one vertical degree of freedom
. . at each node can be used. The ability of three different elements to represent the behaviour of the pidewill be
- investigated.

The first element contains two nodes. Linear shape functions are used to represent the variation in ug between
the nodes for the derivation of the stiffness matrix, and step functions are used to derive a lumped mass matrix.
These functions are shown in Figure 5.1(a). This element leads to the formulation of Smith (1960), since it is
equivalent to a spring of stiffness EA/Az between the nodes, and a mass of pAAz at each node. (A is the cross-
sectional area of the pile, and Az is the vertical distance between the nodes.)

The second element is also two-noded, but linear shape functions are used o derive both the mass and stiffness
matrices (Figure 5.1(b)). A consistent mass matrix with off-diagonal terms is formed by this formulation. The
stiffness matrix is the same as the element described above.

The third element has three nodes, and quadratic shape functions are used to derive the stiffness and mass
matrices. These shape functions are shown in Figure 5.1{(c).

Quadratic shape functions can represent a linear stress variation across an element exactly, whereas linear shape
functions only allow constant stress within each element. However, this chapter will show that there ig little
difference between the accuracy of solutions obtained with linear elements and quadratic elements, providing the
node spacing is not too large. For this reason, higher order polynomial shape functions will not be investigated.
The increased complexity of these elements, especially when used in two-dimensional form, was anticipated to
outweigh any slight numerical advantages. All previous finite element analysis of pile driving used quadratic
shape functions,

5.4 The trial problem

All of the analyses presented in this chapter employed a pile with properiies typical of offshore piles. The pile
was taken to be 20 m long, and the base was rigidly supported Typical hammer properties were also selected.
The properties of the pile and the hammer system are shown in Figure 5,2, Similar pile and hammer propemes
were used by Simons (1985) and Smith and Chow (1982).

5.5 Hammer/pile impact

The first series of analyses was performed with the impact function caused by the hammer directly striking the
top of the pile. This function was used by Simons {1985) in all his analyses. Each of the three elements
described above was used with node spacings of 0.5, 0.25, and 0.125 m. Time integration was performed using
the constant-average-acceleration method with a time-step of 0.1 Az/cp. Preliminary calculation had shown this
scheme ensured any numerical errors due to the time discretisation were small when compared with those due to
the spatial discretisation.

The two-noded lumped mass element was used first. Figure 5.3 shows the variation in axial force (034) along
the pile 3 milliseconds after hammer impact. At this time the wave is three quarters of the way down the pile
for the first time. The figure shows the axial force oscillating with a frequency which is dependent on the node
spacing. The maximum stress exceeds the theoretical stress for all node spacings, with the finest mesh recording
the highest stress. Figure 5.4 shows the variation in axial force when the stress wave is three quarters of the
way down the pile for the third time, The accuracy of the solutions has clearly deteriorated. Figure 5.5 shows
the variation of the force at the toe of the pile with time over the course of the analysis. The oscillations
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observed in the spatial variation of axial stress are evident in the time variation of the toe force, and the peak
force is overestimated on both the occasions that the wave front strikes the base, The variation of head
displacement with time is shown in Figure 5.6. Despite the large oscillations occurring in the stresses and the
toe force, the calculated head displacements are in close agreement with the theoretical solution, with some small
erroncous oscillation evident at later times for the coarsest mesh.

This is a characteristic of the finite element method. Displacements may be estimated quite accurately with
coarse meshes and shape functions which do not model the variation of internal force well. However, quantitics
which are related to derivatives of displacement, such as stress, are much harder to model accurately.

‘When the analyses were repeated with the two-noded consistent mass element, the results shown in Figures 5.7
to 5.10 were obtained. Figure 5,7 shows the axial stress 3 ms after impact. Compared with the results from the
lumped mass analysis (Figure 5.3), the oscillation in the decaying portion of the wave is considerably reduced,
and the maximum stress is underestimated rather than overestimated. The agreement between the exact solution
and the finite element solution improves as the node spacing is reduced. However, whereas the lumped mass

element showed little erroneous. stress preceding the wave front, even after 19 ms, the consistent mags selation.

exhibits considerable leading stress oscillation, the period of which is a function of node spacing.  Figure 5.8

“shows that after 19 ms the solution has-deteriorated considerably, with oscillation evident over the entire wave: -

The toe force (Figure 5.9) also shows much bétter agreement over the decaying portion of the wave with the
exact solution than does the lumped mass solution, but considerable oscillation precedes the wavefront. This
oscillation is of such magnitude that the head displacement is affected (Figure 5.10).

Smith and Chow (1982) refer to disagreement in the literature regarding the superiority or otherwise of lumped
mass elements, but claim that consistent mass elements are clearly superior. The analyses presented here show
that when a discontinuous impact force is applied, neither type of element is clearly superior. The consistent
mass ¢lement represents the siress wave more accurately, but causes erroncous oscillating stress to precede the
wavefront, to the extent that the resulting head displacement solution is actually worse than that predicted when
lumped mass elements are used.

Figures 5.11 to 5.14 show the results obtained with the three-ncded consistent mass element. These results
only vary slightly from those obtained with the two-noded consistent mass element. There is a slight
improvement in the representation of the peak stress, and the deterioration between 3 ms and 19 ms is less
marked. The oscillation in front of the wave is slightly reduced, and consequently the head displacement is
improved. However, the displacements are still not quite as good as those computed with the lumped mass
clement.

These analyses have shown that, of the three elements tested, the three-noded consisient mass element provided
the best approximation of the stress distribution in the pile, together with reasonably good displacements. The
analyses which follow will be performed mainly with this element, although one more set of analyses will be
performed with a different impact function.and the two-noded consistent mass element to confirm the superiority
of the three-noded element.

Despite the use of very fine meshes and three different types of element, the pile stresses obtained in the above
analyses are poor approximations of the correct stresses. The problem lies not with the finite element
approximation, but with the impact function. The accuracy of the finite element method depends on the ability
of the elements to assume a shape which is a good approximation of the exact solution. The hammer/pile
impact function contains a discontinunity in siress at the wavefront, The exact solution requires this
discontinuity to propagate through every particle in the pile., In a finite element solution, the discontinuity
should propagate through the elements, However, since the shape functions have C3 continuity through the
¢lements, the finite element mesh cannot accurately represent this propagation. There are specific finite
elements available (Oden and Wellford, 1975) which accommodate travelling discontinuities, but such elements
are only one-dimensional, Since the objective of the current project is to accurately model the complete pile
driving process, adoption of such elements for the pile was not considered appropriate, as the problem of
propagating the discontinuity would then be transferred to the soil.

An alternative approach is to use a hammer model which does not cause a stress discontinuity. The impulse

functions for both the hammer/cushion and hammer/cushion/anvil models described in Chapter 3 are continuous.
The effect of employing these impact functions is investigated in the following two sections.

5.6 Hammer/cushion impact
The shape of the hammer/cushion impulse function is indicated in Figure 3.2 (kc* =6.25), The second series of

analyses was performed using this impulse function and three-noded quadratic elements. The variation of axial
force along the pile 3 ms after impact is shown in Figure 5.15. A significant improvement in accuracy over the
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results shown in Figure 5.11 is evident. With the exception of the coarsest mesh, the only observable errors
occur immediately in front of the wave. The axial forces 19 ms after impact are shown in Figure 5.16. Some
deterioration in accuracy is evident, but the improvement over the results shown in Figure 5.12 is immense.

The improvement in accuracy carries over to the toe force and the head displacement (Figures 5.17 and 5.18).
Again, the only significant errors occur immediately in front of the wave.

5.7 Hammer/cushion/anvil impact

Although the hammer/cushion impulse function is continuous, there is a discontinuity in slope at the front of
the wave. The slope of the hammer/cushion/anvil impulse function is continuocus at all times. This suggests
that the hammer/cushion/anvil impact could improve the accuracy of the analysis even further.

The third series of analyses was performed with the hammer/cushionfanvil impulse function and three-node

. .quadratic elements. The variation of axial force along the pile 3 ms after impact is shown in Figure 5:19.- Only-- -

the coarsest mesh causes visible errors, and these errors are very small. The erroneous stress oscillation in front
of the wave is almost e¢liminated. After 19 ms (Flgure 5 20) there is minimal dcterloranon in gccuracy, even
with 0.5 m node spacing.

These observations can also be made of the variation of toe force and head displacement with time. For node
spacings of 0.25 m and 0.125 m, the finite element solutions are virtually indistinguishable from the exact
solutions.

After the investigation of hammer/pile impact solutions, three-node guradratic elements were selected over two-
node linear elements. However, the results presented in that section did not conclusively show that the quadratic
elements were superior. To establish this superiority, a set of analyses was performed using the
hammer/cushion anvil impulse function with two-noded linear elements. The axial force after 3 ms is shown in
Figure 5.23. A marginal decrease in accuracy over the results shown in Figure 5.19 is distinguishable. This
loss of accuracy becomes more evident after 19 ms (Figure 5.24), and is also visible in the toe force and head
displacement graphs (Figures 5.25 and 5.26).

The numerical experiments described above show that spatial discretisation errors are minimised when a
continuous force impulse function, such as that resulting from a hammer/cushion/anvil impact, is used. If
three-noded quadratic elements are used with 12 or more nodes in the rising portion of the wave, very accurate
approximate solutions can be obtained.

5.8 Time integration methods

The analyses described above were performed with the Newmark = 1/ method (the constant-average-
acceleration method) and a very small time step (0.1Az/cp) to ensure that the time discretisation errors were
much smaller than the spatial discretisation errors. This section turns attention to the different methods of time
integration described in Chapter 4, and the effect of time-step size on the solution. The Newmark B = 1y

method will be referred to as the average acceleration method, the Wilson 9 = 1.4 method will be called the
Wilson method.

To highlight the differences between the three selected methods of time irtegration, the hammer/impulse
function was used with the coarsest element mesh (Az = 0.5 m). Using a time step of 0.1Az/cp, the responses
presented in Figures 5.27 and 5.28 were obtained. There is little difference between the results obtained with the
average acceleration and the central difference methods, while the Wilson method (due to its numerical damping)
smooths some of the force oscillation. By 19 ms, the Wilson method has rounded off the wave shape
significantly.

When the time step is reduced to 0.5Az/cp, the oscillation in the central difference solution increases, while that
in the average acceleration solution decreases (Figure 5.29). The numerical damping provided by the Wilson
method increases, further attennating the solution. After 19 ms, the peak pile force predicted by the Wilson
method is less than 50% of the exact solution (Figure 5.30). This reduction is also evident in the toe force
(Figure 5.31) and, to a lesser extent, in the head displacement (Figure 5.32).

In the preceding section, a hammer/cushion/anvil impulse applied to a pile meodel of three-noded quadratic
elements with a node spacing of 0.25 m was shown to produce negligible discretisation errors. A set of analyses
was performed with this model using a time step of 0.5Az/cp, for each of the integration methods. Figure 5.33
shows that by 3 ms the Wilson method has caused a slight reduction in the maximum pile force, while the
other two methods are in close agreement. After 19 ms the Wilson solution shows a maximum axial force 25%
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less than the exact solution, while the central difference method shows increased oscillation in front of the wave
(Figure 5.34). The force reduction due to the Wilson method is also evident in the toe force (Figure 5.35).

The analyses described show that the numerical damping in the Wilson method tends to smooth out higher
frequency osciliations, but can cause significant attenuation of the stress wave. Although this may be acceptable
in the analysis of real world problems, the aim of the present study is to obtain accurate solations to the
theoretical equations associated with pile driving. Consequently, a method containing such artificial numerical
damping is not acceptable. The Wilson method was used by Smith and Chow (1982).

The explicit central difference method shows a tendency to amplify time discretisation errors when the problem
contains frequencies which are close to the critical frequency. This method was used by Simons (1985), which
partly explains the highly oscillatory results he obtained.

The average acceleration method shows no numerical damping, and is stable even for large time steps. For all
the time-steps tested, the average acceleration results were as good as or better than the results of the central
difference method. The-explicit central difference-method only possesses a-computational advantage when -
Iumped mass elements are used. However, when this is the case, smaller time-steps and node spacmgs are
required to achieve-aceuracy equivalent to the average acceleration method.

For the reasons discussed above, the constant-average-acceleration method was selected for use in all the
analyses which follow. The effect of time step on this method was ¢xamined using the accurate spatial
discretisation presented previously and the hammer/cushion/anvil impact. Time steps of Az/cp, 0.5Az/cp and
0.1Az/cp were used.

Figure 5.37 shows little difference after 3 ms between the axial forces calculated using the different time steps.
However, after 19 ms the largest time step shows noticeable errors (Figure 5.38). The error caused by the large
time step is clearly visible in the graph of pile toe force (Figure 5.39), where the maximum force is 'missed’.
However, there is little difference between the response predicted by time steps of (.5Az/cp and 0.1Az/cp in any
of the graphs, so a time step of 0.5Az/cp can be considered adequate for this problem.

5.9 The effect of radial inertia

In the first section of this chapter, assumptions were made that the radial inertia in the pile was negligible, and
that the stress and strain were uniform across each cross-section, These assumptions allowed the one-
dimensional wave equation {0 be obtained from the general equations presented in Chapter 4. This section will
examine the validity of the assumptions.

Firstly, a solid circular pile will be considered. To include the vertical motion of the pile, each node is given
two degrees of freedom. Three different elements are used to evaluate the effect of radial inertia on the response
of the solid pile. The first two are three-noded elements with quadratic shape functions in the vertical direction
and linear shape functions in the radial direction (Figure 5.41(a)). Plane sections are assumed to remain plane.
The first element uses a consistent mass matrix for the vertical direction, but ignores the mass for the radial
direction. The second element uses a consistent mass matrix for both directions. The third element is an eight-
noded quadrilateral, which uses quadratic shape functions for all directions (Figure 5.41(b)). The stiffness and
consistent mass matrices are found by integrating numerically, using four Gauss points (Zienkiwicz, 1977).

The first element closely approximates the radial displacement which accompanies the one-dimensional axial
wave analysed in the previous sections. The second element is a first order approximation to the effect of radial
inertia. The third element does not require plane sections to remain plane, but requires the hammer force to be
distributed uniformly between the nodes at the top of the pile. Since plane sections are not required to remain
plane, the third element is expected to most closely model the true effect of radial inertia.

A node spacing of 0.125 m was used for all meshes, with a time step of 0.5Az/cp,.

The results plotted in Figure 542 show that the addition of radial inertia slightly decreases the rise time of the
axial force and fractionally delays the peak, The results obtained with the second three-node element are in
reasonable agreement with those obtained with the eight-node element, but the eight-node element results show
some additional oscillation in the decaying portion of the wave. Figure 5.43 shows that this force oscillation is
associated with an oscillating radial displacement. The addition of radial inertia increases the maximum radial
displacement by approximately 15%.

The above analyses modelled a solid pile. However, the effect of radial inertia may be more pronounced in a
hollow pile, since the mass is concentrated at the edge of the pile. To model a tubular pile, three elements
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analogous to those used above were selected (Figure 5.44). The first three-noded element allows radial
movement, but neglects radial inertia. The second three-noded element includes radial inertia, but assumes plane
sections remain plane, ignoring bending effects. The third element is eight-noded and uses quadratic shape
functions for both directions. Bending and inertia in both directions are accounted for.

The properties of the elements were specified so that, for a wall thickness of 0.05 m, the pile impedance,
stiffness, and axial wave velocity remained the same as those specified in Figure 5.1. Figure 5.45 shows the
variation of axial force along the pile 3 ms after impact. Radial inertia ig seen to have a much greater effect on
the response of a hollow pile than on the response of a solid pile. The agreement between the three-noded and
eight-noded radial inertia elements is not particularly good, suggesting that much of the difference is due to
bending effects in the pile walls. The radial displacement of the eight-noded element model shows considerable
oscillation (Figure 5.46). The toe force and head displacement graphs also show some variation between the two
models, although the basic features are the same (Figures 5.47 and 5.48).

These two sets of analyses show that radial inertia affects the response of the pile, particularly when the pileis ... .

holléw. However, ignoring the radial inertia does not lead 1o gross errors, and reduces the amount of oscillation
present in the ravelling waves. In the cage of hollow piles, the exact response of a particolar pite is dependent
on the-wall thickness and the Poisson’s ratio of the material, rather than just the pile impedance and wave
velocity. In a study such as this, introduction of too many additional parameters is undesirable. Consequently,
in the work which follows, the response of the pile will be modelled by three-noded elements which ignore the
effect of axial inertia. This model will represent solid piles well, and hollow piles quite well.

5.10 Conclusions

A large number of numerical experiments have been performed to determine the appropriate element type, node
spacing, integration type, and time-step size needed to accurately model the propagation of an impulse wave in a
pile, The following conclusions have been drawn,

1. To obtain accurate results, a continyous impulse function with no slope discontinuity should be used, such
as the hammer/cushion/anvil impulse presented in Chapter 3.

2. Three-noded quadratic rod elements with consistent mass matrices yield the most accarate results (of the
three elements considered).

3. Very accurate resulis were obtained with 12 nodes in the rising portion of the wave, and 6 nodes gave
adequate representation.

4. The constant-average-acceleration scheme is the most accurate and stable integration method of the three
examined.

5. Atime step of 0.5Az/cp, is sufficient 10 give accurate answers.

6. FErrors introduced by ignoring the effects of radial inertia are quite small, and an adequate representation of
overall pile behaviour can be obtained by ignoring radial inertia and assuming plane sections remain plane.
However, radial inertia and bending in thin-walled piles could significantly affect the shape of the refiected force
often measured at the pile head during driving. This is an avenue for further research which will not be pursued
in this thesis.

The analyses performed in this chapter assumed that the soil surrounding the pile had no stiffness and no mass.
The next chapter examines the effect of finite stiffness and mass in the soil surrounding the soil shaft.
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6. ELASTIC WAVE RADIATION FROM THE PILE SHAFT

6.1 Introduction

This chapter examines the propagation of elastic waves from the pile shaft into the surrounding soil. The plane
strain shear and dilation waves are investigated first. A detailed investigation of finite element mesh truncation
follows. Simplified models for plane strain shear and dilation wave transmission are developed in the course of
this investigation. A finite element model is used to examine the effect of pile flexibility on the response, and
the significance of dilation wave transmission investigated. Finally, the influence of soil under the pile toe on
the shaft response is examined.

6.2 Shear wave transmission

Since the stiffness of a pile is tsuially far greater than the $oil stiffness, as a first approximation the pile can be
considered rigid (Novak, 1977). The soil surrounding the shaft will then be in a plane strain situation (FFigure
6.1). Equation (4.9) can be combined with equations (4.4):and (4.6) to form an equation of motion for vertical
displacement of the soil.

9%u 2u, 9
psra—ﬁﬁ-cs(r ar22+ %}-rfﬁo | 6.1

The vertical displacement (i) is a function of r and ¢ only. The external load (fz) is only non-zero at the pile
radius. When r is greater than R, equation (6.1} is a one-dimensional cylindrical wave equation, which can be
rewritten as

2 2
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where cg is the shear wave velocity in the soil,

cy = ‘\/ % (6.3).

‘This equation can be solved analytically for harmonic motion (Novak, 1977), or nmerically for any exciting
force. In the work which follows, three-node axisymmetric line elements with quadratic shape functions will be
used to solve equation {6.2).

The propagation of axisymmetric shear waves from the pile was examined using a soil disk of unit thickness.
Typical soil properties of Gg = 45 MPa and pg = 2000 kg/m3 were used. These properties are similar to those

used by Simons (1985) and Smith and Chow (1982). The shear wave velocity in this soil is 150 m/s, which is
much slower than the axial wave velocity in the pile analysed in the previous chapter.

