This entire site Copyright© 1997-2017 Don C. Warrington. All rights reserved.

Website maintained by Positive Infinity and hosted by 1 and 1 Internet.

Much of what appears on this website focuses on the past: the history of Vulcan Iron Works and the hammers it built, the development of dynamic methods for pile performance prediction, and the like. And that's not a bad thing: any product which has endured for over a century, let alone a foundation type (driven piles) which have been used for millennia, deserves recognition as both remain a present reality for contractors, engineers and owners alike.

However, this page concentrates on the future: an attempt to advance dynamic methods for piles, both forward (predictive) and inverse (verification.)  This doctoral research project at the University of Tennessee at Chattanooga is now complete, and we are pleased to present the following:


Dynamic Pile Testing Results
Crescent Foundation Demonstration Test Pile – Vulcan SC9 Hammer
Kenner, Louisiana

Brian Mondello and Sean Killingsworth
May 2014

This report presents the results from dynamic pile testing, and related data analysis, performed during the initial drive testing of the subject Test Pile on April 30, 2014, at the above referenced jobsite location in Kenner, Louisiana. The primary test objective was the monitoring of the hammer/driving system performance. Additionally, the testing objectives included the monitoring of dynamic pile driving stresses, pile structural integrity, and pile static bearing capacity. These objectives were met by means of a Pile Driving Analyzer® (PDA), Model PAX, which uses the Case Method for numerical computations. An additional analysis was performed on a selected test record using the CAPWAP® computer program. Discussions on the testing equipment, analytical procedures, theory, application, and limitations are presented in Appendix A. Testing and analysis results are presented in Appendix B.

A video of the SC-9 hammer featured in Mondello and Killingsworth:

Dynamic Response of Footings and Piles

Wing Tai Peter To
PhD Dissertation
University of Manchester
February 1985

Dynamic response analyses can be regarded as stress wave propagation problems. The solution of such by the finite element method entails more consideration than static problems, since sources of inaccuracies such as dispersion, spurious oscillations due to mesh gradation, wave reflection at transmitting boundaries, as well as instability or inaccuracy due to temporal operators and discretisation can arise. The criteria for formulating a finite element model for dynamic response analysis have been investigated. Using the relatively simple von Mises soil model (satisfactory for undrained saturated clay) three categories of problems have been investigated:

  1. The dynamic response analyses of surface footings subjected to periodic and impact loading have been performed in order to evaluate the finite element model design criteria. An approximate analysis is also performed in reducing a three-dimensional indirect impact problem to a two-dimensional analysis.
  2. Vibratory pile driving is a relatively new but somewhat unreliable technique of pile installation. Penetration is instantaneous if conditions are right, but with the high hire charges and uncertainty in success the technique is unpopular, especially in clays. In the work presented it is shown that vibratory installation is possible in cohesive soils at the fundamental frequency for vertical pile translation, if a high enough dynamic oscillatory force is provided. Penetration mechanisms have also been exploited.
  3. On the other hand, impact pile driving is reliable and widely adopted in terrestrial as well as offshore construction. Experience in one dimensional wave equation analysis is discussed, and further numerical evaluation of the parameters involved has been carried out by a more elaborate axisymmetric finite element model. In cohesive soils a closed-ended pile may be driven more easily than an equivalent open ended pile, depending on the level of the internal soil column and the soil properties. In the light of the growing popularity of nondestructive determination of the axial load-carrying capacity of piles by dynamic methods, the possibility of correlating the soil resistance mobilised in dynamic conditions to the ultimate static capacity is queried. The semi-empirical Case method has been assessed in detail.
Driven Pile Manual Volume 1a
Driven Pile Manual 1b
Driven Pile Manual 2