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The use of wave mechanics to analyse the response of pile-soil systems has gained widespread 
acceptance in recent years. A one-dimensional idealized wave front, generated by impdct of a 

- pile hammer, is traced as it propagates down the pile, eventually reflecting from the pile tip. 
Soil resistance is modelled both through side friction along the length of the pile and at the tip. 
The approach is not only a more realistic approxiniation to tk actual physical phenon~ella 
ocurring in a pile driving, but is considered to possess several additional advantages over 

f conventional dynamic formulae. Prominent among these advantages are 
. 1. the ability to predict whether or not the pile can be driven using the proposed pile-pile 

' .-A- 

hammer combination. - > 

2. the ability to estimate the ultimate load capacity of the pile before driving, and 
* -.. 3. the ability to predict the stress magnitude in the pile due to hammer impact. . , 

'6, 
The first mention of wave mechanics associated with pile driving was evidently due to 

. lsaacsl in 1931. H e  gaye a lengthy development of the problem including a number of 
- .  , 

. j : 2  , -  assumptions concerning the shape of the wave form and the attenuation of the wave with 
distance of propagation. These assumptions were made in order to  obtain analytic solutions, 
the equations of motion being too complicated for direct solution. Beginning in 1950, the 
concept was revived by E. A. L. Smith using numerical methods. Smith constructed a simple 
lumped-parameter diqcretizatinn of the pile and pile hammer and employed a relatively simple 
cnnstltuti\~t rela~ion f o r  t h t ~  4011 reslqtanct. HIS work is summarized in Reference 2. Smith'< 

3-4 
- 1  I ; I I ;  I I I i I t I 0 I C ~ I I  r e  In 
l$"j-i. I115 111~1~)oci \ k , t \  I ~ ~ I I O ~ ~ ~ I ~ ~ C O  111 u ~(lel! ~ ~ 1 ~ ~ 1 l l ~ ~ l l ~ ~ d  ~ L A I ~ \ Q O L . '  

Research subsequent to Srnith's wc~l .  has been directed toward elttler validat~ng h15 
concepts through comp;lri\ons with actual pile-ciri~ing situations or in attempting to improve 
constitutive representatio~~s of pile hammers, cushions, soil resistance, etc. In all cases, Smith's 
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SUMMARY 
I a 

A finite-difference scheme widely used in analysis of pile driving IS exarnmed. the scheme is shown to 1 -; yield peculiar results in simple symmetric impact problems and to in he tent!^ posses: sn lnprzcis~ 
definition of energy balance. A modified difference scheme is sugested and comparisons of the two 
methods are shown. 

INTRODUCTION 



9, 

lumped-parameter analogy, as well as his finite-difference forrnubit~on, have been used. Yet a 
'<A' 

sir-r~pie eusrn~ndi~on or hrs tilrFzrer~ce > L ~ ~ z ; I I ~  I ~ L I S ~  ~11terehti11g quebt~o~ls. I t  1s well !<liuwn h i t ,  4;~.i 

unlike most numerical approximations, one-dimensional waves In a linearly elabtic body may 
) +  be exactly represented by a finite-difference approximation. Letting c denote the velocity of 

propngation in the material, exact solutioris :ire obtained when the time step of integration, At, i 

is set equal t o  Ax/c, Ax being the spatial distance separating adjacent lumped masses. In effect, 
the space-time finite d~fference mesh nodes fall exactly on the characteristic curves of the 

' 

analytic solution, and the exact sol~ition is obtained. Yet, if the soil resistance in Smith's 
scheme is set to zero, and the critical time step is employetl, the exact solution to a simple 
impact prvbiem ib not found. Inste.tc1, the d1~1erc~rce equations yield nn oscillarrng wave torm 
who\z mzan value is the ex:~ct solution .t, . f 

1 r i  r h ~ \  :>,toer 'us , t r . r ~ . s \ [  11) Ilrer 1 1 ~ i r : ~ l -  1 i r I r . r r r l c2  ~~tie(11c: : L ) I  thz  p~l<-, l r l~in< prohiern R e  
~ l r e ! : i , ~ [ ~ ~ - ,  f t  I., e ~ a i  L 1 r 1  r h , t r  1 , i s  ~ , I , I ~ I ~ \  I [  ,111v I < I ~  I I I I L  \ I C U  L I L ; ) C I I ~ I  I ) [ I I V  0 1 1  \ I I I I ~ ~  

. I [  [he DIe~eCIl11~ rime, arid tnuh I >  .I> e.i\rlv . ) t o r ~ . i r r ~ ~ i l ~ ~ l  I \  > I I > I [ ~  , ,LL~~:III<.  ye[ ~t \ I ~ U C L I C \  to . I 

yleid srrloother and more accurate S O I U ~ I U T I ~  thdu Smith'; metnod, dnd, In the special case '$.' 
where At = A x / c ,  yields exact solutions to elastic problems. ; .,. 