The shear force applied to the soil disk by the pile was taken to have the same shape as the axial wave travelling
in the pile. The ram/cushion/anvil impact of the hammer shown in Figure 5.2 was used to provide this shape.
The distance between soil nodes required to ensure 12 nodes in the rising portion of the shear wave was
considerably smaller than the pile node spacing, since the wave velocity was much slower. A node spacing of
0.0075 m was used. The axisymmetric disk and the corresponding finite element mesh are shown in Figure 6.2.
The finite element mesh was extended to 3.25 m, and the analysis was stopped after 12 milliseconds to ensure
that no erroneous boundary reflections interfered with the results.

Figure 6.3 illustrates the compuled propagation of the shear wave away from the pile in terms of stress, and
Figure 6.4 shows the propagation of the same wave in ferms of total force. The total force was computed by
integrating the stress over the cylindrical area at each radius. As the wave fravelled away from the pile, the wave
shape sharpened, and the peak force increased.

Researchers using finite elements to investigate pile driving (eg. Smith and Chow, 1982; Simons, 1985) have
assumed that, since the stresses decrease as the wave travels away from the pile, satisfactory results can be
obtained by increasing the radial node spacing in rough proportion to the radial coordinate, ». A typical mesh of
this type is shown in Figure 6.2(c). The radial sizes of these elements are taken from Simons (1985),
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The use of meshes with elements of varying radial size implies that dynamic analysis of piles can be
accomplished with similar meshes to those used for static analysis. However, this is not the case. Although

the stress wave decreases in magnitude in approximate proportion to 1/\[; while travelling outwards, any
reflected portion of the wave increases in magnitude when travelling back towards the pile, also in approximate

proportion {© I,

If the size of the outer elements is increased, these elements may not be able to represent the travelling wave
adequately. In this case, high frequency components of the wave will be reflected. As the reflected portion
travels back towards the pile, the stress magnitude will grow, and significant distortion of the solution could
occur.

As an example of this, the displacement of at the inner radius of the model shown in Figure 6.2(c) was
calculated, and the response is plotted in Figure 6.5. The solution obtained previously from the accurate finite
element analysis showed that the pile displacement should increase rapidly to a maximum, and then decrease
relatively slowly. However, the response of the mesh with increasing radial element sizes shows considerable
oscillation. ’

This investigation has shown that accurate analysis of a propagating shear wave cari only be obtained with a
mesh fine enough to represent the travelling stress wave correctly. Since the shear wave sharpens slightly as it
travels away from the pile, the element size should be decreased as the radius increases, rather than vice versa,
However, the sharpening is only slight, and results of sufficient accuracy can be obtained with a uniform mesh
fine enough to give an adequate representation of the wave leaving the pile.

6.3 Dilation wave transmission

The expansion or contraction of a cylindrical cavity causes a wave of compression or tension to be transmitted
radially, This wave may be termed an axisymmetric dilation wave. As the wave travels through the soil,
stresses are generated both tangent and normal to the wave front. A pile subjected to a compressive axial wave
will deflect in the radial direction, as discussed in the previous chapter. This causes an axisymmetric dilaton
wave to be transmitted into the soil.

Assuming plain strain, equation (4.10) can be combined with equations (4.4) and (4.9} to yield an equation of
motion for the radial soil displacemnent.

& Pur  ur 1
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Since fr is only non-zero at the pile radius, elsewhere equation (6.4a) becomes
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Lame's constant for the soil {Ag) is related to Young's modulus (E) and Poisson's ratio (v¢) by

Puy  2G¢+ Ag (a?ur 1 dur 1 ) (6.4b)

v Eg

A= (1+vs) (1-2vg)

(6.5).
If a displacement potential {¢} is defined by
d
ur = 52 (6.6,

then equation {(6.5) can be rewritten as

3 % _ 2eis 3 @, 120 -
ar a2~ ps or (aﬂ r ar) 6.7).

Integrating both sides with respect to 7, a cylindrical wave equation in ¢ is obtained.
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The dilational wave velocity in the soil is

' 2
cd = GS—-P?\‘S (69)
Ps

To investigate the propagating dilation wave, the soil disc and finite element mesh shown in Figure 6.2 were
used.. The hammer impulse function used to examine the shear wave propagation was applied again, but this
time in the horizontal direction. Since the dilation wave velocity in the soil is 497 m/s, the node spacing was
increased to 0.025 m, and the mesh was extended to 7.5 m to prevent any boundary reflection influencing the
solution.

The ¢alculated radial pile displacemént is shown in Figure 6.6. Figure 6.7 shows the propagation of the dilation
wave from the pile in terms of stress, and Figure 6.8 shows the same wave in terms of total force. Like the
shear wave, the dilation wave sharpens as its distance from the pile increases, and the peak total force increases.
However, unlike the shear wave, a region of lensile stress develops behind the wave as it travels away from the
pile.

The displacements calculated with the mesh shown in Figure 6.2(c} {extended to 7.5 m) are also shown in Figure
6.6. Again, reflections caused by increasing the node spacings distort the solution.

Like the analysis of propagating shear waves, accurate analysis of propagating dilation waves requires a
reasonably nniform mesh of sufficient fineness to model the shape of the wave transmitted from the pile.

6.4 Time-domain transmitting boundaries

In the two analyses described above, the mesh was extended far encugh to ensure that the waves did not reach the
boundary within the time domain of interest, preventing erroneous reflections. However, such a procedure is
very limiting. Figure 6.5 indicates that the pile does not return to rest for some time, and so 2 much larger
mesh would be required to correctly model the complete response. (In this case, the pile will never return to
rest, but the analysis could be carried out until the pile was virtually at rest.) In static analyses, fixing the
boundary at some point suitably distant from the region of interest allows calculation of accurate results.
However, in dynamic analyses waves reflecting from a distant boundary can return with a significant amount of
energy. Consequenily, the finite element mesh must be truncated with a boundary which will not cause
unrealistic reflection of impinging waves. There are many such boundaries available in the frequency domain,
but problems involving non-linear behaviour of the solid are most readily solved in the time domain. Time-
domain transmitting boundaries are therefore required for this study.

The various boundaries of this type which are in common use have been reviewed and compared by Wolf (1986).
Most of these boundaries are formulated on the principle of no energy reflection from the boundary. However,
such boundaries give inaccurate results when subjected to stress waves with non-zero time averages. In their
paper introducing the viscous boundary (the most popular time-domain transmitting boundary), Lysmer and
Kuhlemeyer (1969) warned that the boundary should only be used with leads having a vanishing time average.
Loads which do not satisfy this requirement caase the finite element mesh to undergo rigid body motion. This
restriction theoretically prevents the application of these boundaries to the pile driving problem. The inability
of the boundary to support static load and the resulting rigid body motion prevent accurate calculation of residual
stresses and absolute displacements. Nevertheless, other workers {Simons, 1985; Smith and Chow, 1982) have
nsed boundaries which reflect no energy in the finite element analysis of pile driving, ignoring the rigid body
motion.

More rigourous and generally applicable boundaries are available (see for example Engquist and Majda, 1979),
but simplicity and ease of implementation has meant that the classical viscous boundary and related methods are
still widely used. Frequency dependent transmitting boundaries for shear and dilation proposed by Novak (1977)
and Novak and Mitwally (1988) will be discussed later.

6.4.1 A review of time-domain transmitting boundaries

Most of the transmitting boundaries reviewed by Wolf (1986) are derived on the assumption that no energy
should be reflected by the boundary (ie. the boundary is a perfect absorber of energy). This is equivalent to
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saying that the boundary transmits all the arriving energy into the far field, permitting no reflection from the far
field. In the discussion which follows, such boundaries will be termed zero reflection boundaries.

The superposition boundary (Smith, 1974} is based on the principle that a free boundary reflects a wave of
opposite sign to that reflected by a fixed boundary. The problem is duplicated, with a free boundary applied to
one mesh and a fixed boundary applied to the other. Half of the exciting force is applied to each mesh, and the
solutions are combined. The waves reflected from the boundary are of opposite signs and so cancel out. Since
the reflected waves do not travel back into the mesh, usuaily only the part of the mesh adjacent to the boundary
need be duplicated. As no energy is reflected, the superposition boundary is a zero reflection boundary.

The viscous boundary (Lysmer and Kuhlemeyer, 1969) is the simplest and the most widely used truncating
boundary. The far field is replaced by distributed damping on the boundary, which absorbs almost all the energy
in the impinging waves. The viscous boundary is discussed in detail in the next section. It is a zero reflection
boundary in one dimension, and almost a zero reflection boundary in two dimensions.

The doubly asymptotic boundary (Underwood and Geers, 1981) converges to thie corréct solution as the fréduency
tends o zero, and also as the frequency becomes very large. A spring of appropriate stiffness is used so that, as
the frequency tends to zero, the solution approaches the static solution. At high-frequencics the effect of the
spring is small in comparison with the effect of a dashpot, and so the second part of the solution consists of a
viscous dashpot. The damping constant is identical 0 that used in the viscous boundary. The spring and the
dashpot are combined in parallel. Since the boundary containg a spring, some energy is reflected back into the
mesh.,

In the paraxial method (eg. Cohen and Jennings, 1983) the boundary condition is expressed as a differential
equation which only allows the propagation of waves outwards, preventing any reflection. Consequently, itis a
zero reflection boundary.

The extrapolation method (Liao and Wong, 1984) prescribes the displacement of the boundary nodes by
extrapolating from the displacements of adjacent nodes at preceding time steps. The waves are effectively
allowed to travel through the boundary with minimal disruption. Consequently, the extrapolation method
approximates a zero reflection boundary.

Several workers have compared two or more of the methods described above. Cohen and Jennings (1983)
compared the paraxial method with the viscous method, and concluded that the paraxial method offered a slight
increase in accuracy for a significant increase in complexity. Simons (1985) compared the superposition method
with the viscous method, and found the two methods were in close agreement. Wolf (1986) used all the methods
mentioned above to calculate the response of a semi-infinite bar on an elastic foundation subject to one cycle of
sinusoidal loading, and compared the resulting approximations with an analytical solution. He found that, with
the exception of the doubly asymptotic method, the different methods gave similar results. The doubly
asymptotic method was found to cause significant reflection.

With the exception of the doubly asymptotic method, researchers have generally found the other methods are in
close agreement. This should be expected, since they are all good approximations to a zero reflection boundary.
Differences between them are an indication of their numerical efficiency, rather than their theoretical accuracy.
The viscous boundary will now be examined in detail, since it will show characteristics common to all
boundaries which model a zero reflection boundary., '

6.4.2 Derivation of the viscous boundary
Consider a semi-infinite rod. The equation of motion for axial deformation of the rod may be derived by
considering the dynamic eguilibrium of an infinitesimal element. The x axis is taken 1o ron along the axis of

the bar, and the displacement at any point will be denoted by u(x). Using E to denote Young's modulus and p to
denote the density of the bar, the equation of motion may be written as

Pu _E u
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This is simply a one-dimensional wave equation in which the axial wave velocity cp is given by

cp = -\/f (6.11).
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The viscous boundary is usually derived by considering the propagation of a harmonic wave (Lysmer and
Kuhlemeyer, 1969), but an alternative derivation for a transient wave of arbitrary shape can be obtained with a
method similar to that used by Booker (1985) to derive a transmitting boundary for a spherical dilation wave. A
wave of arbitrary shape propagating along the bar in the positive x direction may be represented by

u(x,t) = f(x/cp -f) (6.12),
in which ¢ represents the elapsed time,

Denoting the derivative of f with respect to the term in brackets by £, and treating compressive strains and
stresses as positive, the strain (£) and the stress (o) at any point x may be expressed as

e(x) = -g—‘; = -éf(x/cp 1) (6.13)
and
E
oxt) = Eg = -gf’(x/cp -f) : (6.14),

At any particular x coordinate xp, the derivative f is identical in magnitude and opposite in sign to the time
derivative dffidr. The velocity al this point may therefore be expressed as

g—lf(xb,t) = -flxplcp - 1) (6.15).

Comparing equations (6.14) and (6.15), the stress at the boundary point can be related to the velocity at the
boundary point as follows:

Olxp,t) = f—p %—I;(xb,t) =pop %’f(xb,t) (6.16).

This is identical to the boundary restraint provided by truncating the bar and applying a viscous damper with
damping constant ¢ = p cp.

A viscous boundary for shear wave propagation may be derived in a similar way. In the following equations 7
represents the shear stress, G the shear modulus, and ¢y the propagation velocity of the shear wave, The shear
displacement at point x is represented by v(x). The shear stress is

T(xht) = c% %‘?(xb,t) = pcy %(xb,t) {6.17)

where

cs = -\/% ' (6.18).

The viscous boundary can provide an exact model of wave transmission to the far field in any situation
satisfying the one-dimensional wave equation.

6.4.3 Reflection from the far field

Axisymmelric situations involve geometrically attenuating waves. The wave equation for cylindrical shear
waves is the same as the wave equation for axial waves in a wedge with linearly varying cross-sectional area,
indicating that the waves attenuate at the same rate in both situations. Consequently, a simple one-dimensional
bar of varying cross-sectional area can be used to illustrate the effect of a zero reflection boundary on
geometrically attenuating waves.

Congider the application of an axial step load of stress intensity o to the end of an infinitely long bar with
constant cross-section. An axial stress wave will propagate down the bar at velocity ¢p. The displacement of
the end of the bar (up) may be calculated by integrating the strain over the length of the bar. At time ¢; the
wave has only propagaied o x = cp ¢}, so the integration need only be performed to this point.
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This equation shows that, after the step load is applied to the end of the bar, the end moves with constant
velocity. The progress of the wave in the far ficld has no effect on the near field.

Now consider a bar consisting of two uniform cross-sections. When the wave reaches the point at which the
cross-section changes, partial reflection will occur, Clearly, if this change in impedance occuors in the far field,
truncating the problem to the near field with a zero reflection boundary will cause errors.

Suppose the cross-sectional area of the bar increases in small steps along the bar. Each time a wave reaches a
change in impedance, part of the wave is reflected and part is transmitted. As the wave propagates into the far
field, reflections from the cross-sectional changes will be transmitted back into the near field,

Now, if the cross-section of the bar varies in proportion to the distance from the end, and the steps between the
impedance changes are reduced, in the limit the rod becomes a wedge with a cohtifiGus change in impedance

(Figure 6.9(a)).

The equation of motion for axial waves in such a wedge is

?u _E (@ 1ou
£ @xz + L x) (6.20).

This equation can be solved numerically for a step excitation by Laplace transform or finite element methods.
The propagation of the wave in a stepped bar (Figure 6.9(b)) can be solved by the method of characteristics.

Each length of constant cross-section is taken as an element. Each element has a unique impedance of Z=
EAlcp. Consequently, when a wave front passes through the interface between two elements, the magnitude of
the transmitted wave will change, and a reflected wave will be generated. The magnitudes of the fransmitted and
reflected waves generated by a wave travelling from an element with impedance Z1 to an element with impedance
Zp may be computed by the following two formulae, in which v denotes the wave particle velocity (Randolph,
1989).

271
Viransmitted = 7o Vincident (6.21)
Z1-£3
Vreflected = Z1+77 Vincident (6.22)

All elements are the same length, so the time step is chosen so that the wave travels the lengih of an element in
one time step. Whenever a wave front reaches the interface between two elements, an upwards travelling wave
{up wave) and a downwards travelling wave (down wave) are generated. At any time, the up and down waves ata
particular interface are dependant only on the values at the previous time of the down wave at the element
interface immediately above, and the up wave at the interface immediately below. Using the subscripts 1 and d
to represent up and down respectively, and numbering the interfaces as shown in Figure 6.9(c), the magnitudes
of the up and down wavefronts at interface i can be computed with the following equations.

vd Al = o vd i) + g T Vi () (6.23)
_ 2% . Zi1-Zi
vy f(t+AL) = Zi1 +2Z; Vi i+1() + Ziq + Z; vd 1.1(1) (6.24)

The variables in the scheme are the magnitudes of the up and down waves at each interface. The process can be
initiated by introducing a step wave at the top of the wedge. The above equations can then be used for each
interface at each time step. The velocily at the end of the bar can by found by summing the contribution of each
wave front, and the displacement by integrating this velocity with time.

The results of several such analyses are shown in Figure 6.10. As the size of the elements is decreased, the
solution approaches the exact sofution for a wedge.
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The above analyses show that a contimuous variation of impedance can be modelled by a discrete series of
impedance changes. Discrete changes in impedance in the far field cause a discrete series of reflections into the
near field, so evidently a continuous variation in impedance results in continuous reflection from a wave front in
the far field. If a zero reflection boundary is used to truncate the problem, preventing the reflection from the far
field, the velocity of the end of the bar tends to a constant value. The resulis from an analysis with a truncated
mesh are shown in Figure 6.11.

This study has shown that the rigid body motion of an axisymmetric finite element meshes truncated with zero
reflection boundaries is caused by the prevention of far field reflection. Zero reflection boundaries are clearly
inappropriate in such situations.

6.5 A transmitting boundary for axisymmetric shear waves

6.5.1 Derivation of a shear boundary

The viscous boundary condition is based on an expression which relates the internal stress at a particutar point in
a one dimensional medium to.the velocity at that point (equation 6.16). This expression does not hold for the

propagation of cylindrical waves. However, a similar expression can be found by considering the forin of-a
travelling cylindrical wave,

A cylindrical shear wave travelling radially decreases in magnitude. An exact expression for the form of a
cylindrical wave cannot be found, but (for intermediate values of wave front position) the form of a cylindrical
wave may be closely approximated (Whitham, 1974) by

vrt) = —\}:f(r/cs - 1) (6.25),
r

where v is used to represent the horizontal displacement.

The validity of this approximation is demonstrated in Figure 6.3, where the shear wave is shown to decrease in
proportion 1o 1/\fr_.

Denoting the derivative of f with respect to the term in brackets by f, the shear strain and the stress at any radius
r may be found:

oy 1 1
Arit) = -3 = ‘2,3/2f 'Ef (6.26)
1 1,
wrt) = Gy=G (21‘3/2 Fo- Ef ) (627).
Ay

At any particular radius rp, the derivative £ is identical in magnitnde and opposite in sign to the time derivative
dfiot . The velocity at this point may therefore be expressed as

2 I
i) = gt rpies - 1) (6.28).

Comparing equations (6.25), (6.27), and (6.28), the stress at the boundary point can be related to the boundary
velocity and displacement as follows.

Hrpt) = G (inb v(rp.t) + Cis%‘f(rb,:)) (6.29)
G 3
= 20, Vrbt) +pcs gf(rb,:) (6.30)

This i3 equivalent to a viscous dashpot with a distributed damping constant of pcy {identical to a viscous
boundary) and a distributed spring constant of G/2rp. This boundary equation is only approximate, relying on
the accuracy of equation (6.25). When subjected to a static load, the new boundary predicts a limiting
displacement as time tends to infinity. In contrast, the exact solution indicates no limiting displacement.
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6.5.2 Response of the boundaries to hammer impact

The abilities of the viscous boundary and the new boundary {0 (ransmit plain strain shear waves were compared
by analysing the problem shown in Figure 6.2(a). The hammer impulse function detailed previously was
applied at the pile radius of 1 m. A mesh of the fineness shown in Figure 6.2(b) was used. A solution without
truncation effects was calculated by extending the mesh to 7 m, preventing any boundary reflection before 40
ms.

