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| TECHNICAL NOTE
NUMERICAL APPROXIMATIONS IN PILE-DRIVING ANALYSIS

R. O. DAVIS
Department of Civil Engineering, University of Canterbury, Chrisichurch, New Zealand
‘ AND ' :
P. J. PHELAN

New Zealand Railways Deparinient, Wellingtor, Iew Zeuirdd

SUMMARY

A finite-difference scheme widely used in analysis of pile driving is examined. the schieme is shown to
yield peculiar results in simple symmetric impact problems and to inherently possess an imprecisg
definition of energy balance. A modified difference scheme is suggested and comparisons of the two
methods are shown.

INTRODUCTION

The use of wave mechanics to analyse the response of pile-soil systems has gained widespread
acceptance in recent years. A one-dimensional idealized wave front, generated by impact of a
pile hammer, is traced as it propagates down the pile, eventually refiecting from the pile tip.

" Soil resistance is modelled both through side friction along the length of the pile and at the tip.

The approach is not only a more realistic approximation to thg actual physical phenomena
ocurring in a pile driving, but is considered to possess several additional advantages over
conventional dynamic formulae. Prominent among these advantages are

- 1. the ability to predict whether or not the pile can be driven using the proposed pile-pile

" hammer combination.

2. the ability to estimate the ultimate load capacity of the pile before driving, and

3. the ability to predict the stress magnitude in the pile due to hammer impact.

The first mention of wave mechanics associated with pile driving was evidently due to
Isaacs' in 1931. He gave a lengthy development of the problem including a number of
_assumptions concerning the shape of the wave form and the attenuation of the wave with
distance of propagation. These assumptions were made in order to obtain analytic solutions,
the equations of motion being too complicated for direct solution. Beginning in 1950, the
concept was revived by E. A. L. Smith using numerical methods. Smith constructed a simple

“lumped-parameter discretization of the pile and pile hammer and employed a relatively simple

constitutive relation for the soil resistance. His work is summarized in Reference 2. Smith's
: . . S . . a6
work generated considerabic mrerest und has been the subrect ol several recent reporis.” In

19

74, s method was repraotced i & widely distribuied texibook.” .
Research subsequent to Smith’s work has been direcied toward either validating his

* . concepts through comparisons with actual pile-driving situations or in attempting to improve

constitutive representations of pile hammers, cushions, soil resistance, etc. In all cases, Smith’s
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lumped-parameter analogy, as well as his finite-difference formulation, have been used. Yet a
stmpie examination of his difference scheme raises interesting questions. It 1s well known that,
unlike most numerical approximations, one-dimensional waves in a linearly elastic body may
be exactly represented by a finite-difference approximation. Letting ¢ denote the velocity of
propagation in the material, exact solutions are obtained when the time step of integration, A,
is set equal to Ax/c, Ax being the spatial distance separating adjacent lumped masses. In effect,
the space-time finite difference mesh nodes fall exactly on the characteristic curves of the

_analytic solution, and the exact solution is obtained. Yet, if the soil resistance in Smith’s

scheme 1s set to zero, and the critical time step is employed, the exact solution to a simple
impact problem is not found. Instead, the difference equations yield an oscillating wave form
whose mean value is the exact solution.

[n this paper we suvgest an Alernanve diderence schewe for rhe pile-driving problem. The
alternative ethod s explict o chat gl janiiies 1t anv Hew tiing ~leD depahd iy un vibues

At the preceding tme) and tus 1s 23 eusity progranuied s Simin's scheme: yet it apoears to

“yield smoother and more accurate solutions than Smith’s method, and, in the special case

where At = Ax/c, yields exact solutions to elastic problems.

SMITH'S METHOD

Smith’s difference equations are derived from an intuitive application of the momentum
balance equation to systems of discrete masses separated by linear springs. The pile is broken
into individual lumped masses, m;. Its elasticity is represented by linear spring constants, k;.
The difference equations determine the displacement, u7, velocity, v7, and acceleration, a}, of
each mass. Here, the superscript n denotes the functional value at time nAt while the subscript
j identifies the appropriate mass, m;. Momentum balance of the jth mass is expressed by

1 1 :
o M =v +a]T At (1)
where the mass acceMration is
’ n+1 _ n+1 n+1 n+1 ‘
aj —(F}'—l '—F} “Rj )/m, (2)

b P 1. ¥ : . . .
Here, F/"*" is the force in the spring below the jth mass

Fin-i-l — kj(uin+1 _ ujn++11) V (3)

guantity R;'™" represents the frictional resistance of the soil surrounding the pile. It is
one of several special constitutive relations which depend on the displacements u,-"+1

fv, a Kinematic description of the motion of the jth mass is given by

+1__
uj'" =up+v; At “4)