%> a 
8 b * 

t-* P,,: . , >'6, 

SMITH'S METHOD . I .  
u r  :I t! 

. . 
Smith's difference equations are derived from an intuitive application of the momentum 

.,,*:8;:* 
"I .  

balance equGtion to systems of discrete masses separated by linear springs. The pile is broken . , 

' into individual lumped masses, m,. Its elasticity is represented by linear spring constants, k,. .. -. 
The difference equations determine the displacement, u,", velocity, v,", and acceleration, a,", of . .. ' ", ' 

each mass. Here, the superscript n denotes the functional value at time nAt while the subscript . 

j identifies the appropriate mass, m,. Momentum balance of the jth mass is expressed by * :. ,' 

v;+' = v; +a,"+' At 

where the mass accekration ir 

*;I+' = (F,";~-F,"+' -R," 
, # 

Here, F;" is the force in the spring below the jth mass . , ,  - s, 
I' , 

- Ine  quantity l ~ r C 1  represents the frictional resistance of the soil surrounding the pile. It is 
??\.en by one of several special constitutive relations which depend on the displacements u;+'. 
Fi:!iiily, a iinematic description of the motion of the jth mass is give2 by 

. \ 
u,!'+' = LI," + v," ~t (4) . 

- ri 

P . r ~ ~ ~ r n  inithl concltions on rr: and u,", the displacement LI,"+' is calculated from equation (4). - ..* 
r+:*L 

1 :L~.s::~JI~ '31 ;'i -23 z>e(j to determine che pile forces. ' f i e  soil resii;tance is also ~alculated at t;nT : 
I ?-I >i,l<e. Zit.;:. saudavrl ( 7 )  IS use~i to find the ~cceleratlon, u, , L ~ l ~ t l  finally equatiorl ( I )  : ;;--: 

tl C 1  :?I:% >ie:c;s 15c new mahs velocit~es, U, . The scheme is explrcit, in that all quantities at time ,, c 

!r. - 1) A t  de?z;rd only on vaiues at time nAt .  It can also be shown that the ~ ~ s u a l  numerical 
t :  

;:~:;i;ify cond~tion 
k+< 

r . ?.:. 
?<(,.;: 
, - 
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applies. This criterion is derived from the Courant condition, A t s A x / c  (for example, -:e 
Reference 8). 

In the special case where the soil resistance, R" is set to zero, Smith's equations sh-ui? ". 
describe the response of a linearly elastic material In uniaxial deformation. \Ve m2y fui:her 
simplify the equations by making all the discrete masses equal, so that nr, = m. and all sFnn; 
constants equal, so that k, = k, thus modelling n homogeneous materia!. A s~mple illustrzr!cn 
of the unusual behaviour of Smith's scheme is then given by the case of a symmetric ir;n?&zt . 
between identical materials. Letting the impact occur at the pth mass, the a~propriate  iniri2I 
conditions are 

1 fur ail j < p  
0 for all j 3 p  

Tfje analytic solution of this problem is well known. A step change in seJocityl equa'? to 
one-half the impact velocity, propagates into the stationary material, whiie a simila; veioci:! 
decrease propagates back into the impacting material. For convenience, we set k / m  = 1-C). 
Then using the ~naximum ailowable time step, 

Smith's scheme yieids results shown in Table I. Only the first four cycles of the integration are 
shown in the table, yet it is clear that the impact is propagated as a saw-100th wave form, the 
mass velocities alternating between 1.0 and 0. the correct mass velocities are shown in 
parentheses. 5 

Table I. Pile element velocities in symmetric impact 

Mass number 
Time 
step p-4 p-3 p-2 p-1 P p + l  P +2 p i 3  

0 1 (I)* 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 
1 1 (1) 1 (1) 1 (1) 0 (4) 1 (;) 0 (0) 0 (0) 0 (0) 
2 1 (1 )  l ( 1 )  o(;) I(;) 0 6 )  I($) O ( 0 )  O(0) 
3 I(!) O(4) l(4) O ( f )  l ( f )  O(f) I ($)  O(0) 
4 0 (4) 1 (4) 0 (4) 1 (9 0 (4) 1 (4) 0 ($1 1 ($1 

"Correct velocities shown in parentheses. 