The mesh was then truncated at a radius of 2 m with a viscous boundary. The effect of this truncation on the
displacement at the pile is shown in Fgure 6,12, Comparing the truncated solution with the solution resulting
from the extended finite element mesh, the displacement of the truncated mesh is accurate until the wave reflected
from the boundary returns to the pile at approximately 13 ms. The displacement subsequently tends to a
constant value, instead of falling slowly to zero. This indicates that the entire mesh has undergone rigid body
displacement.

When the mesh was truncated at 2 m with the new boundary, rigid body displacement was no longer observed.
The displacement of the pile calculated with this truncation is also shown in Figure 6.12. After the wave

reflected from the boundary reaches the pile, the displacement is slightly less than the correct solution. Thigis™

caused by the non-zero static stiffniess of the new boundary. However, the new boundary approximates the
correct behaviouwr much more closely than the viscous boundary.

A more severe test was performed by applying the boundaries directly to the side of the pile, eliminating the
finite element mesh entirely. The displacements calculated in this way are shown in Figure 6.13. The viscous
boundary caused a large rigid body displacement, but the new boundary estimated the maximum displacement
extremely well. At larger times the new boundary slightly underestimated the displacement,
6.5.3 Exact solution for harmonic shear waves
An exact frequency dependent solution for harmonic axisymmetric shear waves has been presented by Novak
(1977). When 2 long rigid pile is undergoing complex harmonic oscillation, the displacement and the shear
stress at the pile radius (R) are related by 2 complex stiffness coefficient, which is a function of the angular
frequency, @.

T(R.t) = kz{®} v(R,1) (6.31)

The complex stiffness can be conveniently expressed in real and imaginary components as

kel @) = 3 (Sz1(ag) +1 S72(as) (632).

8z; and Sz7 are functions of the dimensionless frequency,

gy =28 (6.33),
Cs
and can be expressed in terms of Bessel functions of the first and second kind.
Jilas) Jolag) + Y1(as) Yola
Sai(as) = s ilas) g( s) 1(25‘) olas) (6.34)
Jo“(as) + Yo“{as)
1 4
Szfag) = = 6.35
2(%9) = & 30%ag) + Yokas) ©39

Dimensionless freguencies associated with the rising portion of the hammer impulse used in this chapter range
up to approximately 20. Parameters Sz; and Sz are plotted against dimensionless frequency in Figures 6.14
and 6.15.

6.5.4 Comparison of the new boundary with the harmonic solution.

The stiffness and damping terms of the new boundary can be combined to form a complex stiffness.

_ G .
kzz“z%+1pcsa)=5"ﬁ(l+i2as) (6.36)
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The real and imaginary stiffness parameters can then be identified,
Szp=1, 8Szp=2ag 637

These parameters are plotted against dimensionless frequency in Figures 6.14 and 6.15. The Sj parameter of
the new boundary is constant with frequency, and represents the limit approached by the Novak's §z7 as the
frequency (ends to infinity. Above a dimensionless frequency of 4, there is very little difference between the new
boundary and the exact solution,

The difference between equation (6.35) and the §;2 of the new boundary is very small, especially at high
dimensionless frequencies.

This comparison of the new boundary with the exact solution of Novak (1977} has shown that the new boundary
accurately models the far field when the applied load contains high dimensionless frequencies. However, at lower
frequenmes the new boundary exhxblts shghtiy too much m—phase snﬂ‘ness

6.5.5 Prevmus use of the harmomc solution

Meynard and Corte (1984) and Simons (1985) used the harmonic solution of Novak (1977) to obtain spring and
damping constants for modelling radiation from a pile shaft (but not as a truncating boundary for finite element
analysis). The constanis were obtained by drawing a line of best fit through the plots of S;; and S, provided

by Novak (1977). The equivalent valucs obtained by Simons were
Sz =09 and Spp=2ag (6.38).

Simon's §,; was lower than the new boundary, because the plot of Sz presented by Novak was for the range ay
=010 3. Mevnard and Corte obtained parameters identical to the new boundary.

6.5.6 Summary

Anew shear boundary has been derived by considering the propagation of a wave of arbitrary shape and duration.
Unlike the viscous boundary, the new boundary reflects some energy back into the near field, modelling the
reflection from the far field occurring in the axisymmelric simation. Numerical experiments have shown that
the new boundary out-performs the viscous boundary when subjected to transient waves. The effective dynamic
stiffness of the new boundary under harmonic loading was compared with the exact solution, and the new
boundary was found to provide an excellent model, particularly at high dimensionless frequencies. Even when
the force was applied directly to the boundary, the computed response was close to the correct solution. The
boundary can therefore be used to model shear wave transmission from piles without resorling to finite elements.

6.6 A transmitting boundary for axisymmetric dilation waves
6.6.1 Derivation of a dilation boundary

In equations (6.4) to (6. 9), the equation of motion for axisymmetric dilation waves was shown to reduce to a
cylindrical wave equation in a potential function ¢, where

u = %tﬂi (6.39).

As discussed in the section about cylindrical shear waves, an exact expression for the form of a cylindrical wave
cannot be found, but can be approximated by

d(rz) = %f(r/cd- 4 (6.40).

The algebra which follows is based on Booker's (1985) solution for spherical dilation waves. Denoting the
derivative of f with respect to the term in brackets by /7, the displacement, strain and stress may be related (o f at
any radius r.

? a1 1
u(rt) = £ = 2r3/2f = (6.41)

e
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Op{r.t) =2Ge +A(g+ €p)

=(2G +A) (& +£9) - 2G £ (6.42)
du u
Grtep =507
20 193¢
T2 T ror
. ) 6.4
cd? i ©43)
e =-%= apl- —mf - (6:44)
i, 1929 Hor 1 1, :
oY) =G+ ) ( pv: az2) 26 (27‘5/2 femt ) (645)

At any particular radius rp, the derivatives of f with respect to time are the negative of derivatives with respect to
its argument. The displacement, velocity, and acceleration at rp may be expressed as

-1 1
£ = — 5 L)+ s 6.46),
u(rp.t) 2rb?’/2f(rb ) cd'\[gf(rb ) {6.46)
du o1 o1 ,
3} = z_rbglrgf(rbrf) T\[Ef (rap.t) (6.47),
,az_u —_ "1 13 1 ’”r
atz(rbrt) = 2rb3/2f (rp.t) + Cd‘\fgf (rp.t) (6.48).

The second time derivative of the potential at rp is

Ve 7= b (649)

The stress at the boundary can be found in terms of f{rp,t) by substituting equation (6.49) into equation (6.45).

_ A 1
Orirpt) =26+ 4) (de -J?;f )-m (Qrbsnf A drb3/2f )

2G @G+Hrp 1,
=={u(rp,t) - 6.50
. ( b0 - o ) (6:50)
Differentiating this equation with respect to time,
%, . _ 2G (ou QG+Mrp 1 .
b b(az(b‘)‘* 6 A ) (6.51).

Combining these two equations, all reference to the unknown function fcan be removed. All quantities are
gvaluated at 7p.

Or +

gf_béoj_?_(i( L 2rbdu b2 2G+1 9% ) (6.52)

cd ot rp cd o P G o2

Equation (6.52) is independent of the form of the wave. Like the shear boundary derived above, this boundary
condition approximates the effect of the far field,
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6.6.2 Equivalent spring/dashpot/mass model

Unlike the boundaries discussed previously, equation (6.52) contains a time derivative of the boundary stress.
The boundary can be used in a finite elcment analysis by integrating the boundary equations numerically in time.
However, the boundary can be implemented more conveniently if it is represented by a spring/dashpot/mass
model. The terms can then be assembled into the finite element matrices, as can the other boundaries, Wolf
(1988) presents a spring/dashpot/mass model for spherical dilation waves. The model is shown in Figure 6,16,
The axisymmetric dilation boundary can be modelled in the same way, but with different values for the mass,
spring and dashpot.

The equations of motion for the model shown in Figure 6.16 are

kup + c(ig i) = f (6.53)

miy + c{p.-upn =20 (6.54).
From eqiation (6:53) ”

fy = % Gug + cig - P (655).

Differentiating with respect to time,
fy = % (i + ciif - P ‘ (6.56).
Substituting equations (6.55) and (6.56) into (6.54), a single equation of motion can be formed.
L. m o, m .
f+ Cf—k(u1+ . U1+ kuz) (6.57).

Equating equations {6.52) and (6.57), expressions can be found for the equivalent distributed stiffness, damping
and mass.

2G
m=2psrp, ¢= psed, k=" (6.58)
The values of the constants for spherical dilation waves presented by Wolf (1988) are
4G
m=4dpsrh, c=pscd, szb“g {6.599).
Inspecting equation (6.52), as time tends to infinity, all the time derivatives will tend to zero, leaving
_ 2G5 .
Or = " Ur (6.60)

The spring constant derived in equation (6.58) can therefore be identified as the static spring stiffness,

Since the axisymmetric dilation problem has a static solution, a doubly asymplotic boundary can also be
formulated. This bonndary consists of the spring and dashpot in equation (6.58) placed in paratlel. In the
following section, the accuracy of the new boundary will be compared with the accuracy of the viscous boundary
and the doubly asymptotic boundary.

6.6.3 Response of the boundaries to hammer impact

To compare the effectiveness of the boundaties, the plain strain axisymmetric disk shown in Figure 6.2(a) was
used again. This time the hammer impulse was applied in the radial direction. Initially a Poisson's ratio of
0.45 was used, with a node spacing of 0.025 m. A solution with no truncation effects was computed by
extending the mesh to 25 m, ensuring that no boundary reflection occurred before 40 ms.

Placing the truncating boundaries at a radius of 2 m, the displacements shown in Figure 6.17 were obtained.

The viscous boundary gave better results than the doubly asymptotic boundary, but the new boundary
approximated the effect of the far field far better than either of the other boundaries. As the dilation wave
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propagated into the far field, the pile displacement became negative. This effect was only modelled correctly by
the new boundary.

When the truncating boundaries were placed at the pile radius, the displacements plotted in Figure 6.18 were
calculated. The viscous boundary caused non-zero terminal displacement of the pile, and the response of the
asymptotic boundary was much too stiff. The new boundary gave a reasonable approximation of the response of
the extended mesh, although the estimated maximum and minimum displacements were slightly high.

The response of an axisymmetric disc to radial impact is dependent of the Poisson's ratio of the soil. The
analyses described above were performed with a Poisson's ratio of 0.45, which is commeon in pile driving
sitnations. For completeness, the behaviour of the boundaries with a Poissen's ratio of 0.25 was also
investigated. The displacements caused by truncating the mesh at a radius of 2 m are shown in Figure 6.19.
Since the velocity of the dilation wave was reduced, the boundary reflections took longer to reach the pile, and
the performance of all the boundaries was improved. The new boundary still provided the best approximation of
the far field response.

The hammer impact was also applied directly to the boundary models at a radius of 1 m with a Poisson's ratio of
0.25. The displacements presented in Figure 6.20 were calculated. The new boundary modelled the response of
the extended mesh extremely well. The response of the other two boundaries was still unsatisfactory.

6.6.4 Exact boundary for harmonic dilation waves

A transmitting boundary for harmonic axisymmetric plane strain dilation waves has been presented by Novak
and Mitwally {1988).

The Novak boundary is specified in terms of a frequency dependent complex spring constant &, This complex
stiffness can be written in terms of two parameters, S;7 and Sy2, which are functions of the dimensionless
frequency of the load and the Poisson's ratio of the soil.

o(R.t) = kpfew,v) v(R,t) = %(Srf(as,v) +18p2(asVh v(R,1) (6.61)

The parameters Syy and Sy2 can be expressed in terms of Bessel functions of the first and second kind, orders 0
and 1.

_ 1 1 o Ti(ad) Jolad) + Yi(aq) Yolad)
Srifagv) = 1-571%a 12 Yi2ag (6.62)
_ 1 5 Jolad) Yi(ag) - Yolag) J1(ag)
Szafas,vi = 277 ad le(ad)+Y12(ad) (6.63)
_ 2(1-v) _ ¢g
T=NT12v = & (6.64)
ag == (6.65)

n

The variation of §p; with dimensionless frequency for various Poisson's ratios is shown in Figure 621, and the
variation of Syz is shown in Figure 6.22.

6.6.5 Comparison of the new boundary with the harmonic boundary
To compare the new boundary with the exact solution for harmonic waves, the complex stiffness of the
boundary model shown in Figure 6.16 must be obtained. Expressing the complex stiffness in terms of two
unknown real functions of the applied frequency and the model parameters, the system response can be expressed
as

(1) = (Al@m,c.k) + i Blew,m.c.k)) ui(t) {6.65)

or
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A-iB
A2:B2

up(t) = ftr) (6.67).

In the algebra which follows, the dependence of A and B on the model parameters and the excitation frequency is
implied,

Although the second degree of freedom of the model does not enter into equation (6.66), the complex stiffness
relating the second degree of freedom to the exciting force must be introduced fo permit the functions A and B to
be found. The complex stiffness of the second degree of freedom will be expressed in terms of real functions C
and D, again dependent on the excitation frequency and the model parameters.

- fi) = (Clom,ck) + i D{w,m,c.k)) us(t) (6.68)

or
_C-iD . _ . . o
ua(t) = CZ+D2 f([) {6.69),

The complex harmonic force applied to the system can be represented by

flt) = f el (6.70).

The time derivatives of the two degreas of freedom can then be found.

() =257 fof o ©6.71)
1i(t) =457 (P f el ©7)
(1) = gz;;lz) i f el 6.73)
fig(1) = gz;yz) (-2 f el (6.74)

Substituting these equations into the equations of motion for the model (equations (6.53) and (6.54)),

(kA-iB + ic o (A-iB C-iDDfeim[=feiaJr (6.75)

424p2 A24B2 ° C2p2
c-iD . . C-iD A -iB\\, -
(_m w? c2p2 T 1e?® [C2+D2 T 42482 ))f el = el (6.76)

Dividing by f{t), separating real and imaginary parts, and dividing the imaginary equations by i, four real
equations in A, B, C and D resuls.

kA B D
A2p2 7 CC (A2+Bz ] C2+D2) =1 ©m
-k B A C
5 + @ - =0 6.78
A2+B‘?' ¢ (AZ—I-BQ' C2+D2) ( )
melC D . B N_ ©79
C2+p2 ((32+132 A2+32) ’
me?D .0 C . _AN_, | (6.80)
c2+p? (C2+D2 A2+B2) '
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Solving these equations simultaneously yields the functions A, B, C and D.

2
c? + (mz - "%)mz

Alomeck) = k 6.81

(@.m.c.k) 2+ m?2 02 8D
2 3

Blomck) = 207 . 6.82

( e ) (.‘2 + m2 &)2 ( )

Clwmck) = k-m w? (6.83)

Diw,m,c.k) =@ (6.84)

" “The functions C and D are of no interest, but A and B can now be related to the stiffness parameters, Sy; and
Srz.

2
kr =A+iB = %(Sr] + iSrz) (6.85)

From equation (6.58), the spring stiffness of the dilation boundary model is equal to the static stiffness 2G¢/rp,
so

A B
Sp1 = T and §p = T {6.86).
Expressing the mass and damping coefficients as
m=qaprp and ¢ = Bpegd (6.87)

where, from equation (6.58), er=2 and § =1, 877 and Sy2 can be found in terms of g and v. The terms 7 and
aq are related to v and a; by equations (6.64) and equations (6.65).

S, = > (6.88)
a\’ o
1 + ( ﬁ) ad
) of
Sy = % ——!3—~2— (6.89)
AN
1+ ( }3) aq

These functions are plotted against as for various Poisson’s ratios in Figures 6.21 and 6.22, Comparing these
functions with the exact solutions obtained by Novak, the limits as ag tends to zero and tends to infinity are
identical. In between these limits, the new boundary provides a reasonable approximation of §r7. The
approximation is better for lower Poisson's ratios, and is always less than the exact solution. This corresponds
with the observations made previously when the response of the boundary to impact loading was calculated. The
approximation of §,7 is extremely good, especially at high dimensionless frequencies.

The new boundary provides a good approximation of the response of the far field 1o harmonic loads, although the
displacement at low to mid-range dimensionless frequencies is slightty overestimated.

6.6.6 Matching the new boundary to the harmonic boundary

If the new boundary is subjected to harmonic loads of known frequency content, the accuracy of the
approximation can be improved by adjusting the values of the stiffness and mass parameters. The valaes of Sy7
and §77 for the boundary can be matched to the exact quantities given by equations (6.62) and (6.63) for the
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maximum excitation frequency. The boundary then provides better approximation over the lower frequencies
than the unmatched boundary.

The matching can be performed by evaluating S,; and S, at the desired dimensionless frequency, 5. The mass
and damping coefficients required to match the new boundary at this frequency can then be found by solving
aquations (6.88) and (6.89) simultaneously, vielding

) Sri2(as) + Sr22(as?y - 28, (as) + 1

- (1- Sri{as)) 7% ag? 30
= 1'—8?’1_(E£2 ad o (6.91)

Sralag)

The stiffness parameters resulting from matching the boundary at ag = 5 and v = 0.45 are shown in Figures 6.23
and 6.24,. The error at frequencies lower than 5 is reduced, but the ertor at higher frequencies is increased.

6.6.7 Summary

An approximate truncating boundary for plane strain axisymmetric dilation waves has been derived, and an
equivalent distributed mass/spring/dashpot model obiained. When subjected to hammer tmpact loading, the new
boundary was found to out perform the viscous boundary and the doubly asymptotic boundary. The new
boundary performed well even when applied directly to the pile shaft, and could be used to represent dilation
wave transmission from piles without resorting to finite elements.

The complex stiffness of the new boundary to harmonic excitation was derived, and was compared with the ¢xact
complex stiffness derived by Novak and Mitwally (1988). Although the boundary was found 1o represent the
exact complex stiffness reasonably well, a method of improving the boundary for excitation of known harmonic
content was also presented.

6.7 Shear interaction between layers

‘The analyses described so far in this chapter have treated cach infinitesimal layer of soil independently, assuming
no interaction occurred between the layers, When the pile is rigid, and there is no soil beneath the depth of the
pile, this assumption is valid. However, since real piles have a finite stiffness, there will be some interaction
between the soil layers. To determine the significance of this interaction, the propagation of a stress wave in a
semi-infinite pile passing through a 5 m soil layer was considered.

Radial shear waves are caused by the axial wave moving down the pile. Each infinitesimal soil layer is excited
before the underlying layer, Consequently, the underlying layer offers some vertical support, This causes
vertical stress waves to propagate in the soil. The wave speed of axial waves in-the soil is slightly greater than
that of shear waves, and so the vertical size of the finite elements used to model the vertical wave propagation
can be larger than the radial size. In the analysis which follows, eight-noded quadratic elements with four Gauss
points were used. To allow approximately 6 nodes in the rising portion of the shear and axial stress waves, the
radial size of the soil elements was 0.03 m, and the vertical size was 0.05 m.

Earlier in this chapter, a shear wave truncating boundary was shown to closely approximate the effect of an
independent axisymmetric soil disc. Applying this boundary along the length of the pile shaft creates a one-
dimensional modet which closely approximates the effect of independent soil layers.

The finite elernent mesh and the one-dimensional approximation are shown in Fignre 6.25. Analysis was carried
out for 8 ms, and the pile displacement and force at the pile head and 5 m below the head were recorded. The
displacements are presented in Figure 6.26, and the forces in Figure 6.27. The one-dimensional model yielded
results which were extremely close to those resulting from the full finite clement analysis, indicating that there
was very little interaction between the soil layers. The minimal interaction between the soil layers was
expected, as in all practical situations the axial stiffness of the pile is much greater than that of the soil.