Given initial conditions on u}* and v}, the displacement u/'*" is calculated from equation (4).
Zouaton 31 isthen used to determine the pile forces. The soil resistance is also calculated at
T siave. Nexo eguaton (2) is used to-find the acceleration, a}““, and finally equation (1)
vieids the new mass velocities, v;'"'. The scheme is explicit, in that all quantities at time
(

r+1YAt depend only on values at time nAr. It can also be shown that the usual numerical

stability condition
m; :
At< \/(——’) )
k;

s}
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applies. This criterion is derived from the Courant condition, At=<Ax/c (for example, se

Reference 8). N

In the special casc where the soil resistance, R, is set o zero, Smith's equations shouid
describe the response of a linearly elastic material in uniaxial deformation. We may further
simplify the equations by making all the discrete masses equal, so that m; =m. and all spring
constants equal, so that k; =k, thus modelling a homogeneous material. A simple illustréticn
of the unusual behaviour of Smith’s scheme is then given by the case of a symmetric impact

between identical materials. Letting the impact occur at the pth mass, the appropriate inital

conditions are

uj=0 forallj (Ae)
qu{ 1 forailj<p 60)
710, forallj=p o

The analytic solution of this problem is well known. A step change in velocity, equal o

" one-half the impact velocity, propagates into the stationary material, while a similar vejocity

decrease propagates back into the imipacting material. For convenience, we set k/m=1-0.
Then using the maximum allowable time step,

s 1o

Smith’s scheme yields results shown in Table I. Only the first four cycles of the integration are
shown in the table, yet it is clear that the impact is propagated as a saw-1ooth wave form, the
mass velocities alternating between 1-0 and 0. the correct mass velocities are shown in

parentheses. %
Table I. Pile element velocities in symmetric impact
Mass number

Time - —

step p—4 p—3 p—2 p—1 p p+1 p+2 p+3
0 1 ()* 1) 1(1) 1 (1) 0O 0 ) 0 (0) 0 (0}

1 1(1) 1(1) 1(1) 0( 1G 0 (0) 0 (0) 0 (0)
2 1(1) 1(1) 0 16 0@ 16 0O 0 (0)
31 o 1@ 0@ 17 0@ 10 00
4 0(3) 13 0@ 1@ 0@ 1G) 0@ 1@

*Correct velocities shown in parentheses.
i mse infereshne napveshivate 1he imnlications of Smith’s formulation on the balance of

energy 1n the miediun, tnthe absence of thetmoovnanne eHects conservation of enerys should
foliow directly from momentum balance. For tie case ol no soil resistance, the increment of

work done on mass m; between times nAf and (r + 1) At is

d‘vin-rl = (17,-"_?——17,-"“)(1,1,-"“ __uln)

Forces may be eliminated from this expression using equations (2) and (1). Displacements are.

eliminated through equation (4). This results in

AW = (] o] ()

e parni,
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fully specifyirig F,-"J'% in terms of quantities known at time n At. Special constitutive relations
for 'Ri"+% which depend on u}”Li may be similarly determined. In essence, equations (1), (2), (3
and (4) are now replaced by equations (9), (10), (16) and (13)-respectively. The stability
criterion (3) applies equally well here,® and, because of the approximation inherent in
equation (15), the modified scheme is explicit. Although equation (16) may appear at first
glance to represent a visco-elastic material, this is not the case. The velocities zppear only to
correctly centre the displacements at time (n+3) At. : o

Energyis exactly conserved by the modified equations. The increment of work gone on mass

" m; during the fime interval A1 is now given by

dw = (F = F =R @ T —u) | a7

Using equations (10) and (13) here yields v
dw; = mal oy +3a) A At (18

Eliminating the accelerations through equation (9) then gives
n+1 )

) o o) - :
dw = m(vf - vf)(—'—-i——’—> (20

which is precisely the change in kinetic energy of the mass ny; during.the time interval.
Setting Rf_+5 =0, m; =m, and k; = k, we may again consider the symmetric impact probier.
As before, we take At = V(m/k)=1-0. Then combining, equations{(9), (10), (13) and (16), the
governing equations become <
(vl-"_l+v,—';1)+u;'_1—2u;1+u,-"+1 X . (21)

n+l __ 1
Vj =3

n+1 1
Uj =7

Using the initial conditions given in equations (6a) and (6b), a simple calculation shows that

. the exact solution is obtained for symmetric impact.