1 
1: i c .  ; 4 t < t .  i r ~ ~ ~ ~ l ~ ' i , ; r l b .  t i ,  i l \ \ , t . < ! i ! 1 ; t l r 2  lht: in.~~!ir;?tic*ri\ nt Srnirh's Iorm\ll;ltion OTI t i l t .  h;jiiinck of 

:I 1 ' .  + ,  

el,cti.!!, I,, ,tic ,,ic.L,,,,,,l, 1,; ;I,:> ; , : + w , I ~ c  0: ~ ~ ~ ( * I I I I o ~ ~ \ , ! I ~ T ~ I I < ~ c ~ ~ ~ < c ~ ~ .  C O I ~ S C : ~ I J ~ ~ J O I )  O; ~ : I I ~ ~ I ? ~ \  S ~ ( \ L J I C ~  . 
1 folio\s. ciirectly irorn rnonlen~llni baia~lce.  For- 111t: c;tsc 01 no soil T ~ S ~ S I B ~ I C Z ,  tile i n c r e m e n ~  of 

work done on mass r n j  het\ve.en times n A t  and  ( r i  + I )  At is 
1 I 

= (~r-:' - F ~ + ~ ) ( ~ Y + '  - i y )  
Forces may be eliminated from this expreqsion using equations (2) and (1). Disrlacements are 
eliminated through equation (4). This results in 

d w,"+' = m,(u;+'-u:)~;  (7) 
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fully spec~fying F;;"+! in term5 of quantities known at time rt At. Special conctrrdtive relation% 
for R,''+~ which depend on n,"+' may be similarly tieterrnlned. In essence, equztiscs (I), (2), (3: 
and (4) are now replaced by equations (9), (lo), (16) and (13)-respective!). The stab~li::, 
criterion (5 )  applies equally well here,* and, because of the approxin?ation inherenr in 

equation (15), the modified scheme is explicit. Although equation (16) may appear at friC 
glance to represent a visco-elastic material, this is not the case. The velocities .?Fear oniy ifi 
correctly centre the diqplacements at time (n +:) At. 

E r ~ e r p  is exact]\) con4erved b ~ .  the rnodlf~ed equations. The increment of work aone on mass 
m, during the rime ~nterval Ar ry  now given by 

d w;+l = (FY-;: -F;+: - ~ ; + f . ) ( ~ ; + l -  u;) (171 

Using equations (10) and (13) here yields 
1 n+f d w,'+' = nz,a,"+J(u;'+Ial At) At 

Eliminating the accelerations through equation (9) then gives 

~rhich is precisely the change in kinetic energy of the mass nz, during the time interval. 
Setting R,"'; = 0, mn, = m, and k, = k, \ye may again consider the symmetric impact probierii. 

As before, we take At = J ( m / k )  = 1-0. Then combining equations (9), (lo), (13) and (le), the 
governing equations become 

n n 
'it 

,I;+1 =$(v,'-] +U;+~)$.U,'L-~U~ +u,+I (21) 

"+' = +u,?+*) +$(a,'-, +2u,"+v;!l) U l  (22) 

Using the initial conditions given in equations (6a) and (6b), a simple calculation shows that 
the exact solution is obtained for symmetric impact. 

COMPARISON O F  METHODS 

In order to compare the modified scheme with that of Smith, we consider two problems. First, 
the simple symmetric impact problem was run with both methods employing values of At 
between one-half the critical value and the critical value. Second, both methods were used to  
calculate a problem with ~ealistic pile and soil parameters. The first comparison is more 
~n fe re s t i n~  from an arlaI\,t~c ';.iilnClpolnt, ';.incr t h e  exact soltrtinn ic known. The secnnd example 
I <  >I<I> c\' ~ ~ i r ~ r r \ :  h ~ ~ u ~ r \ , e i ,  H\ 11 I ~ I I I ~ I T  i.lt(- t l t t  111~ynitl1Cj~ 01 dlhcrepancies which may arise In 
I!*I>IL~I talc \ 1 1 ' + 1 1 o r i '  ~ ( ~ ( C I I  1 j t t t d  1 , )  ~ I ~ ~ . ; I I I \   TI>^ ( ~ I I ~ I : I ~ I \ L . C  t l t * : r ~ :  

Velc>c~~)* prof>~c\ jo1 tiic ~ \ rn l ln(~i l  I C  ljnpict ~ r o t * I ( ~ r n  1~ 11t1 \ ; ~ I L I C \  of Lir \ ' (~, / t r  1 r:tnging 
hetwreen 0.5 and 1.0 in incren~ents of 0 -1  are ~l iustra~ed In I-lgure 1. Smith h:<s recomriiended2 
that a value of 0.5 be used In pract~cal calculations. I t  ic evident from the figi~re that both 
methods yield similar results at this value. As the time step is increased, oscillations in Smith's 
method grow accordingly, cuiminating in the saw-tooth wave form at A t J ( k J m ) =  1.0. The 
modified method yields nearly uniform results at all time step values except 1.0, where the 
exact solution is found. It seems clear that the modified method is capable of running at larger 
values of At without sacrificing accuracy, and thus may be more economical for long or 
repeated calcuIations. 
- 
* This is no, s u ~ r i ~ i n g ,  since borh difTercncr scliecl~es represent the same materials with identical geometry. 
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0 =Modi f ied scheme 