6.8 Dilation wave f{ransmission

The significance of dilation wave transrmission from the pile was investigated using the finite element model of
the surrounding soil described above. Rod elements with radial degrees of freedom bat no radial inertia (Figure
5.41(a)) were used to model the pile. This model allowed interaction between the dilation and shear waves in the
soil. However, the results of the analysis (Figures 6.26 and 6.27) showed no significant difference from those
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obtained when the dilation wave lransmission was ignored. The minimal influence of dilation wave
transmission was expected, since the vertical soil displacement is much larger than the radial displacement.

6.9 Interaction with base

Near the pile base, the shear wave from the pile shaft interacts with the stress wave emanating from the pile
base. The extent of this interaciion above the pile toe was examined by analysing & 5 m pile embedded by
varying amounts in a finite element mesh. The soil along the pile shaft above the mesh was modelled with the
truncating shear boundary. Three of these models are shown in Figure 6.28. The truncating boundary closely
approximates the situation of no interaction between the soil layers, so any difference between the complete
finite element model and the partial model indicates substantial interaction between the shear wave and the base
stress wave over the height of the mesh.

The analyses were performed for 6 ms. For each analysis, (he displacement was recorded at the pile head and the
force at the pile toe, The resulis are presented in Figures 6.29 and 6.30. These figures show that there was little
change in the results when the truncating boundary was replaced by varying amounts of finite element mesh
above the toe. Consequently, ittle interaction between the soil at the pile toe and the soil along the pile shaft is
evident. The response of the soil under the pile toe can therefore be examined independently.

6.10 Conclusions

The investigation of axisymmetric plane strain shear and dilation waves revealed that as a stress wave travels
away from a pile, the shape of the wave sharpens. Although the magnitude of the stress decreases as the wave
travels, any reflections increase in magnitude as they approach the pile. Consequently, increasing the node
spacing in proportion to the distance from the pile (in the manner often used for static pile analysis) is
inappropriate, and was shown to lead to significant errors.

Since it is impractical in most cases to extend the finite element mesh to the maximum extent of stress wave
ravel, appropriate transmitting boundaries must be used to truncate the mesh. Most previous finite element
work concerning pile driving used the standard viscons boundary to truncate the mesh. However, this boundary
was shown to be unsuitable for use in axisymmetric situations. Alternative boundaries were presented for shear
and dilation wave ansmission. These boundaries were shown to accurately represent the behaviour of an
extended finite element mesh, even when applied at the pile shaft with no finite element mesh.

The possibility of significant interaction between the shear layers along the length of the pile was investigated,
but the interaction was found to be negligible. The effect of dilation wave transmission from the pile shaft was
also found to be very small. Interaction between the shaft shear wave and the stress wave emanating from the
pile toe was examined, but no significant influence was found.

‘This chapter showed that a truncating shear boundary applied atong the length of a pile shaft is an excellent
model of the elastic shear wave transmission, and that the dilation wave transmitted from the shaft can safely be
ignored. In the next chapter, the elastic stress wave emanating from the pile toe will be examined in detail.




7. ELASTIC WAVE RADIATION FROM THE PILE TOE

7.1 Introduction

This chapter examines the propagation of elastic waves from the pile toe. The previous chapter showed little
interaction between the shear waves radiating from the pile shaft and the siress wave generated at the pile toe. In
simplified methods of pile analysis, the response of the soil at the pile toe is usnally treated independently to the
soil along the pile shaft (Figure 7.1). The pile toe is often modelled as a rigid circular footing on an elastic half-
space (e.g. Simons and Randolph, 1986). This chapter commences with a finite element analysis of a rigid
footing subjected to a typical hammer impact. Three-dimensional stress plots are produced to illustrate the
propagation of stress waves in the soil mass, and the significant features are examined.

Analytical solutions for the response of a rigid circular footing to harmonic loads are then examined. These
analytical solutions allow calculation of a frequency dependent complex compliance for the footing. Calculation

of complex compliance and stiffness from a finite element mesh-is considered; and a new method of obtaining ~ -+~

the complex compliance from the response of a mesh to a transient Ioad is iniroduced.

The effects of different truncarng boundaries on the footing response and the compliance are examined, together
with an investigation of the effect of Poisson’s ratio of the soil. The effect of friction on the base of the footing
is calculated.

Existing one-dimensional models of fooling response are evaluated in terms of their complex stiffness. A new
model is propesed which agrees well with the complex compliance and stiffness computed using finite elements
over a wide range of dimensiontess frequencies.

The effect of pile embedment is evaluated. The interaction of the soil reaction with the pile impedance is
examined, and finally the elastic response of the entire pile/soil system is investigated. -

7.2 Footing response to hammer impact

To examine the propagation of stress waves from a circular rigid footing, the impact force of the hammer shown
in Figure 7.2(a) was applied to a massless rigid footing with a radius of 0.9 m bonded to a uniform elastic half-
space with Gg = 45 MPa, v5 = 0.45, and a density of 2000 kg/m3. The finite element mesh shown in Figure
7.2(b) was used, truncated with standard viscouns boundaries. As discussed above, such boundaries lead to rigid
body motion of the mesh, However, the object of this analysis was to examine the stress waves in the soil, and
so the long term response of the mesh was not important.

The propagation of stress waves in an axisymmeiric half-space can be visualised when the stresses are plotted as
surface graphs at regular time intervals. Figure 7.3 shows the relationship between the three-dimensional surface
plots (presented subsequently) and the finite element mesh. Siresses were computed and plotied at the element
Gauss points. The edge of the footing can nsually be identified on the surface graphs by a stress spike,

Figures 7.4 to 7.7 present surface plots of the vertical, shear, radial, and Von Mises generalised shear stresses at
times of 2, 4, 6 and 8§ milliseconds. The Von Mises gencralised shear stress (&) is related to the other stresses
by

o= \/1/2(0'2 <092 + 1a(0z - 612 + Lp(o; - 012 + 37?”22 .

Figures 7.4 to 7.7 clearly show the propagation of two distinct waves with different velocitics, identifiable as
the dilation wave (or P-wave) and the shear wave {or S-wave). Although a surface (or Rayleigh) wave must be
present, distinguishing this wave from the shear wave is difficult, as the two wave velocities are approximately
the same (Lysimer and Kuhimeyer, 1969),

The dilation wave has two notable features. Firstly, the wave travels downwards from the feoting, and only
shows a small amount of radial dispersion. The stresses at the side boundary caused by the dilation wave are
small. This is indicated by both the vertical and generalised stress plots. Consequently, reflections from the
side boundaries of the mesh are determined by the shear wave travel time, rather than the dilation wave travel
time. The concentration of the dilation wave beneath the footing is also evident in Figures 7.8 and 7.9, which
show the variation of vertical stress with depth at radii of 0 m and 0.9 m respectively. There is little attenuation
of the peak siress as the wave travels, but the magnitnde of the stress under the edge of the footing is
approximately one third of the stress under the centre of the footing.
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Secondly, as the dilation wave travels, a region of tensile stress forms behind the wave. This is consistent with
the propagation of the cylindrical dilation wave presented in Figure 6.8. The tensile stress can be seen most
casily in Figure 7.8, but is also evident as a hollow behind the dilation peak in Figure 7.4. The similarity of
these dilation waves suggests that, at least to some extent, the base response will be similar to the response of
the dilation boundary discussed in the previous chapter.

The ditation wave hits the edge of the mesh at 4 ms, and is subsequently absorbed. Conceptually, the wave
propagates into the far field. '

Unlike the dilation wave, the shear wave shows a more uniform distribution in all directions. A large stress
concentration occurs at the edge of the footing when the impact force is large, and the shear wave appears to
radiate from this area. The distance taken for the shear wave to rise to a maximum determines the minimam
node spacing. Figure 7.5 graphically illustrates the steep gradient of the shear wave. The magnitude and
gradient of the shear wave travelling vertically are similar to the shear wave travelling radially, suggesting that
the node spacing in both directions should be similar. Figures 7.10 and 7.11 show that gradient of the wave
does not decrease with-distance from the footing, but, like the cylindrical shear wave, appears to increase
slightly, This supports the earlier observation that the size of the finite elements should not decrease with
distance from the footing.

Figure 7.6 shows that most of the radial stress is associated with the dilation wave, and is highest in the soil
underneath the footing. A small amount of radial and vertical stress is associated with the shear wave.

The propagation of the waves viewed in terms of the Von Mises generalised shear stress is significant, as this
stress is limited by the Von-Mises yield criteria. Figure 7.7 shows that the the shear wave causes significant
generalised stress over a much larger area than the dilation wave. At a radius of 0 m, the generalised stress
associated with the shear wave is slightly larger and of longer duration than that associated with the dilation
wave (Figure 7.12(a)), and, at a radius of 0.9 m, most of the generalised stress is associated with the shear wave
(Figure 7.12(b)). These facts will become significant in the next chapter, when a new model for inelastic base
response is constructed.

The pile and hammer properties used for all examples presented above have been based on those nsed by Simons
{1985} and Smith and Chow (1982). However, the combination of a large diameter pile with a sharp impact
wave requires a large finite element mesh, as illustrated by the analysis above. While the sharp wave leads to
the excellent visual separation of the shear and dilation waves evident in Figures 7.4 to 7.7, the time taken to
perform the computations is large. The time taken to analyse such a problem can become impracticably long
when inelastic soil behaviour is taken into account. To alleviate this problem, a different combination of pile
and hammer properties will be used in some of the analyses which follow. These properties are shown in Figure
7.13, and the impact force created by this hammer/pile combination is plotted later in Figure 7.17(b). The rise
time of 3 ms allows a much coarser mesh than the previous rise time of 1 ms.

7.3 Analytical solutions for harmoenic footing response

The response of a circular rigid footing to a complex harmonic loading has been tackled analytically by several
researchers. Bycroft (1954) obtained an approximate solution by assuming that the stress distribution under a
dynamic footing was the same as that under a static footing. Such an approximation is valid at low
dimensionless frequencies, but breaks down at high frequencies. The vertical stresses on the footing analysed in
the first part of this chapter are plotted at 2,4, 6 and 8 milliseconds in Figure 7.14, along with the static stress
distribution for the impact force at 2 milliseconds. The impact load gives rise to significant tensile stresses over
some sections of the footing which are not present in the static stress distribution.

Lysmer (1965) obtained another approximate solution by modelling the footing as a series of concentric rings
carrying uniform stress, and equating the displacement of each ring to the footing displacement. Robertson
(1966) presenied an expression for the solution involving the Fredholm integral equation, and evaluated the
functions at low dimensionless frequencies using a power series expansion. Shah (1968) solved the integral
egquation of Robertson numerically, evaluating the compliance of a rigid footing over a large range of
dimensionless frequencies. Similar evaluation was performed by Luco and Westmann (1971), who presented
plots of vertical compliance for several values of Poisson's ratio.

The analytical solutions referenced above only relate to a smooth rigid circular footing on a uniform half-space.
The complex compliance cannot be expressed in terms of elementary functions, and numerical evaluation of the
complex Friedholm equation must be performed. Such a procedure is cumbersome, and the use of approximate
polynomial expressions is common (eg. Novak, 1977).
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7.4 Fourier analysis of transient response

The steady state response of a circular rigid footing 10 a harmonic load can be determined with the solutions
referenced above. Lysmer and Richart (1966) showed how Fourier series analysis can be used to determine
response to transient loads. This procedure will be reviewed briefly, as it will be used as the basis of a new
method of determining the compliance of a finite element mesh.

Lysmer and Richart (1966) reason that, since the footing system is strongly damped, the transient force can be
represented by a continuous series of alternating force pulses, as shown in Figure 7.15(a). Provided that the
distance between each pulse is large enough that the response of the footing to one pulse dies out before the next
occurs, the response is a series of alternating displacement pulses, as shown in Figure 7.15(b). Since there is no
interaction between consecutive pulses, the displacement pulse corresponding to a particular force pulse is the
same as the transient regponse of the footing to that pulse alone, If a transient force pulse of Fft), which dies
out to zere before time 7', is specified, a Fourier series can be found for the corresponding pulse train.

F(1) = 2 Cfn €OS (Q—H#Et + uffn) (1.1
n=0

As N approaches infinity, the series becomes exact, but if N is sufficiently large, a good approximation can be
achieved. Lysmer and Richart (1966) provide a guide for choosing N and 7. The coefficients cfy and yf;, can be
obtained from the following equations. If the force function is known at a number of discrete points in time,
numerical evaluation of the integrals is trivial.

e = Vom? + B2 ‘ 1.2)
_ -1 P

Wi = o - (7.3)
T
o = %me cos (B21E 1) o )
T
Bn = %JF(U sin (KE{_T—IE I) de (7.5)
The dimensicnless frequency corresponding to each term in the Fourier series is simply
2Zn+DmR
p = S22k (76).
S .

Since the system is linear, the footing response to each term in the Fourier series can be computed
independently, and the resulis combined. If the system flexibility is available as a frequency dependent complex
compliance, the response for each frequency component can be determined. The series representing the
displacement is presented in equation (7.7), where F1 and F7 are the coefficients of real and imaginary flexibility
respectively, and kgyq, 18 the static footing stiffness.

S 2nt] .
= L ;;;J:?(Fl(an) cos (28 yy, ) - Faan) sin (P By, ) ) a7
n=

7.5 Footing compliance from finite elements

The complex compliance of a rigid footing can be approximated using a finite element model of the footing and
the half-space. When the footing is subjected to a complex harmonic farce of Fg el® each degree of freedom
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oscillates at the same frequency, but with different amplitudes and phase angles. The displacement, velocity, and
acceleration of the ji1! degree of freedom can be expressed as

uj(t) = (aj{w) +ibj(w)) FQ eloot (7.8),

ajt) = (iwajo) - obj{w)) Fo 0 | (7.9)
and

agj(t) = (@?aj{w) +1 c?bjw)) Fo el®* (7.10).

The matrix equation of motion is
K u() + C i) + M () = Foel®r (7.11),

where f contains unity for the excited degree of freedom, and zero for all others. Substituting equations (7.8) to
(7.10) and dividing by F €', a complex equation in the frequency dependent vectors a(e) and b(a) is formed.

K {a+ib} + @ C {ia-b} - @2 M {a+ib} = f (7.12)
Breaking this equation into rcal and imaginary parts, two real equations are formed.

Ka(@ - oCbh(w) - o2 Ma(a) = (7.13)

Kb(w) + ©Ca(® - 0* Mb(e) = 0 (7.14)

These equations can be combined to form one matrix equation. If equation (7.14) is multiplied by -1 before
combining, the harmonic stiffness matrix which results retains symmetry.

K-o*M  -oC a f
= (7.15)

-oC @?M-K b 0
The coefficients a and b can be found by solving this system of equations. To optimise the numerical solution
of these equations, a and b coefficients should be ordered alternately, minimising the profile of the matrix.

Denoting the degree of freedom associated with the vertical displacement of the footing by m, the complex
flexibility coefficients are simply

bm(a)
kstatic

_ apl(o)

F1(w) = kstatic

and Fo(w) = (1.16).

This method of calculating complex compliance from a finite e¢lement mesh is essentially the same as that
proposed by Lysmer and Kuhlmeyer (1969) and used by others (eg. Chow {1985)). However, the method has a
number of drawbacks. Firstly, equation (7.15) contains twice as many unknowns as the corresponding finite
element formulation, and the band of the matrix in equation (7.15) is twice as wide as the band of the stiffness
matrix, 0 a large amount of computer time and memory may be required. Secondly, equation (7.15) must be
solved for each frequency at which the coefficients F1 and F7 are required.

Another serious drawback is the large influence that the truncating boundary has on the solution. Inspection of
equation (7.15) reveals that the interaction between the a and b coefficients is caused solely by the system
damping matrix. If the material damping of the soil mass is neglected, the only damping is provided by the
transmitting boundary. If there is no damping on the boundary, the coefficients b become zero, and the response
is always in phase with the oscillating load. This effect is independent of the extent of the finiie element mesh,

If the method is used to evalnate the steady state effectiveness of transmitting boundaries, the inordinate
influence of the boundaries could be justified. However, soluations obtained in this manner must be viewed with
suspicion, as the steady state nature of the solutions can hide significant behaviour traits, The inability of the
standard viscous boundary to correctly model response to transient loads is not immediately evident when this
type of analysis is used. More significantly, proponents of the above method often use different meshes for each
frequency at which the analysis is undertaken, specifying the element size and boundary distances in terms of the
wavelength of the shear waves. This means that the phase difference between the boundary reflections and the
footing force is maintained at a constant value, which may hide the true extent of the boundary errors. Both
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Lysmer and Kuhlmeyer (1969) and Chow (1985} calculate three points on the footing compliance curves with
. three different meshes, and draw smooth lines throngh these points.

‘The mesh shown in Figure 7.16(a) was used to compute the footing compliance over the standard dimensionless
frequency range of 0 to 2 at intervals of 0.02. The calcutated compliance curves are presented in Figure 7.16(b).
The performance of the viscous boundary is worse than Chow's (1985) results indicate. When doubly
asymptotic boundaries were used in place of the viscous boundaries, the computed compliance showed resonant
peaks at several frequencies (Figure 7.16(b)). Later in this chapter, the doubly asympiotic boundary will be
shown to out-perform the viscous boundary when the footing is subjected to a transient load. Consequently,
this method of computing complex compliance does not reflect the ability of a finite element model to represent
transient response,

7.6 An alternative method

To overcome the shortcomings of the procedure described above, an alternative method of computing footing
compliance from a finite element analysis is proposed. This technique uses the response of a finite element
“mesh (o transient loading to derive complex compliance, inverting the Lysmer and Richart procedure for

computing transient response using Fourier§giies. A transient force is applied to the finite element model of ~*¢ -

the footing and soil, and the footing displacement is calculated by numerical time integration of the finite
element equations. Time integration is carried out until all significant dynamic behaviour has ceased. The time
period required for this to occur becomes T in Figure 7.15. A Fourier series is then formed for the force using
equations (7.1) to (7.5), and for the footing displacement (4;) using the equations below. Since numerical time
integration yields the displacement at regular time intervals, numerical integration of equations (7.20) and (7.21)
is trivial.

N
uz(t) = Z Cyp COS (@—;Mt + ¥y n) (7.17
#=0

cun = N oyn + ﬁunz (7.18)

Yun = tan"l % (7.19)
T

Oun = %U’.uz(t) cos (Q”;—IL’E:) dr (7.20)
T

Bun = % J us(¢) sin (@;—m z) dr (7.21)

Once Fourier series have been obtained for both the force and the displacement, the magnitude (b5} and phase
shift (8p) of the complex compliance can be obtained at each frequency represented in the series. The
dimensionless frequencies can be computed with equation (7.6}, and the magnitudes and phase shifts are given by
eguations (7.22) and (7.23).

cf
bp = " (7.22)
un ~static
On = Yun - Y (7.23)

The real and imaginary flexibility coefficients can then be calculated, and the stiffness coefficients can be
obtained from equations (7.26) and (7.27) if required.