: . COMPARISON OF METHODS

In order to compare the modified scheme with that of Smith, we consider two problems. First,
the simple symmetric impact problem was run with both methods employing values of At
between one-half the critical value and the critical value. Second, both methods were used to
calculate a problem with realistic pile and soil parameters. The first comparison is more
interesting from an analvtic standpoint, since the exact solution is known. The second example
jo sivo afinterest, howewer, as it illusirates the magnitde of discrepancies which may arise in
nnical calcuiations soiciy due 1o ahenng e diiierence wcheme, N .

Velocity profiies jor the symmetric pmpact problem with values of NNV ranging
hetween 0-5 and 1-0 in increments of 0-1 are iliustrated in Figure 1. Smith has recommended”
that a value of 0-5 be used in practical calculations. It is evident from the figure that both
methods yield similar results at this value. As the time step is increased, osciliations in Smith’s
method grow accordingly, culminating in the saw-tooth wave form at Atv(k/m)=1-0. The
modified method yields nearly uniform results at all time step values except 1-0, where the
exact solution is found. It seems clear that the modified method is capable of running at larger
values of Af without sacrificing accuracy, and thus may be more economical for long or

repeated calculations.

* This is not surprising, since both difference schemes represent the same materials with identical geometry.

(u,p—1+u;;1)+3"t(v,fl—1+ZU;‘+U;+1) , (22)

[
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The second example problvgx was run by Phelan.” Both Smith’s and the modified methods
wers used. In both caiculatmn§ exactly the same pile and soil parameter values were :
empioved. The hammer, 7X 107 K8 in mass, was divided into two elements and given a e i
1mess. k. of 14-1x 107 kN/mm. The y1q consisted of eleven elements, each 6-67 X 10° kgin

stiitnes
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mass, with as assuined stitiness of 2-67 % 10> kN/mm. Ten of the eleven _pile elements were ‘
resisted by an ultimate side friction of 800 kN. The soil quake (sce Smith” for a discussinn of
this parameter) was taken as 3-0 mm. A point resistance of 8X 10° kN was apphcd at th= pile’
tip. The hammer impact velocity was taken as 10 m/s, and a time step of 2:5xX 107" s (ea\; to
one-half the critical value) was employed. Velocity wave forms for both methods at n =13 are
shown in Figure 2. Although similar results are found near the wave front, the solutioas show

considerable difference near the head of the pile. Further results from both analyses are shown |

in Table 1I. The modified scheme gives a permanent set 21 per cent less than that obtained by
Smith’s method. The maximum pile force is reduced by nearly 17 per cent.

A

-
N

o= Smith's merhod

o= Modified method

o]

N

Velocity (m/s)
. .
7
s

g 10 it 12

Mass N_umber

Figure 2. Velocity wave forms for typical pile parameters
%

Table I1. Comparison of Smith’s and modified miethods

Smith’s Modified
Quantity ) method method
Maximum force in pile 18x10°kN 15x10° kN
Maximum force in hammer 37x10°kN . 16X 10° kN
Permanent set 10-0 mm 7-9mm
CONCLUSIONS

From the standpoint of the numerical analyst, the modified diflerence scheme presented here
nfiers two atiractive advaniages over Smitk’s method. The first of these is that energy hajance
1 the piie B lormusned in s precise menne;, consistent with the difierence approximanon of
momentun: batance. The second advantane I that the modihed scheine vields betier ap-
proximations for impact problems which have analytic solutions. In essence, the only true test
of accuracy for anv difference approximation is comparison with closed-form solutions. In this
regard, the modified scheme is superior, especially when values of At close 1o the stability limit
are used. In problems involving realistic soil resistance where no analytic solutions are
available, we can only point out that the two methods yield different results. Whether one or
the other is, in fact, closer to reality is not a matter for discussion here. The closeness of
approximation to physically real conditions depends on the degree to _Wthh the fundamental
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C ) mathematical model (i.e. one-dimensional wave propagation) represents the true physical
situation. Once the mathematical representation has been established, the problem of which
numerical approximation to use is purely a matter of (1) convenience of calculation, and (2)
how well the difference scheme compares with available analytic solutions. The modified
scheme involves no more calculations than does Smith’s method, and, for impact problems,
yields results more consistent with closed-form solutions. : T
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