._..Ic 1. ' i e loc~ty  ~ d v e  .Form\ for syn~metnc imp& 
I 

9 -zcond example p r o b l ~ q ~  was run by Phelan. Both Smith's and the modified methods 
s e r e  - 3 4  I n  both c2icul:itlonf exactly the salne pile and soil parameter values were .. 
cmii j?ca.  The hilmmcr. T x  1 0 ' ~ ~ i n  mass, was divided into two elements and given a 1. 

sti:iiski. k .  of 14.1 10' kx/mm.  ( 1 ,  co~isisted of eleven elements, each 6-67 x lo3 kg in 

= 

mass 
reslh 
this 1 
tip. 
one- 
shov 
con. 
in I' 
Srni 



mass, \vith a:: assurned stiffness of  2-67 x ~O%k~/n:m. 'l'en of the eleven pile elemrnrs were 
resisted by an ultimate side friction of 800 kN. Thc soil quake (see smith2 for a discus<ion of 
this parameter) was taker, as 3-0 mm. A point resistarice of 8 x 3 o3 kN urzs app!ied er rb? ?tie' 
tip. The hammer impact velocity was taken as 10 m/s, and a time step of 2:5 X s (eq;ial to 
one-half the critical value) was employed. Velocity wave forms for both methods at K = 13 sre 
shown i11 Figul-e 2. Although similar results are found near the wave front, the solutions show 
considerallle differer~ce near the head of the pile. Further results from both analyses are s5own 
in Table 11. The modified scheme gi\les a perlnanent set 21 per cent less than that obtained hy 

I 
Smith's method. The maxirilunl pile force is reduced by nearly 17 per cent. ! .  

12 - .  - 
a = smrrn s mein05 i 
O =  M o d ~ f i e a  metho2 I 

--j 

j 

1 2 3 4 5 6 7 8 9 10 f 1 12 

i Mass Number 

Figure 2. Velocity wave forms for typical pile parameters 

=@ 

Table 11. Comparison of Smith's and modified methods 

Smith's Modified 
Quantity method method 

Maximum force in pile 18 x lo3 k~ 15 x lo3 kN 
Maximum force in hammer 37 X 10" kN 16 x 10' kN 
Permanent set 10.0 mm 7.9 mm 

I 1 -  CONCLUSIONS 

I From the standpoint of the n~~rnerical analyst, the modified difference scheme presented here 
1 ntithrr t u ~  ~ t t r ~ ~ t i \ ~ i =  irCi\,a~lia!~(:~ CI\<CT Smjrt-.s me thcd .  The first of these i s  that eneiky balance I , .  

1 1 ,  !,;I,. i, t i ~ ~ ~ 1 l ~ ~ ~ ~ ; , 1 y ~  in ;> l ~ ~ l ~ ~ i < t .  ~ J I ; . T I Z I ~ : ; .  ~ ~ o r i ~ ~ , < ~ t - n ~  u , i 1 r 1  ! l b t :  i l i~~-~;vn(*c  a p p ~ o x ~ m : ~ ! I o n  of 
I ~ I O I , I ~ > ~ I I \ I ~ ;  ~ > ; , I ; , ~ ~ C - L .  - l . t , ~  S ~ L . O I I ( ~  ad\,;t~l~:,;!t i: ~ l > : j i  ~ i ~ c  I T I O < ! I ? , K ~  ~ C : I I V I ~ L  ? v ~ t : l c i + ,  l v t ~ t : . ~  all- 

/ proxirniit~ons tor ir11p;icl 1,rot)lenls \\'ilich havc a r ~ a l y ~ i c  solut~ons. In essence, rtle onl!' true I e S i  

I of accuracy tor ally differencr apjlroxirnatio~l is comparison with closed-form solu~ions. In this 
regard, the modified scheme is superior, especially when values of Ar close to the stability limit 
are used. In prohlerus involving realistic $ail i.esistance where no analytic solutions are 
available, \ire can only point out that the two   net hods yield diflerent results. \ n e t h e r  one or 

i the other is, in fact, closer to reality is not. a rnatter for discrission here. 1 3 e  closeness of 
approximation to physically real conditions depends on the degree to which the iundhmental 

t .. 



'? ' 
mathematical nlodel (i.e. one-climensional wave propagation) reprebents the true physical , - 
situation. Once the mathematr~al representation has been established, the problem of which 
numerical approximation to use is purely a matter of ( I )  convenience of calculation, and (2) . ' . 
how well the difierence scheme compa~es with available analytic solutions. The modified 
scheme involves no more calculations than does Smith's method, and, for impact problems, 
yields results more consistent with closed-form solutions. 

I I 
'. i , r '  I 

. 1 
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rj3C.E. YO, 1-29 (1964). 
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