Fi1 = bpcos By : (7.24)

1]

Fo = by sin 8y _ (7.25)
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§1 = jcos b (7.26)
n

Sy = ';l-sin 6, (727
n

At higher dimensionless frequencies, the calculated approximations of by and 8, have been observed to contain
erronecus oscillation with dimensionless frequency. These functions can be smoothed using a point-averaging
algorithm over sufficient points to cover the period of the oscillation. The smoothing should be applied before
the flexibility and stiffness coefficients are calcnlated, otherwise significant oscillation of these parameters can
occur,

The accuracy of the new method will be demonstrated using the simple two degree of freedom mechanical system
shown in Fi gure 7.17(a). The complex compliance of this system can be obtained analytically. (This complex
compliance is derived later in equations (7.30) to (7.34).) The complex compliance can also be calculated usmg
the new method. Comparing the two solutions gives an indication.of the accuracy of the new.method. :

wmees € hammer impulse shown in Fzgure 7.17(b) was applied to a numerical model of the system, and the responise-
was computed by mtegratmg the equations of motion using the constant-averagg-accelération method. The
response is shown in Figure 7.17(c). A time step of 0.05 ms was used, and the response was computed for 30
ms. To obtain sufficient resolution of low frequency response, T was taken as 324 ms and N as 270. The
resulting Fourier series approximations for force and time are also shown in Figures 7.17(b) and 7.17(c). There
iz no significant difference between the Fourier approximations and the original functions.

The computed magnitude and phase shift of the compliance are shown in Figure 7.18, together with the
smoothed functions obtzined by using an 11-point smoothing algorithm. The compliance computed from the
smoothed magnitude and phase shift shows no appreciable difference from the analytical compliance (Figure
7.19),

To further verify the accuracy of the new method, the method was used to compute the complex compliance of a
smooth circolar rigid footing on a semi-infinite half-space, and the results compared with a published solution.
The finite element mesh shown in Figure 7,20 was used to compute the response of the footing to the hammer
impulse plotted previously in Figure 7.17(b). The boundaries were located sufficiently far away to prevent any
boundary influence before the footing returned to rest. The flexibility coefficients obtained for a Poisson's ratio
of 1/3 are plotted in Figure 7.21, together with those obtained by Luco and Westmann (1971). The calculated
compliance agrees well with the published compliance.

The new method requires the frequency content of the force pulse applied to the footing to be well distributed
over the frequency range of interest. Higher frequencies must be given higher weighting to maintain accuracy.
‘When these requirements are satisfied, the new method can produce superior resulis to the method described in
the previous section. The new technique is substantially cheaper in computer time, as the number of equations
is smaller and the compliance for a large number of frequencies is obtained from one analysis, In addition, the
finite element analysis can be performed with a standard dynamic finite element analysis program without
customisation. The Fourier analysis can then be performed on the output displacement function and input force
function to obtain the compliance. This analysis is trivial enough to be programmed in a spreadsheet macro
language, or BASIC, by someone with a rudimentary knowledge of programming.

In the work presented here, the complex flexibility and stiffniess obtained by the new method will be used to
compare the effects of different boundaries, (o examing the effect of friction on the base of the footing, and to
compare different mechanical footing models. The potential of the method extends beyond this, permitting
calculation of the compliance of footings of arbitrary shape on soils with varying elastic properties. However,
niore work must be done to establish the optimum input pulse, and to determine the source of the oscillating
error. This error is possibly due to the slight frequency shift caused by the time integration procedure.,

7.7 Finite element boundaries

Using the mesh shown in Figure 7.20 for inelastic computations is not practical, as too much computer time is
required. ‘The mesh must therefore be terminated with transmitting boundaries. Previous finite element analyses
of pile driving problems have usually used a two-dimensional version of the standard viscous boundary.

Generalising from the one-dimensional viscous boundaries discussed in Chapter 6, Lysmer and Kuhlemeyer
(1969) proposed a viscous boundary for two dimensions expressed by the following two equations.
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c=apcp 88_1: {7.28)

T=bpeg % (7.29)

o and u are normal to the boundary, while 7 and v are tangential,

These boundary conditions only approximate the effect of the far field. The constants @ and b may be selected by
attempting to optimise the energy absorption of the boundary. Proceeding on a trial and error basis, Lysmer and
Kuhlemeyer (1969) found that setting the constants to a = b = 1 gave good energy absorption, providing the
incident angle of the wave approaching the boundary was not too small.

White er ai (1977) presented a rational procedure for maximising energy transmission, which allows
computation of g and b for any Poisson's ratio. (The values of the constants were found to vary slightly with
Poisson's ratio.).. They termed the resulting boundary conditions a unified boundary. However, the increase in
efficiency over using unit values for ¢ and & was shown to be less than one percent.

. Although derived_ for propaganon of plane waves in two dimensions, the two-dimensionatviseous-boundary-has
often been demonstrated using the axisymmetric problem of a vibrating rigid circular footing on a semi-infinite
half-space {eg. Lysmer and Kuhlemeyer, 1969; Chow, 1985). However, White ef al (1977) calculated optimum
values of @ and b for the absorption of cylindrical waves. They found that ¢ and & are dependant on the ratio of
the boundary radius to the wave length, and are therefore frequency dependent. For large boundary ratios, ¢ and b
approach the values obtained for two-dimensions, The difference between the axisymmetric unified boundary and
the viscous boundary is generally very small.

The referenced literature has demonstrated that the viscous boundary may be used in two-dimensional and
axisyminetric problems with zero time-average loads. The paraxial and superposition methods are theoretically
superior (o the viscous boundary in {wo dimensions, but have been shown {o yield little improvement in
practice {Cohen and Jennings, 1983; Simons, 1885).

In Chapter 6 the geometric attenuation of axisymmetric waves was shown to cause reflection from the far field.
Consequently, application of perfect transmitting boundaries to meshes such as that shown in Figure 7.16(a)
cause rigid body motion when the applied load has a non-zero time average. Such rigid body motions have been
identified by Mitwally and Novak {1988).

The impulse force cansed by the hammer shown in Figare 7.13 was applied to the mesh in Figure 7.16(a)
truncated with viscous boundaries. The computed displacement is compared with that calculated using the
extended mesh of Figure 7.20 in Figure 7.22. The permanent displacement at the end of the time integration is
due to the rigid motion of the mesh. The new method of computing complex compliance cannot be used with a
mesh which undergoes rigid body motion.

In the previous chapter, transmitting boundaries were derived for plain sirain axisymmetric shear and dilation
waves. The derivations depended on explicit expressions for the travelling waves, The surface plots presented in
the first section of this chapter show that the attenuation of the iravelling waves under a rigid footing is
complex, and equivalent expressions cannot be found. However, the transmission of shear and dilation waves
from the side of the mesh can be modelled with the boundaries for plane strain cylindrical waves derived in
Chapter 6.

The base of the mesh is more difficult. Figure 7.4 showed that the vertical stress wave travelling downwards
from the rigid footing shows little attenuation and dispersion, and is practically a one-dimensionat axial wave.
Consequently, the wave is effectively absorbed by a viscous boundary. To test these boundaries, the hammer in
Figure 7.13 was applied to the mesh in Figure 7.16(a), as before. This time the plane strain boundaries were
applied to the sides of the mesh, and a viscous boundary was applied at the base. In Figure 7,22 the resulling
displacement is compared with the displacement calculated with the extended mesh. The purely viscous base
boundary allows too much vertical displacement, and evidently should have some in-phase stiffness.

Omne way of providing finite stiffness on the base boundary is to use a doubly asymptotic boundary of the type
described in Chapter 6. The static stiffness of a circular footing with a radius equal to that of the finite element
mesh can be applied as a uniformly distributed spring across the base of the finite element mesh, The
improvement obtained by adding this stiffness is shown in Figure 7.22.

An alternative base boundary can be obtained by treating the vertical dilation wave as spherical cavity expansion.
The mechanical model shown in Figure 6.4 can be used with the parameters provided by Wolf (1988) for
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spherical cavity expansion. The stiffness of this boundary lies between the viscous and the doubly asymptotic
boundaries. The results obtained using this base boundary are also presented in Figure 7.22.

The spherical cavity expansion base boundary and the doubly asymptotic base boundary show only a slight
improvement over the viscous base boundary. However, there is a distinct difference between the response of the
truncated mesh and the extended mesh at large times. Figure 7.22 shows the time taken for the dilation wave to
reflect from the base boundary and retarn 10 the footing, and the time taken for the shear wave to reflect from the
side boundary and return to the footing. In the time between the return of the dilation wave from the base and
the return of the shear wave from the side, the response of the truncated and extended meshes are similar,
indicating that al} the base boundaries behave quite well. However, once the shear wave returng from the side
boundary, the responses of the truncated and exiended meshes become quite different.

In Chapter 6, the plain strain boundaries were shown 1o perform very well, The apparent reflection of the shear
wave from this boundary was explained by Lysmer and Kuhlmeyer (1969), who showed that a viscous boundary
does not totally absorb the surface Rayleigh wave, which propagates at approximately the same velocity as the
shear wave. They derived a boundary for the absorption of Rayleigh waves, but the boundary is highly
dependent on excitation frequency.- Like the viscous boundary, the plane strain boundaries arc unable to totally
absorb this wave.

Fortunately, the Rayleigh wave travels relatively slowly, and so, for a mesh of reasonable size such as that in
Figure 7.16(a), the significant dynamic response is complete before the errors caused by the reflected wave
become evident, In pile driving, the permanent inelastic deformation occurs at small times when the base force
is relatively high. Consequently, the reflected Rayleigh waves will not significantly affect the computed force
1esponse, or the predicted set,

The new method for computing the complex compliance of a finite element mesh can be nsed (o compare the
effectiveness of different truncating boundaries. The effect of the truncating boundaries on the compliance of the
Figure 7.16(a) mesh is shown in Figure 7.23. Unlike the compliances computed by the old method (Figure
7.16(b)), the compliances for boundaries with in-phase stiffness do not exhibit resonant peaks. The different
base boundaries have little effect on the computed flexibility, as most of the error is due to the reflected Rayleigh
wave.

7.8 The effect of footing friction

The rigid footing compliances referenced previously were calculated for a smooth rigid circnlar footing, which
develops no shear stress on the base of the footing, A pile is usually embedded, which limits the vertical
movement beneath the pile, and significant shear stresses can be developed between the pile base and the soil.
Luco and Westmann {1972) show that the compliance of a rigid strip is slightly altered when bond between the
footing and the half-space is taken into account. To determine the significance of thig effect on a circular
footing, the compliance of a rigid circular footing bonded to a half-space was calculated using the mesh of Flgure
7.20 and the new method of computing compliance,

The effect of bonding on the complex compliance is shown in Figure 7.24. The difference between the bonded
and un-bonded cases is so small that the degree of bonding beneath the pile toe can be ignored. In all subsequent
analyses, the footing representing the pile base will be assumed to be fully bonded to the under-lying soil.

7.9 The effect of Poisson's ratio

The results of Luco and Westmann (1971) indicated that Poisson's ratio has a significant influence on the
complex flexibility of a smooth circular rigid footing. To determine the effect of Poisson's ratio on the response
of the pile base, complex compliances were computed out for & rough circular footing on soil with Poisson's
ratios of 0.25, (.33, 040, and 0.45. The results are presenled in Figure 7.25. There is little difference between
the complex compliances computed for Poisson's ratios of 0.25 and 0.33, but as Poisson’s ratio is increased to
0.45, the in-phase stiffness at high dimensionless frequencies becomes negative.

During pile driving, the Poisson's ratio of the soil is typically in the range 0.45 to 0.5, as the soil response is
predominantly undrained,

7.10 Simplified modelling of footing response

To simplify analysis of the dynamic response of rigid footings, Lysmer and Richart {1969) proposed a one-
dimensional model consisting of a spring and slider in parallel. This model is shown in Figure 7.26(a). Lysmer
and Richart used the complex compliance of a half-space model with a Poisson's ratio of 1/3 1o compute
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equivalent spring and damping constants. Although these parameters were dependent on dimensionless
frequency, constant values were selected which gave reasonable agreement with the half-space model. Becaunse
the variation of complex compliance with Poisson's ratio is quite small, Lysmer and Richart suggested that the
maodel be used for all values of Poisson's ratio. This suggestion has largely been followed, and all rational
models of pile driving dynamics have employed base models derived from Lysmer's analog (eg. Simons and
Randolph, 1986).

Another mechanical model of dynamic footing response has been presented by Wolf (1988). This model is
shown in Figure 7.26(b), and contains an additional degree of freedom, an additional dashpot, and two Tumped
masses. With the exception of the added mass at the footing, this model is a combination of the models for
axisymmetric shear and dilation wave transmission presented in the previous chapter. Wolf derived parameters
for the model by matching the complex compliance of the model to the computed compliance of a half-space
over a limited range of dimensionless frequencies, The parameters are presented in Figure 7.26(b) as functions of
Poisson's ratio.

‘Figure 7.27 compares the complex compliance of these two models with that éomputed by the finite element
method for a rough footing on a soil with a Poisson's ratio of 0.45. Although the general shape of the curves is
similar, there is significant variation between the models at higher frequencies.

The differences are more apparent in Figures 7.28 and 7.29, which plot the real and imaginary stiffness
parameters. The real stiffness of the Wolf model is in close agreement with the finite element computation at
low frequencies, but the high frequency response is very poor. The constant spring stiffness of the Lysmer
made] poorly approximates the variation of the in-phase stiffness with dimensionless frequency. Both models
only approximate the cut of phase stiffness component well at low frequencies.

Since the impact waves caused by pile driving hammers have significant high frequency content, the simplified
base models described above may perform poorly under pile driving condifions. This was confirmed by
subjecting models of the base of the pile shown in Figure 6.25 to the impact of the hammer in Figure 5.2. The
calculated fooling displacements are compared with those calculated with finite e¢lements in Figure 7.30. Both
models yield footing displacements which are significantly different from the finite element results.
A better base model can be formed by matching the complex stiffness of the model shown in Figure 7.26(b) to
the complex stiffness obtained by finife element analysis. To accomplish this, the complex stiffress of the
model must be calculated in terms of the model parameters.
The equations of motion for the model are
mQu] + cpul + cp(al -ap) + kuy = flv) (7.30)
mli2 + ec1@2_u1) =0 (7.3D).

The parameters can be non-dimensionalised in the following way.

w200 w-RE@ w-2E) m-23) 032

The complex stiffness coefficients can then be found in terms of the dimensionless frequency, ag, using the
procedure detailed in equations (6.66) to (6.86).

o1 2
14 (("BT) - agasz} - (ag + al))asz
2

1+ (%) asz

2
(ﬁo + (%) (Bo + B1) GSZJ as
8§ = 5 (7.34)

1+ (%—11*) asz

81 = (7.33)
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The complex stiffness was calculated using the new finite element method for Poisson's ratios of 0.25, 0.33,
0.40, and 0.45. At each Poisson's ratio, the values of &, o1, Bg, and B1 which best fitted equations (7.33) and
(7.34) to the finite element stiffness over a wide range of dimensionless frequencies were found by trial and error.
o and o were found to be independent of Poisson’s ratio, with

ap=0 and PBp=08 (7.35).
1 and 81 were found to vary with Poisson's ratio, The computed values are plotted against Poisson's ratio in

Figures 7.31 and 7.32. The parameters can be approximated by the following eguations, which are also plotted
in Figures 7.31 and 7.32.

a1 = 0.63 - 3.6 v+ 6v2 (7.36)

B1=158-103 v+ 192 (7.37)

The difference between (he parameters of new model and those of Wolf's (1988) model is caused by the matching

_of the new model over a larger range of dimensionless frequencies. An example of the improved fit to- thee—

"complex:flexibility and stiffness parameters achieved by the new model is'sigwn in Flgures 727, 7.28, and
7.29 for a Poisson's ratio of 0.45.

When the new model is used to model the base of the pile shown in Figure 6.25, the calculated displacement is
much closer to the finite element results than the other models (Figure 7.30).

7.11 The effect of embedment

Some preliminary results detailed in Chapter 6 indicated that little interaction occurred between the soil at the
pile base and the soil surrounding the shaft. To investigate the interaction in more detail and in more general
terms, the complex compliances of a series of rigid piles with various embedments were computed using the
new finite elernent method. The finite element meshes are shown in Figure 7.33(a). The meshes were truncated
with a doubly asymptotic base boundary, and plane strain side boundaries.

To determine the effect of the interaction, the compliances of the one-dimensional models shown in Figure
7.33(b) were also computed. Comparing the compliance of each model with the appropriate finite clement
compliance, the agreement between the two was found to be independent of the pile embedment (Figure 7.34),
This supports the previous conclusion that little inferaction occurs between the soil surrounding the shaft and
the soil beneath the base. The displacements of the piles are shown in Figure 7.35. The simplified models
agree well with the finite element resulis.

The shear wave ravelling from the basc along the surface of the half-space beneath the pile is in phase with the
shear wave travelling from the pile shaft in the layer above the half-space. Consequently there is little stress on
the adjoining surface, and little interaction. However, this conclusion is only valid for elastic analysis. When
the inelastic response of the system is examined in the next chapter, the effect of embedment will have to be re-
evaluated, since the plastic mechanism could be affected by the overlying soil.

7.12 The effect of pile interaction

In the examples presented above, a hammer impact force was applied directly to a weightless rigid footing, and
the displacement was computed. In pile-driving applications, the impact force propagaies down the pile as an
axial stress wave, and reflects from the soil at the pile base. The amount of force generated in the soil and the
magnitude of the stress wave reflected back up the pile depend not only on the dynamic properties of the soil at
the base, but also on the impedance of the pile,

Randolph (1990) has shown that the velocity at the base of the pile (vp) is related to the downward travelling
wave (F ), the base resistance (Qp) and the pile impedance (Z) by the following equation,

2y -
vh = —d?g’i (7.38)

By simple algebra, the base force can be related to the downward travelling wave and the base velocity.

Op=2Fg-Zvp (7.39)

54

&




These equations show that the effect of the pile on the base response can be modelled by attaching a dashpot of
impedance Z to the footing, and then applying twice the hammer force to the footing. Roth the displacement at
the pile base and the force exerted on the soil can then be computed.

The response of the base of the pile shown in Figare 7.36 was computed with the effect of the pile impedance
included in this way, using a finite element model, the Lysmer base model, the Wolf base model, and the new
base model. The resuiting forces and displacements are shown in Figures 7.37(a) and 7.37(b). The agreement
between the force predicted by the finite element solution and the force predicted by the new base model is
extremely good, whereas the forces predicted by the other models are considerably different. Correct modelling of
this force response is extremely important, as it affects the reflected force wave, which is often recorded at the
pile head during pile driving.

7.13 Overall pile response

The shaft and bage response of the pile have been examined separately, and interaction between the two has been -
shown to be small, The effect of the improved base model on the overall elastic response of a pile is now
demonstrated. The pile shown in Figure 7.36 was analysed. Analyses were performed using the full finite
element mesh showngin Figure 7.38(a), and using one dimensional models consisting of thé shear transmitling
boundary along the shaft and the three base models described above (Figure 7.38(b)). The displacements and bhase
forces caleulated when the the pile was subjected to a blow from the hammer of Figure 5.2 are shown in Figures
7.39 and 7.40. The displacements and base force resulting from the improved one-dimensional model are
practically the same as those calculated using finite elements, and are significantly better than the one-
dimensional models incorporating the other base models.

7.14 Conclusions

The stress waves emanating from a rigid footing on an elastic half-space were examined in detail, and two
distinct wave types were observed. The dilation wave was seen to propagale vertically downwards from the
footing, showing little geometric attenunation or horizontal dispersion. The shear wave wag found to give rise to
a reasonably uniform stress hemisphere propagating from the footing.

Computation of the response of a circular rigid footing to harmonic loads was considered, and a new technique
for computing complex stiffness and flexibility from a finite element analysis was developed. The new
technique was shown to provide answers which agreed well with published solutions.

Two-dimensional transmitting boundaries were investigated, and the standard viscous boundary was found to
adequately absorb the dilation wave, although a doubly asymptotic boundary was found to provide more accurate
displacement approximations. The shear boundary developed previously was found to caunse erroneous reflections
of the Rayleigh surface wave. Published boundaries for Rayleigh wave absorption were found to be frequency
dependent, and so the side boundary of the mesh was located far enough from the footing to prevent erroncous
reflections interfering with the short term response of the base.

The effects of footing friction and Poisson's ratio of the soil on the complex compﬂance of a rigid footing were
evaluated. Friction between the soil and the underside of the footing was found to alter the dynamic response
only slightly, while Poisson's ratio was found to have more significant effect.

Simplified mechanical models of dynamic fooling response were examined. An improved model was constracted
by matching the complex stiffness of the Wolf (1988) model to that obtained by finite element anatyses for a
variety of Poisson's ratio over a large range of dimensionless frequencies. The new model was found to provide
better agreement with finite element results than existing models,

The effect of embedment was examined, and the response of an embedded rigid pile was found to be modelled
adequately by combining the new base model with an appropriate length of shaft transmitting boundary. This
indicates that little interaction occurs between the soil surrounding the shaft and the soil at the base of the pile.
Finally, a simplified model consisting of a one-dimensional pile, the shear transmitting boundary placed along
the pile shaft, and the new base model was found 1o represent the elastic behaviour of a complete finite element
model extremely well.

The effect of soil inelasticity will be considered in the next chapter.
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8. SOIL INELASTICITY

8.1 Imtroduction

The preceding chapters of this thesis have dealt with the elastic dynamics of pile driving, However, a key part of
the pile driving process is the inelastic response of the soil, which Ieads to permanent set of the pile. This
chapter examines the effect of soil inelasticity on pile driving dynamics, nsing the Von Mises mode! of soil
inelasticity described in Chapter 4.

Slip at the pile shaft/soil interface is.considered first. The effect of interface elements on the dynamic finite
element response is investigated, and an improved interface element with internal damping is proposed, At the
same time, the effect of a weakened soil layer adjacent to the pile is examined. Plastic sliders are implemented
in the implicit time-stepping scheme. One-dimensional and finite element models of slip at the pile/soil
interface are compared. '

The inelastic penetration of a circular rigid footing into a half-space under hammer impact is examined. Three-
dimensional surface plots of the stress waves propagating from the footing are preSented. Existing one-
dimensional models for the inelastic response of a rigid footing are reviewed, and a new model is proposed. The
models are compared with finite element results for a variety of hammer, pile, and soil combinations.

The response of a complete finite element model of a pile and the surrounding soil is compared with the
response of a simple model consisting of a one-dimensional pile, the shaft model, and the new base model. The
effect of re-driving is also examined, and the residual stresses in the pile and the surrounding soil are computed.

The methods developed in the current work are used to analyse two pile-driving examples presented in the
literature. The new results are compared with the published results.

8.2 Shaft/soil interface

Chapter 6 established that the shear waves propagating from the shaft are substantially cylindrical, and that
interaction between adjacent soil layers can be ignored. The magnitude of the stress in the shear waves

propagating from the shaft decreases in rough proportion to 1/\,;’ 0 the maximum shear stress occurs in the
soil adjacent to the pile shaft. Since the normal and radial stresses near the shaft are small in comparison with
the shear stress, in an ideal Von Mises soil the shear strength of the bond between the pile and the surrounding
soil can be related to the Von Mises yield stress and the undrained shear strength of the soil, sy, by the
following equation.

o 2
fo=E=E=s

V3 N3¢

In the ideal model, slip between the shaft of the pile and the surrounding soil will occur when the shear stress
reaches fy , which will be referred to as the shaft friciion.

The inclusion of inelasticity in the finite element method was reviewed in Chapter 4. The integration of the
body loads over the elements (equation {4.34)) is usually performed numerically using Gauss-Legendre . The
excess generalised shear stress is computed at each Gauss point, and integrated over each element to find the
contributions 1o the body Ioads at the nodes (fp).

Yielding along the pile shaft/soil interface is highly localised. If the inelastic soil behaviour is computed using
standard eight-noded soil elements adjacent to the pile, the computed results may be inaccurate, as the Gauss
points will not be on the pile/soil interface. In the limit, as the element size tends to zero, the sclution
converges to the theoretical solution, bui extremely small elements are necessary to produce accurate results,
Thin-layer interface elements and joing elements are commonly vsed in the static analysis of similar situations.
These elements have been reviewed by Leong (1991),

§.2.1 Imtferface elements
Thin-layer interface elements are similar to standard inelastic elements. The deformation within the ¢lemerit is

described by continuous shape functions. Zienkiewicz ¢t al (1970) describe a six-noded thin-layer element, while
Desai et al (1984) describe an eight-noded element. The stress-strain relationship within the element can be
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distinct from the surrounding soil, and can be highly non-linear. Newton-Rhapson iteration is often used to
compute the inelastic behaviour of interface elements.

In a material with a Von Mises yield law, the accuracy of a finite element scheme using thin-layer elements
depends on the thickness of the elements. Theoretically, all inelastic deformation occurs in an infinitesimal soil
layer adjacent to the pile. As the soil elements tend to zero thickness, the computed solution becomes exact.
However, as the interface elements become much thinner than the elements representing the surrounding soil,
the relative stiffness of the interface elements becomes large. This can lead to ill-conditioning of the structure
stiffness matrix, and can increase the number of Newton-Rhapson iterations necessary for convergence. Because
the static solution is often insensitive to the elastic stiffness of the interface elements, this stiffness is often
artificially reduced to promote convergence (Zienkiewicz et al, 1970).

While thin-layer interface elements model a thin soil layer adjacent 1o the interface, joint elements attempt to
model a joint between adjacent finite elements. The joint clement is either given an arbitrary small thickness
(Ghabousst et al, 1973), or has zero thickness (Toki ct al, 1981). In a Von Mises soil, the joint should be rigid
until the shear stress across the joint reaches the undrained shear strength of the soil. "Thé joint should then
permit relative slip between the adjacent elements to limit the transmitted shear stress to the soil shear strength.
This type of rigid/plagtic joint element can be implemented either by reconstructing the stiffness matrix each
time a joint becomes plastic, or by assigning an arbitsiry (large) stiffness to the joint and using an iterative
scheme to account for the inelastic behaviour (Toki et al, 1981).

The application of thin interface elements to dynamic soil-structure interaction has been congidered by Zaman et
al (1984). Such elements were also used by Chow (1981) and Smith et al (1985). To avoid the high natural
frequencies present in elements with high stiffness and low mass, the interface element mass is usually
neglected. Despite this, interaction between the high interface stiffness and adjacent clements possessing mags
can create natural modes with high resonant frequencies in the finite element mesh. Partly to counter this effect,
Chow (1981) and Smith et al (1985) added interface damping on the basis of the viscous soil damping of the
Smith (1960) model. Such damping is inconsistent with elastic-perfectly plastic soil behaviour.

Beltyschyko et al (1976) have implemented inter-nodal slip in an explicit time-integration scheme. The force
between two adjacent nodes is assigned a limit. Once the force would exceed this limit, the two nodes are
permiited to move independently, and the force between the nodes is set 1o the limiting value. In effect thisisa
two-node rigid/plastic joint element. The method can only be used in an explicit time-integration scheme,

A similar scheme for inter-nodal slip was used by Simons (1985) in his finite element analysis of pile driving.
Simons also adopted some interface damping to improve the appearance of his results, justifying such inclusion
by reference to Chow's work.

Toki et af (1981) implemented a joint element in an implicit time-integration scheme by providing the joint
with high elastic stiffness and using load transfer iteration,

8.2.2 Comparison between thin-layer and joint elements

The shaft/soil interface in a Von Mises soil should ideally have zero thickness, and should exhibit rigid/perfectly
plastic behaviour, The scheme proposed by Beltyschio et al (1976} can accomplish this when an explicit time-
integration algorithm is used. However, when an implicit time-integration method is used, the structure
stiffness matrix must be adjusted each time a rigid/plastic joint yields or closes. This adjustment can be
performed efficiently using the method of Deeks et al (1984). The change in stiffness can then be found without
reducing the entire stiffness matrix (Deeks and Clyde, 1992),

The pile driving problem involves not only slip between the pile shaft and the surrounding soil, but also
significant plastic soil flow around the pile toe. Unlike the shaft/soil skip, the inelasticity of the soil at the pile
toe is not contained within a narrow band, and cannot be modelled with joint or interface elements. The plastic
flow is spread through the soil elements, and the response must be computed using the initial stress method and
Newton-Rhapson iteration or a similar scheme.

If the response of the soil at the pile toe is calculated with an iterative scheme, the computer programming can
be minimised by computing the slip at the pile/soil interface by the same scheme. This approach was used in
the work which follows. However, in the calculations reported later in this chapter, considerably more iterations
were needed to account for the shaft/soil inelasticity than were needed to correctly compute the response of the
soil at the pile toe. The reason for this was the high relative stiffness of the interface elements compared with
the other components of the model. Implementaticn of a separate direct solution scheme for the pile/soil
interface in future work could be advantageous.
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To allow the initial stress scheme to be implemented for the pile/soil interface, the joint elements must have
finite elastic stiffness. There is no practical difference between a joint element with finite stiffness and a thin-
layer interface element. The thickness of the thin-layer element is always small in relation to the dimensions of
the problem, so the small distance between the nodes on either side of the interface will not affect the solution.

The simplest form of interface element is a stiff spring connecting two adjacent nodes. The simplest
rigid/plastic interface element can be represented by a stiff spring in series with 2 plastic slider. The behaviour
of higher order interface elements can be understood by studying this simple form.

When the iniiial stress method is used to compute the response of an interface element, decreasing the element
stiffness improves the convergence of the initial stress method, but reduces the accuracy of the solution. The
static elastic response of a problem is usually used to determine a stiffness which achieves snfficient accuracy
within a reasonable time.

8.2.3 The effect of varying the interface stiffness

‘The effect of interface stiffness on the soil and structure dynamics was not considered in the work referenced
above, The rescarchers have assumed that when the interface elements are stiff enough to avoid excessive static- -~

deformation error, the elements will not significantly affect the dynamic response of the-system. In-Chapter 6,
the dynamic stiffness of the soil surrounding the pile shaft was found to be significantly stiffer than the static
stiffness, particularly at high dimensionless frequencies. In order 1o quantify the effect of interface stiffness on
dynamic response, an investigation was undertaken using the plane strain propagation of shear waves from a pile
shaft, considered in Chapter 6. In this investigation, the soil was separaied from the pile shaft by an elastic
spring. The stiffness of this spring (k;) was non-dimensionalised with respect to the Himiting dynamic shear
stiffness of the soil disk, as indicated by equation (8.1). The model is shown in Figures 8.1(a) and 8.1(b).

.
= 2RIG

K* (8.1).
The complex stiffness of a soil disk subjected to plain strain shear harmonic oscillation was presented by Novak
{1977), and was stated in equation (6.32). In the current model, the soil disc is connected to the pile shaft by a
spring representing an interface element. The flexibility of the combined system may be obtained by adding the
complex flexibilities of the spring and the soil disc. Since the interface spring has no imaginary component, the
dimensionless flexibility of the system is

Fg3 + 1Fsp = Fu3 +kI—* + 1Fg2 (8.2),

where Fgy and Fg2 represent the dimensionless flexibility of the system, and F;; and F;2 represent the
dimensionless flexibility of the soil disc.

The dimensionless complex system stiffness can be found by inverting the flexibility.

1
Fa1+7%
Ss7 + 1852 = 1 k - 2 8.3)
(Fz1 + E:.:)? + Fy22 (Fz1 + k—*ﬂ +Fzp?

The interface spring stiffness effects both the real and imaginary components of the system stiffness. The
variation of the real and imaginary stiffness parameters with the interface spring stiffness is shown in Figures
8.2(a) and (b) for dimensionless frequencies from 0 to 10, Although having little effect at very low frequencies,
the interface spring dramatically increases the real stiffness at high dimensionless frequencies, and reduces the
coefficient of imaginary stiffness. This behaviour can be explained when the soil disc is replaced with the shear
transmitting boundary (Figure 8.1(c)). At high frequencies the dashpot representing the radiation damping is
extremely stiff, and so the interface spring responds as if connected to a rigid boundary. A spring connected to a
rigid boundary oscillates in phase with the applied force. This tendency is most evident when the interface
spring stiffness is weak. When the dimensionless interface stiffness is 2 and 5, Figure 8.2(a) shows that, at
high frequencies, the real spring stiffness tends towards the interface spring stiffness, while the imaginary (out of
phase} stiffness tends towards zero.

The dimensionless stiffness of a thin-layer interface element may be easily shown to be related to the thickness
and stiffness of the soil layer by
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where f is the thickness of the layer, R is the radius of the pile, G is the shear modulus of the surrounding soil,
and Gy, is the shear modulus of the interface layer surrounding the pile.

k (8.4)

The variation of &* with #/R is shown in Figure 8.3 for Gy = Gg. A thickness of as little as 0.02R (2 mm for
a 500 mm diameter pile) results in a interface stiffness of approximately 100, which is enough to significantly
affect the response at high dimensionless frequencies. The effect of reducing Gy, is shown in Figure 8.4, and
will be considered later,

8.2.4 Appropriate interface stiffness

Although the addition of a sufficiently stiff interface element does not significantly affect static response, the
study above.shows-that the effect on the dynamic response can be quite dramatic, unless the element is extremely
stiff. An interface element capable of better performance under dynamic conditions can be constructed by
considering the flexibility of the system.

In the following discussion, the soil adjoining the interface will be referred 1o as the far field, Under static
conditions, the interface element will not cause significant error if the combined real flexibility of the far field
and the interface is similar to the real flexibility of the far ficld alone. In other words, when the ratio of the
system flexibility and the far ficld flexibility is approximately unity. This will be the case when the ratio of the
interface flexibility and the far field flexibility is small, and hence the interface stiffness is large. Using Fi7 to
represent the flexibility of the interface, these requirements can be written as

Fsl _ Fz1+Fip _

1 8.5),
Fz1 Fgy ®-5)
Fij
= = 0 (8.6).
F.1 (8.6)

Under dynamic conditions, the ratio of the complex flexibilities of the system and the far field must also be
approximately unity. This cannot be achieved unless the interface flexibility has an imaginary component (F;2).

Fsi +iFsp Fyl+ Fit +iFp2 + Fig) _, @7
Fz1 +iFz2 Fzp +1Fz2 )
Unless the ratio Fj2/F 72 is the same as F;1/F 7, there will be a phase shift in the system flexibility at high
frequencies. If the two ratios are equal, the error in the imaginary flexibility will be the same as the error in the
real flexibility. This error will be small if

it T A (8.8).

Equation (8.8) will be satisfied if the ratio of the imaginary stiffness of the interface element and the imaginary
stiffness of the far field is the same as the corresponding real stiffness ratio, and both ratios are large. The
stiffness and flexibility of the far field can only be found precisely for simple problems, but since the interface
flexibility is always far smaller than the far field flexibility, the flexibility ratios can vary slighily without
effecting the results.

The effect of adding this damping to the interface spring was investigated using the problem discussed above.
To compute the interface damping, the complex stiffness of the far field was approximated by the truncating
shear boundary presented in Chapter 6, and the corresponding dimensionless interface damping equated to the
dimensionless interface stiffness.

* C *

" = ko = (8.9)
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The real and imaginary components of the system stiffness are shown in Figure 8.5(a) and (by. The

improvement over an interface element with only real stiffness is dramatic. For £* greater than 20, there is no
discernible error in the real stiffness, and little error in the imaginary stiffness.

To examine the effect of interface damping on the response, the hammer impact used to examine the propagation
of shear waves in Chapter 6 was applied to the finite element mesh shown in Figure 6.2(b). However, this time
an interface element with k* = 21 was placed between the pile and the soil. This is equivalent to a thin-layer
element with #/R = (.1, Analyses were performed with and without interface damping, and without an interface
element. The calculated pile displacements are shown in Figure 8.6. The results obtained using the interface
element with damping are indistinguishable from those obtained without any interface element, while those
obtained by using the interface element without damping are completely different , especially at small times.

This study leads to the conclusion that thin layer interface elements or joint elements with finite stiffness should
only be used in dynamic analyses when accompanied by sufficient internal damping. The function of this
damping is not to dissipate energy, but to prevent unrealistic reflection from the interface/mesh intersection at
high dimensionless frequencies. :

The interface damping described here can be used with any of the joint os-intesfiCe elements described in the
literature which have finite elastic stiffness. A damping matrix can be formed by factoring the terms of the
elastic stiffness matrix appropriately.

8.2.5 The effect of a weak interface layer

The driving of a pile disturbs the surrounding soil. This disturbance can significantly reduce the soil stiffness in
the immediate vicinity of the pile. Novak and Sheta (1980) have analysed the effect of a zone of soil with
reduced shear stiffness on the dynamic response of the pile. They obtained a theoretical solution for the
frequency dependent complex shear stiffness of this system, representing the weakened soil layer by a spring.
The mass of the thin layer was neglected to prevent reflections from the internal boundary between the regions of
different stiffness. The analytical sohition suggested that the radiation damping of the pile could be substantially
reduced by a surrounding zone of weak soil,

Providing the zone of weakened soil is small in comparison o the pile, the Novak model is well represented by
combining the far field solution for a pile radius of R with a spring of the stiffness shown in Figure 8.4. For
the example presented by Novak and Sheta (1980), in which #R = 0.1 and Gy/G¢ = 0.1, a dimensionless spring
stiffniess of 2.1 provides results which are virtually identical to those published. This suggests that the reduced
radiation damping indicated by this solution is partially due to the neglect of mass in the weakened zone, and the
consequent phase shifi in the response.

To investigate this further, a finite element model including a weakened zone equivalent to the example of
Novak and Sheta (1980) was constructed. Analyses were performed with the weakened zone represented by finite
elements with the same density as the surrounding soil, with the weakened zone represented by a spring, and
with the weakened zone represented by a spring and dashpot in parallel. The results are shown in Figure 8.7,

The finite element solution shows the stress wave bouncing backwards and forwards inside the weakened zone,
reducing in magnitude due to radiation damping. When the mass of the weakened zone is neglected (and the
weakened zone modelled by a spring), the response at short times is quite different from the finite element
response. When the weakened zone is represented by a sprintg and a dashpot, the initial slope is identical to the
initial slope of the finite clement response, but the wave reflection in the weakened layer is eliminated. The
response of the damped weakened zone appears to be a smoothed version of the finite element solution.

Since the soil surrounding the pile must have mass, but the change in stiffness is unlikely to be sharp enough
to cause the wave reflection computed with finite elements, the actual response of the soil is probably best
represented by the damped weakened zone model. The reduction in radiation damping caused by a weakened zone
is therefore more likely to be represented by Figure 8.5(b) than 8.2(b), and is probably less dramatic than would
be anticipated from the work of Novak and Sheta (1980).

8.2.6 Soil/pile interface modelling

In a Von Mises soil, the soil and the pile shaft should be separated with continuously distributed rigid plastic
sliders. In a numerical model, discrete rigid/plastic sliders can be used to separate the pile model from the soil
model at discrete points. To allow solution by the initial stress method, these simple two-node interface
elements must have finite stiffness. As discussed above, this stiffness should have both real and imaginary
components. The simplest possible element therefore consists of a spring and dashpot in parallel, connected in
series with rigid/plastic sHder, as shown in Figure 8.8,




The complex stiffness of the spring/slider combination should be high enough to prevent distortion of the
solution, but low enough to permit reasonable convergence when the slider action is calculated by the initial
stress method. Since slip only occurs in the z direction, the radial degrees of freedom either side of the interface
elerent can be rigidly linked together.

This interface element can be used between the pile and the soil in both the finite element model and the one-
dimensional model. However, unless direct calculation of the soil nodal displacements, velocities and
accelerations is required, the stiffness of the interface element can be ignored in the one-dimensional model, and
the excess body force applied only at the pile node, as shown in Figure 8.9. Since the elastic stiffness defined
by the soil model is much smaller than the interface stiffness, convergence of the Newton-Rhapson iteration is
then considerably quicker.

When rigid/plastic sliders are used in a time-stepping integration scheme, the commencement and cessation of
sliding are possible sources of error. Sliding usually commences within a time-step. At the beginning of the
time-step the slider force is less than the yield force, and at the end of the time-step the force is greater than the
yield force. 'When initial stress itération is used, the force at the end of the time-siep is always limited by the
yield force, and the commencement of sliding taken info account implicitly. However, when the interface
possesses both stiffness and damping, the-separation time and the relative velocity of the two nodes at the
separation time are needed to determine when sliding action ceases.

A plastic slider will close when the sliding velocity decreases to zer0. If the interface has no damping, the
sliding velocity is equal to the relative velocity of the two nodes, since there will be no change in spring
deformation while the force is held constant. However, if the interface possesses both stiffness and damping, the
slider velocity will be affected by the internal response of the element. Referring to Figure 8.8, the equation of
motion for the internal spring and dashpot can be solved to find the slider velocity (5). At any time after
sliding commences, the slider velocity is determined by the equation

LIT
g = (20 - a1ty - @(s) - 1(ts) e (8.10),

where f¢ is the time at which sliding commenced, 47 and ¢; are the interface stiffness and damping, and &7 and 2
are the nodal velocities. When the constant-average-acceleration method is used to perform the time integration,
a close approximation to the separation time can be obtained from the nodal velocities and the slider force at the
end of the time-step in which the yield force was exceeded, and the average nodal accelerations within the time-
step.

. ki(io(te)itp (1)) \ (Rila(tg)-0p(ts))Y2-2kia (f(12)-Fy) (8.11)

s = kia
The time at the end of the step is represented by 2, the force is the slider is represented by f, the yield force is
fy, and the average relative acceleration of the nodes is

a = Lyp (up(ey) - dip(ty) + sia(1) - p(12)) (8.12).

The sign of the square root term is selected to ensure that the scparation time falls between £7 and 2. Once this
time has been determined, the relative velocity of the nodes at separation is simply

u(tg) - auj(is) = 2(ts) - djlts) + a (12 - tg) (8.13).

These equations allow the time at which sliding should cease to be determined accurately, However, this time is
also usually inside a time-step. Unless an adjustment is made, the slider could be removed too early or too late.
If the slider is not removed at the correct time, the velocity of the slider is not zero, and a smali equilibrium error
is introduced when the velocitly is set to zero. This error can be reduced considerably by decreasing the slider
force over the time-step so that the slider velocity becomes zero at the end of the time-step. This can be
achieved by iteratively satisfying the equation

fr2) = fy - Mo Guslip) + (i) - kg k At - Gigig) - ip(t2) + 11(12)) ¢ (3.13).
Unless the above adjustments are impiemented, accurate results can only be obtained when the integration ime-

step is considerably smaller than that necessary to solve the clastic problem. When the adjustments are used,
accurate results can be obtained with the same time-step.
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8.2.,7 Comparing the models

To compare the inelastic response of the simplified shaft model and the finite element model, the semi-infinite
pile used to compare the elastic response was employed (Figure 6.25). Interface elements were placed between
the pile shaft and the surrounding soil in both models. The dimensionless stiffness and damping of these
elements was 20, and the shear strength (fy) was 100 kPa.

The calculated displacements at the pile head and at the bottom of the soil layer are shown in Figure 8.10. The
axial force in the pile at the pile head and at the bottom of the soil layer are shown in Figure 8,11, The results
obtained from the simplified model are virtually identical to those obtained from the finite element model. Since
there is no significant interaction between the soil layers when soil inelasticity is included, the vertical
dimension of the soil elements surrounding the shaft need only be sufficiently small to accurately represent the
axial wave in the pile, rather than small enough to represent vertical waves in the soil.

8.3 Toe penmetration . . .
8.3.1 Finite element modelling

The effect of soil inelasticity on the wavelling waves under a circular rigid footing was investigated by applying
the hammer impact force shown in Figure 8.12(a) to the finite ¢lement model shown in Figure 8.12(b). This
hammer impact has a longer rise time than that used to investigate elastic wave propagation at the beginning of
Chapter 7, and so the travelling waves are less sharp, and a coarser element mesh can be used.

Figure 8.13 shows the generalised stress in the soil at 2 ms intervals. Soil inelasticity Iimits the generalised
shear stress to 1 MPa. The wave velocity indicates that the major part of the plastic behaviour is associated
with the shear wave, The final plot in the series shows the residual soil smesses after all dynamic action has
ceased.

8.3.2 The effect of pile embedment

Section 7.11 showed that the elastic response of the soil at the pile toe could be separated from the response of
the soil along the shaft, and treated as a rigid footing on a half-space. However, inelastic penetration of the pile
toe requires the formation of a plastic mechanism in the soil, while goil inelasticity along the shaft is confined
to the pile/soil interface. Soil above the pile toe will therefore affect the failure mechanism, as indicated in
Figure 8.14(a). In practice, the siatic failure load of an embedded circular footing in an undrained soil is ofien
taken to be 9 5, while the failure load of surface footing is often taken to be 6 5y, .

The effect of embedment on the dynamic inelastic behaviour was investigated by comparing the response of a
surface footing to the response of footings embedded by 2R and 4R. A dashpot was used to account for
reflection of the wave back up the pile, and twice the impact Ioad applied to the footing, as described in Section
7.12, The finite element models are presented in Figure 8.14(b). Anticipating that the inelastic footing
respense would be a function of the static failure load, the shear strength for the soil containing the embedded
footings was taken as 330 kPa, while the shear strength for the soil under the surface footing was taken as 500
kPa, giving all footings static failure loads of approximately 2.15 MN,

The response of each footing {0 static loading was computed, and is shown in Figure 8.15. The behaviour of
the two embedded footings was similar, especially at loads near the failure load. The failure load of the surface
footing (on the stronger soil) was close to that of the embedded footings. The static failure load indicated by the
finite element meshes is slightly larger than the assumed failure load of 2,15 MN, as expected.

The hammer impact shown in Figure 8.12(a) was then applied to all three meshes. The displacements of the
embedded footings and the surface footing are shown in Figure 8.16(a), while the forces exerted on the footings
are shown in Figure 8.16{v). Up 1o the time that the maximuom displacement is aftained, there is very little
difference between the responses, supporting the proposition that the dynamic response is mainly a function of
the static footing failure load. The difference between the footing embedded by 2R and that embedded by 4R is
negligible,

The force exerted on the footing by the soil mass initially increases above the static failure load, but then falls
below this failure load, although plastic sotl deformation is still occurring. The reduction of the base force
below the static failure Ioad during inelastic penetration can be partly attributed to the effect of the dilation wave.
Studies presented in the previous chapters indicated that as a dilation wave travels, a region of tensile stress
develops behind the wave. This tensile stress effectively pulls the near field in the direction of the travelling
dilation wave for a short period of time. In the case of the wave propagating from the pile toe, the tensile region
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behind the travelling wave reduces the stresses in the soil beneath the pile, and hence the force exerted on the
pile. The confining siress surrounding the plastic zone is also reduced, and so the vertical load required to
produce plastic penetration is reduced.

The force on the surface footing is slightly larger than the force on the embedded footings during the later stages
of plastic penetration. Consequently, when plastic behaviour ceases, the rebound of the surface footing is
slightly greater.

The larger force on the surface footing supports the proposition that the dilation wave reduces both the footing
force and the vertical load to produce penetration. Since the yield stress of the soil under the surface footing was
larger than the yield stress of the soil swrounding the embedded footings, and the stress reduction caused by the
dilation wave is not significantly affected by the embedment, the stress reduction is relatively larger for the
embedded footings.

8.3.2 One-dimensional modelling

The base model originally used by Smith (1960} to model the inelastic base response is similar to that shown in

Figure 8,17(a). Simons and Randolph (1985) used Lymer's analogue (L.ysmer and Richart, 1969) to provide
values for the spring and dashpot constanfs based on the fundamental soil properties of shear modulus and
density. They identified the slip load of the plastic slider with the ultimate static failure load. Nguyen et al
(1988) used a similar model, but relocated the position of the plastic slider to that shown in Figure 8.17(b).
They used the same stiffness and damping values as Simons and Randolph.

A more complex model of inelastic footing response was proposed by Holeyman (1985). This maodel replaces
the hatf-space beneath the footing with an equivalent conic solid. The cone angle is computed to ensure that the
elastic response of the cone is virtually identical to the response of Lysmer's analogue. The cone is muncated
with Lysmer's analogue for a footing of equal radins to the cone base. The eguivalent solid is divided into one-
dimensional elements of varying cross-section, as shown in Figure 8,18, The stress-strain relationship for each
of these axial elements is approximated by a hyperbolic curve (Holeyman, 1988).

In Chapter 7, a new model for the elastic response of a rigid circular footing was developed. This model
provided significantly better agreement with finite element results than Lysmer's analogue, The model will now
be medified to include the effect of soil inelasticity. Following from the lead of the Smith models described
above, a plastic slider with a slip load equal to the static failure load will be introduced.

There are three possible locations at which this slider could be introduced. These are marked A, B and C on
Figure 8.19(a). Placing a slider at location A will limit the force exerted on the footing to the static failure load.
The finite element results presented in Figure 8.16 indicate that the force rises significantly higher than the static
failure foad, so this location will not be used. Preliminary results published by Deeks and Randolph (1991)
indicated that placing the slider in position C would result in an under estimation of the inelastic deformation.

Placing the slider at position B can be justified by the above observations regarding the propagation of stress
waves within the half-space. The dilation wave rapidly travels away from the footing in the vertical direction.
Although the dilation wave may cause soil plasticity, the time period during which inelastic displacement occurs
is small. The amount of permanent displacement assoctated with the dilation wave is therefore also small, The
plastic slider should not, therefore, be placed in series with the auxiliary mass and dashpot, as these are identified
with the dilation wave. The standard spring and dashpot largely represent the response to the shear wave, which
causes most of the plastic deformation. Once a plastic mechanism is formed, the force exerted on the footing
can only increase if soil viscosity effects are included. These effects have been neglected in the work reported in
this thesis. Since the force on the footing cannot be increased by radiation damping after a plastic mechanism
has formed, the slider should be in series with both the spring and the dashpot. The slider should therefore be
positioned at B, as shown in Figure 8.19(b).

As was noted above, the tensile stress region following the dilation wave reduces both the stress on the footing
and the stress required to produce plastic deformation. The auxiliary mass and dashpot in the model account for
the reduction of footing stress. Once the velocity of the auxiliary mass is larger than the footing velocity, the
auxiliary dashpot exerts a tension on the footing. However, a method for modelling the reduction in the stress
required to cause plastic deformation is not immediately evident. The reduction must be related to the tension
caused by the dilation wave. The effect of reducing the plastic slider slip force in proportion to the tension in
the auxiliary dashpot will be evaluated.

There is no viscosity in the ideal soil currently under consideration, However, in real soils the effect of soil

viscosity on the dynamic faiture could be modelled by placing an extra dashpot in series with the plastic shder,
as also shown in Figure 8.19(b).
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The new model will give comect static response {as will the other simplified models) and, compared with the
other models, will give superior elastic response to transient loads. In the following sections, the ability of the
new model 10 model the dynamic inelastic response will be investigated.

8.3.3 Comparison of methods

In Chapter 7, the elastic response of each of the moedels to a pulse of general shape was evaluated by examining
the frequency dependent complex flexibility and stiffress, and comparing them with those obtained by accurate
analysis. Since a pulse of arbitrary shape can be modelled as a combination of harmonics, and the system is
linear, the general accuracy of the models was established. However, when inelastic soil behaviour is involved,
the system is non-linear, and such a general measurement of accuracy cannot be obtained.

Since the accuracy of the elastic response of each model has already been evaluated, the additional factors which
could affect the inelastic response are the ratio of maximum footing load to static failure load, the ratio of soil
shear strength to soil shear modulus, and the pile impedance. The pile impedance can be non-dimensionalised by
dividing by.the radiation damping constant. ‘The effect of each-of these factors was examined by- analysing a
variety of problems. The finite element miesh and each combination of hammer, soil, and p1ie properties are
shown in Figure 8.20. e

All the arrangements were analysed using the finite element method, and using the simplified models described
above. The new model with a plastic slider force equal.to the static failure load will be denoted as new model 1,
while the same model with the plastic slider force reduced by the tension in the auxiliary dashpot will be denoted
as new model 2.

The footing displacements for arrangement A in Figure 8.20 are presented in Figure 8.21(a), and the forces in
Figure 8.21(b). The new models show the footing force exceeding the static failure load, and subsequent plastic
action occurs at a force less than the static failure load. This behaviour is evident in the finite clement results,
but not in the other simplified models. The maximum force predicted by the Smith model (1) is considerably
higher than the finite element force, while the displacement is significantly lower. The results of the Holeyman
model and the modified Smith model are in close agreement, but neither show the variation in footing force
predicted by the finite element analysis. The modified new model, in which the plastic slider slip load is reduced
by the tension in the auxiliary dashpot shows better agreement with the finite clement results than the standard
new model.

The effect of the ratio of maximum force to static failure load was examined by analysing the same problem
with twice the hammer load (arrangement B in Figure 8.20). The forces and displacements calculated with the
different models are shown in Figure 8.22. The differences between the models noted above are still evident.
The finite element resulis fit hetween the new model and the modified new model, although the models slightly
underestimate the peak force. This analysis indicates that, providing the maximum hammer force is
significantly higher than the static failure load, the model responses are not significantly affected by this ratio.
During pile driving, the hammer forces in the pile are usually significantly higher than the static failure load of
the pile base.

Deeks and Randolph (1991) have shown that, when the ratio of applied force and static failure load is close to
unity, the Holeyman model predicts the finite element displacements better than the other models. This is
because the hyperbolic stress-strain relationship used in Holeyman's model permits inelastic deformation to
occur before the static failure load is reached. Such deformation is not permitted by any of the other models.
However, in practical pile driving problems most inelastic deformation takes place after the static failure load is
exceeded.

The effect of pile impedance was examined by considering two extremes. Firstly, the influence of the pile was
disregarded entirely, and the hammer load was applied directly to the footing (arrangement C in Figure 8.20).
This represents a pile impedance of zero. The footing was given a mass of 8000 kg (equivalent to the anvil
mass) to prevent unrealistic acceleration under the prescribed impact load. Secondly, a pile impedance of 10
MNs/m was used, representing the upper end of practical pile impedances (arrangement D in Figure 8.20). The
results from the arrangement C are shown in Figure 8.23, and from arrangement D in Figure 8,24,

When no pile impedance is used, all the models except the original Smith model yield results which are similar
o the finite element model. However, the rasults of the new model are significantly closer than the other
models. When the pile impedance is 10 MNs/m, the same differences between the models and the finite element
results are still evident, showing that the models account quite well for the pile impedance. The finite element
results fall between the results of the new model and the modified new moedel.




The effect of the soil strength/stiffness ratio was examined by increasing the soil strength by a factor of three
(arrangement E in Figure 8.20). The hammer force was doubled to ensure sufficient inelastic penentration. The
computed displacements and force arc shown in Figure 8.25. The effect of the soil/strength ratio can be seen by
contrasting these results with those shown in Figure 8.22, which were obtained for the same hammer blow and a
static failure load of 2,15 MN. The effectiveness of the models is not affected. The modified new model best
represenis the finite element resnlts.

The effect of a sharper hammer blow was investigated by using the original footing and soil strength and
increasing the cushion stiffness to halve the rise time of the hammer force (arrangement F in Figure 8.20). The
resulting displacements and forces are shown in Figure 8.26. Again, the same differences between the models
can be observed. While slightly underestimating the peak force, the modified new model best fits the finite
element results,

The foregoing investigations have shown that the new models are significantly better than existing base models,
yielding results which are in close agreement with results obtained from accurate finite element analysis, This
agreement has been shown to extend over a broad range of problems. The differences between the new model and
the modified new model were only apparent at large times, and the forces computed from the finite element
models were often found to fall between the forces computed - with the two new models. Consequently, although
the results of the modified new model were generally better, the'simpler new model can be used with only slight
reduction in accuracy.

8.4 Overall pile response

The foregoing analyses have established the accuracy of the simplified shaft model and the new base models.
The effect of combining the shaft and base models will now be examined, and compared with a complete finite
element model.

Due to computer capacity limitations, the short pile shown in Figure 8.27(a) was analysed. The response was
computed using the finite element mesh of Figure 8.27(b) and the simplified model shown in Figure 8.27(c).
Both of the new base models were used.

The results obtained for a single hammer blow are shown in Figure 8.28. The results from the new one-
dimensional models are very close to those computed with the finite element model. The model with the
modified new base (designated as 1D model (b)) gave slightly better results than the model with the standard new
base (1D model (a)). However, both models gave good representation of the significant features of the
displacement and force responses.

8.5 Repeated driving and residual stresses

The abilites of the one-dimensional models to represent residual stresses in the soil and the pile were examined
by subjecting the same pile to three hammer blows, preserving the permanent displacements and residual stresses
between each blow.

The displacements and forces are presented in Figure 8.29. The simple models again gave results which are very
close to the finite element results. The model with the modified new base gave a betier approximation to the
displacement, However, by the third blow the finite element force response was closer to the model with the
standard new base.

The variation of residual axial force along the length of the pile is shown in Figure 8.30 for each blow. Again,
the results from ihe simple models are very close to the finite element resalts. During the first blow, the model
with the modified base predicted the residuat axial force better. However, by the third blow the standard new base
model was superior. The residual soil stresses surrounding the pile after three blows were computed from the
finite element analysis, and are shown in Figure 8.31.

The behaviour of the finite element model falls between the model with the standard new base and the model
with the modified new base. At higher blow counts, the error in the standard base model is reduced. In practical
pile driving problems, the pile is driven from the surface, so residual soil stresses surround the pile at every
hammer blow except the first. Consequently, the simple version of the new bhase model should be adequate in
most applications, and will be used in the comparisons which follow.
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8.6 Comparison with other analyses

This thesis has shown that much care must be taken to ensure that finite element analysis of pile driving yields
accurate results. Some analyses presented in the past have not taken this care. As an illustration, the problem
presented by Simons (1985) was re-analysed using a finite element mesh of appropriate fineness, and using the
new one-dimensional model. The pile, hammer, and soil parameters are shown in Figure 8.32(a), and the mesh
used in the present analysis is shown in Figure 8.32(b). The finite element mesh used by Simons was shown in
Figure 2.6. The work reported above has shown that the shear transmitting boundary together with a plastic
slider represents the effect of soil along the pile shaft extremely well, so this boundary was used along the pile
shaft to reduce the size of the finite element mesh,

The displacement at the pile head computed by the different methods are shown in Figure 8.34. Simon's finite
element regults are far worse than those he obtained with a simplified one-dimensional analysis, The difference
between the new one-dimensional model and the current finite element analysis is small,

The prdblem"néé'd by Chow (19813 was also analysed. The pile is shown in Figure 8.34(a), and the finite

element mesh in Figure 8.34(b). Chow's mesh was shown in Figure 2.4, The results are shown in Figure

8.35. The new one-dimensional model and the current finite element analysis are in close agreement, but the
only similarity with Chow's results is the permanent displacement,

8.7 Conclusions

This chapter examined the effect of inelastic s0il behaviour on pile driving dynamics. Slip between the pile
shaft and the surrounding soil was modelled by using interface elements with complex stiffness, ag interface
elements with only in-phase stiffness were found to interfere with the elastic response of the systemi. The
differences between a finite element model of the shaft response and a one-dimensional model with the shear
ransmitting boundary separated from the pile by plastic sliders were found to be negligible.

The effects of inelasticity on the stress waves emanating from a rigid footing were examined by finite element
analysis. Existing simplified base models were reviewed, and two alternative models were formed by modifying
the new elastic base model to include soil plasticity. The base models were compared with finite element results
for a range of pile driving problems, and the new models were shown to be more accurate than the other models.
The accuracy of the new models was shown to be insensitive to pile embedment, applied force to static failure
load ratio, soil strength ratio, pile impedance, and force rise time.

A complete pile/soil problem was then analysed, using a finite clement model and new one-dimensional models.
The new models consisted of a one-dimensional pile with the shear transmitting boundary separated from the
shaft by plastic sliders, and the new base models. The new models were shown to agree well with the finite
element analysis. During repeated blows, the model incorporating the standard version of the new base model
was found to perform slightly better than the model with the modified version, justifying the adoption of the
simpler version.

Two pile driving problems available in the literature were analysed, and the new simplified model was shown to
give closer agreement with accurate finite element analysis than the published finite element solutions.
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9. SUMMARY AND CONCLUSION

9.1 Synopsis

Dynamic soil-pile interaction models used in practical field applications must be ‘correct’ for ideal conditions,
otherwise no faith can be placed in soil parameters deduced from such models. Conversely, without models
based on measurable soil parameters, predictive dynamic pile analysis must rely on empirical soil-pile
interaction models. In a contribution to the development of a model based on fundamental soil parameters, this
thesis has presented a detailed study of dynamic soil-pile interaction in a simple (ideal) soil. The study proceeded
in a methodical manner through hammer impact, stress wave propagation in the pile, elastic shear wave radiation
from the shaft, elastic wave radiation from the toe, the effect of soil inelasticity on the wave radiation, and
finally the analysis of the complete pile-soil system. In the process, a simplified model was developed which
represents the behaviour of the ideal system exiremely well, laying the basis for simplified models that may be
calibrated in-fumre work for field application.

This chapter presents a summary of the contents of the thesis, including the major findings and conclusions.
The summary is followed by a section identifying areas in which further work could be performed, and
concluding remarks.

9.2 Summary

Following a literature review, an analytical study of some simple drop hammer models was performed. The
equations of motion of the hammers were written in a new dimensionless form, and the force exerted on the pile
solved analytically for each model. Two of these analytical solutions are new. Comparisons with field data
were presented, demonstrating the ability of the new solutions to represent real hammers. Unlike numerical
models of the pile hammer system, the analytical solutions allow parametric studies of hammers performance to
be carried out quickly and easily. Studies of ram s¢paration, transmitted energy, and maximum transmitted force
were presented to fllustrate this ability.

The propagation of axial stress waves within a pile was then studied using the finite element method. The
major conclusions from this study were that a continuous impulse function should be used to represent the
hammer impact, and that the node spacing be small enough for the finite element mesh to adequately represent
the sharply rising wave-front. Unless these conditions were maintained, the travelling stress wave was found to
give rige to spurious high frequency oscillation. A study of time integration schemes concluded that the
Newmark constant-average acceleration method most faithfully represented the response of the discrete finite
element mesh. Errors introduced by ignoring the effects of radial inertia were found to be quite small, and an
adequate representation of the pile behaviour was achieved by ignoring radial inertia and assuming plane sections
remained plane.

The radiation of elastic shear and dilation waves from the pile shaft was then studied. The deformation of the
soil along the shaft was found to be essentially plane strain, as the axial wave velocity in the pile was much
higher than cither the shear wave velocity or the dilation wave velocity in the soil. An investigation of the
propagating axisymmetric plane strain waves revealed that both the shear and dilation waves sharpen as they
propagate away from the pile. Consequently, increasing the size of the finite elements away from the pile was
found to cause significant erroneous reflection.

Truncation of the finite element meshes with a standard viscous boundary was found to lead to rigid body
motion. A new derivation of a transmilting boundary for transient axisymmetric plane strain shear waves was
presented. This boundary consists of a spring and a dashpot. The boundary was shown to give excellent
agreement with an extended finite element mesh, even when applied directly to the pile shaft. A similar
boundary was derived for axisymmetric plane strain dilation waves. A new equivalent mechanical model for this
boundary was also derived. Again, the boundary was shown to give good agreement with a finite element mesh,
even when applied directly to the pile shaft.

Little interaction between the soil adjacent to the pile shaft and the soil beneath the pile toe was found, so the

radiation of waves from the pile toe was initially examined by considering the response of a rigid circular footing

on a semi-infinite half-space. The stress waves emanating from a rigid footing subject to hammer impact were

examined. The dilation wave was found to propagate downwards, with little geomelric attenuation of horizontal

gispersion. The shear wave was found to form a reasonably uniform stress hemisphere propagating from the
ooting.
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The response of a rigid footing to harmonic loads was examined, and a new technique for computing the
frequency dependent complex stiffness and flexibility from one finite element analysis was proposed. In this
technique, a multi-frequency transient load is applied to the footing, and the displacement computed at discrete
time infervals until the footing returns to rest. Fourier series representing both the applied force and the
computed displacement are formed, and the complex flexibility is calcnlated for each discrete frequency in the
series. The technique was shown to provide answers which agreed well with analytical and published solutions.

Simplified mechanical models of dynamic footing response were considered. An improved model was
constructed by matching the complex stiffness of the footing model with the complex stiffness computed by
finite element analyses for a variety of Poisson's ratios over a large range of dimensionless frequencies. When
subjected to impact loads, the new model was found to give closer agreement with finite element resplts than
existing models,

The elastic response of an embedded rigid pile was found to be adequately modelled by combining the new base
model with an appropriate length of shaft transmitting boundary, indicating that little interaction occurs between
the soil surrounding the shaft and.the soil beneath the pile toe. A simplified model consisting of a one- -
dimensional pile, the shear boundary applied atong the pile shaft, and the new base model was found to represent
the elastic behaviour of a complete finite element model extremely well. o

The effect of soil inelasticity was then examined. Slip between the pile shaft and the surrounding soil was
modelled using interface elements. Interface elements with only in phase stiffness were found to interfere with
the response of the elastic system. A new interface element with complex stiffness was proposed. This
mterface element was shown to considerably reduce the distortion of the elastic solution.

The response of a finite element shaft model with interface elements between the pile and the soil was shown to
be well represented by a one-dimensional model with the shear transmitting boundary separated from the pile by
plastic sliders.

The elastic model for the soil at the pile base was extended to include inelastic behaviour by the insertion of a
plastic slider with a yield force equal to the static failure load. The new model was found to reproduce the results
of finite clement analyses significantly better than existing models, In particular, the force exerted on the pile
was found to initially rise above the static failure load, and then drop below the failure load while plastic
deformation continued. The new model was the only model which reproduced this behaviour. The accuracy of
the new model was found to be insensitive to pile embedment, ratio of applied force to static failure load, soil
strength ratio, pile impedance, and force rise time.

A complete pile/soil problem was analysed using a finite element model. These results were found to be
reproduced extremely well by a simplified model consisting of a one-dimensional pile, the shear transmitting
boundary separated from the shaft by plastic sliders, and the new inelastic base model. Two pile driving
problems from the literature were analysed, and the new model was found to give closer agreement with accurate
finite element analysis than the published solutions.

9.3 Further work

This thesis has shown that a simplified mode! can represent the driving of a closed ended pile in a Von Mises
soil extremely well. However, there are a number of areas in which more work can be done.

An analytical solution for a hammer model with cushion damping was presented in Chapter 3. This cushion
damping could be chosen so that the solution represented field data very well. Research needs to be conducted
into the equivalent cushion damping present in a range of practical hammer systems, so that the solution can be
used to model the hammer in practical problems.

In Chapter 3, the radial motion of the pile wall was found to have only a small effect on the overall pile
response. However, for a thin-walled pile, the radial motion was found to change the shape of the propagating
wave quite significantly. This could affect the reflected force often measured at the pile head during driving, A
full study of the effect of radial pile motion on the stress wave is required. The models developed in this thesis
for shear, dilaticn, and base wave transmission could be used to represent the soil. Full finite element models of
a range of thin-walled piles counld then be studied, and comparisons made with field measurements,

A new method for computing the complex compliance of footings from a finite element analysis was proposed

in Chapter 7. This method could be developed further, as it has the potential to compute the compliance of
footings for which analytical solations are not available.
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In Chapter 8, standard interface elements were found to cause significant distortion of the elastic solution, and an
improved interface element with complex stiffness was proposed which could overcome this problem. The
interface element was only used in a basic two-noded form. The element could be formulated in more general
terms, and applied to & variety of dynamic structure soil interaction problems.

The new base model was shown to reproduce the finite element results extremely well. An experimental study
into inelastic base response could be undertaken to verify the theoretical predictions. The effect of a different soil
type on both the finite ¢lement response and the experimental response could be examined.

A detsiled study correlating the complete pile driving model with a wide range of field data should be performed,
determining whether the new model provides a significant practical improvement over the existing models.

‘The stady reported in this thesis was limited to closed ended piles. Since doubt has been raised regarding the
accuracy of previously published finite element results, a detailed study of the dynamic response of an open-ended
pile should be undertaken. The soil surrounding the pile shaft conld be modelled with the shaft model presented
above, and finite elements used to represent the soil plug and the sojl immediately surrounding the pile toe. The
mesh contd be truncated with the transmitting boundaries described in this thesis,

9.4 Concluding remarks

A detailed study of pile driving dynamics has lead to an improved model of pile-soil interaction which represents
the theoretical behaviour of a pile in an ideal soil extremely well. More complex finite element models can only
achieve greater accuracy than the improved model when great care is exercised. The new model is a promising
alternative to empirical models in current use, and, once calibrated with field data, should find widespread
application.
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APPENDIX A -- SOLUTION OF RAM/CUSHION/ANVIL

The Laplace transform for the anvil velocity in the ram/cushion/anvil model is

ke
*® ma*
Lz =
@ kc* =7 1 1 3
+ tke [+ 1l]ls +—%s4+5
Maq (ma ) g

Naming the coefficients of the cubic denominator

ket 1 1
a="""% al=kc*( ®. T 1): aQ=""%
mg g Mg

equation {3.32) can be written as

* ag

La, =
@ a0+a13+a252+s3
Letting
_aia a ad
=" "2 "

_ Vﬁ 012 agz ap ay as + aﬁ + an a23
B = 27 108 6 4 27

MODEL

(AD).

(A2),

{A3).

(Ad)

(AD),

if B 2is greater than zero, the cubic denominator of equation (A1} has one real root and two imaginary roots.

The inverse transform can be found readily if the following substitutions are made.

1 1
b=2-@pP-@ph
1 1
b2=%+%((a+ﬁ) /3"'(‘1‘)8) /3)

1 1
o= % (@+p' - @-p'3)

This allows the cubic denominator to be factorised, and equation (A1) becomes

Ll:la* = 0
s+ b1) (s + 502 + 02)

which ¢an be expanded to

LL‘ta*= ) 1. s+ b N by - by
a}2+(b2-b1)2 s +by (s+b2)2+co2 (s+b2}2+a)2

Performing the inverse Laplace transform, the anvil velocity can be found.

byt bot” .
aa* = wﬂm—z(e ! - (cos wi + ba-b1 sin a)r*))
@2+(bo-b1) @
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(A7)

(AB)

(A9),

(A10).

(A1])




This solution can be written in a simpler, more convenient form by making

c1=b1,82=b2-bl,¢=atan%,and Fp=;2%::? . (A12),
The anvil velocity and the force on the pile head are then
L *
. -c1t c20 cos (wi* - ¢)
I = g = Fpe (1 e cos ¢ (A13).

The spring force can be found by using the equilibrium equation
fS* = ma* Tia* + fia* (A14).

Differentiating equation (A13), substituting into equation (A14), and simplifying, the spring force can be -
expressed as

s
. 2t cos (ot - 0
fs = Fy (ﬂ - cos 0 (A15),
where
cz (a2 - c1 - c3) - @2 ag (a2-c1)
8 = atan and Fe= 5 ——2% Al6).
( @ (az - 1) ) T @Peen? (A16)

For most combinations of ma* and kc*, B 2is greater than zero, and the solution presented above applies. For a

small range of combinations, ﬁ*z is less than or equal to zero, and a different solution must be used. When this
is the case, the cubic denominator has three real roots, and equation (A1) can be written in the following way.

LoE a)
Lig = (s +b1)(s+ b2) (s + b3) (A17)
=P NEcosg (AI8)
br=F + 20 cos 9’;2" (A19)
= %2 + 2\/—5 cos 9-'-341‘: (A20)
2 3 .
0 = ﬁ‘lg—al (A21)
_ 2a23 -9ay ar+ 27 ag
R = <1 (A22)
9 = acos( R ) (A23)
\/QS

If b1, b2, and b3 are all distinct, equation {A18) becomes

L oE 1 i 1
Lig =ag ((s+b1)(bz-b1)(b3-b1)+(S+b2)(b1-bz)(ba—b2)+(s+b3)(b1-b3)(b2-b3}) (A28
and the solution is given by
*) 5 *
fp* = L;!a* = Fp (C-blz - Ap e—bZI - Bp e_b3£ ) ) - (AZS)
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with

b3-ba ba-by
Fp=—R 4 - B2 04 p o220 _
P = (abi)ba-by)® P T b3b1 ¥ TP T pyobs (A26)

The force in the spring is

b L baft

PR R0 Sl 2 Sl O -

s Br-b)B3bD) * 61-bDBabD) T 0153 Bab3)
or

* # ®

£ = Fy (e'bl‘ _Ag e 02 -Bse‘b3‘) o (A28)

with
ap (aa-b1) az-b2 b3-b2 az-b3 ba-by
Fo=77"FT"—"—, Ag = =——=—=—=,and By = . AZ9),
S = Grbba-b) 5 T apby b3by ™ B T arby by (429

However, if two of the roots are the same, the solution is different again. When S is zero and b3 is equal to by,
and the solution becomes

& %
Bt =gt = et (1 ~e 2 (14bo 4 )) (A30)
f* f*
f = Feect (1 -e 2 (14 bgAgt *)) (A3D)
Fp=c;%,F5=mi222,As=1-ma*bg (A32).
a
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APPENDIX B .- SOLUTION OF DAMPED CUSHION MODEL

The Laplace transform of the anvil velocity for the damped cushion model is

kY *
¢ k
m C
La, = i £ B

k & *
e+ [kc*( 1*+1)+ cc*]s + (cc*(%-a-l “"1—*)32 + 53
Mg Hlg g Mg Mg

Naming the coefficients of the cubic denominator as before

kot 1 o 1 1

‘10:'6_*’ a1=kc*(“_*+ 1)‘* c*: 32=CC*( = T 1)"‘ * (B2)
Mg Mg Mg ma mMa

and introducing
* *

c k

co=—C%, ba="5% ®B3),
Me Ce

equation (B1) can be written as

co s+ b
ag+ay s +az2 s+ ¢§

Introducing the substimtions specified in equations (A2) to (A8), the denominator may be factorised as follows,
providing 3 2is greater than zero.

L ﬁa* _ co (s + ba) ®5)
(s + b1) ({s + b2)2 + wz)
This can be expanded to
Lk _ _colbab) (1 s+ by bp*+0%+b1bs-baby-baby @6
a = - - .
P +brb1)? (501 (5452402 (bgeby)((s+br)24a)
Performing the inverse Laplace transform, the anvil velocity can be found,
* *
«  colbaby) [ -bit  -bat « babi+baby-b1ba-by2-w2 |
Ug == o Fle -e cos @t + sin ot
% T @24 (bp-br)2 @ (bg-by) ' &7
This sclution can be written in a simpler form by making
E.‘]_=b C2=b 'b 54:b4'b ¢=amwz andF:***@C—d' (BS)
1 2 2 1 kl 1 k] m C4 ) p w2+C22 .
The equation for the pile head force and velocity is then in the same form as equation (A15).
# * -1t -c2” ¢os wt* -
AT P (o ®9).
The spring force can be found by applying equation {A14),
" '(Ci+02)5* 621* cos fwt*—ﬁz
f.S' = F.S' [+ < - AS cos O {B].O)
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where

1
€0 4 (‘“‘?E- j 1*-b2+'ya) —I—,;- @ - vha
Fe= Ma A gL 8 = atan Mg
5 &)2 + 622 PR 1 ] - (Bl].)
=-b1 F-ba+t Y@
Hig Ma
and
{c4-c2)cy -
Y = tan ¢ = T (B12),

When f§ 2 5 Tess than or equal to zero, the denominator again has three real roots. Equations (A13) to (A24) .
define parameters b1, b, and b3,

If b1, b7, and by are distinct, equation (B1) becomes

) (ba-b1) (b4-b2) {(ba-b3)
L * = + + 13
“a = ((S+b1)(bz-b1)(b3-b1) (+h2)br-02) B35 (s+b3)(b1—b3)(b2-b3)) ®)
and the solution is given by
*® E3 *
fr =tg = Fp (e‘b” -Ap o - Bp e 03! ) _ (B14)
cQ (ba-) bs-b2 b3-b1 ba-b3 br-b)
eAE L g = S 2t and Bp = 15).
P= b 1)b3-bD)* AP bab1 babz ™™ PP 41 203 B
The force in the spring is
* *# Ed ’
i = s (21 a2 g ete) (B16)
with
1 _
co( .- bl)(bd:bl)
J
g (bo-b1)b3-b1)  °
ml""b2 ba-by by-b1 ﬁ"'b‘q’ ba-b3 by-bi
g 4 - _ g - -
Ap =1 babt bybp M BPT T byby byks ®L7).
- b1 w-b1
Mg Mg
The solution for the case when J is zero and bs is equal to by follows.
* * -C t* -C t* *®
f =g = Fpet (1-e2 (1+ 7t )) (B18)
% -C t* =C t* *
fo& = Fsecl (1-e2 (AS+yBSt )) (B19)
1 I
cne Qe F—b2+ i _av:z__;l:-b2 {c4-c2)C
2 €2 %- b1 —= - b
Mg Mg
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Fig 4.3. Example of finite element discretisation with corresponding shape functions.
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Fig 4.5(b). Graphical illustration of the modified Newton-Rhapson iteration method.
Fig 4.4. Yield surface for von Mises plasticity.
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Fig 5.4. Axial force 19 ms after impact, 2 node lumped mass elements, hammer/pile impact,
Fig 5.2. Pile and hammer properties. :
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Fig 5.33. 3 ms after impact by different methods, dt = 25e-6, harnmer/anvil impact. Fig 5.35. Toe force vs time by different methods, dt = 25¢-6, hammer/anvil impact.
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Fig 5.34. 19 ms after impact by different methods, dt = 25¢-6, hammer/anvil impact, Fig. 5.36. Head displacement vs time by different methods, dt=25e-6, hammer/anvil impact.
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Fig 5.38. 19 ms after impact with various time steps, hammer/anvil impact.
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Fig 7.3. The relationship between the surface plots and the finite element mesh.
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